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ABSTRACT

Context. Membership analyses of the DANCe amgchot+ DANCe data sets provide the largest and least contaminated sample of
Pleiades candidate members to date.

Aims. We aim at reassessing the different proposals for the number surface density of the Pleiades in the light of the new and most
complete list of candidate members, and inferring the parameters of the most adequate model.

Methods. We compute the Bayesian evidence and Bayes Factors for variations of the classical radial models. These include elliptical
symmetry, and luminosity segregation. As a by-product of the model comparison, we obtain posterior distributions for each set of
model parameters.

Results. We nd that the model comparison results depend on the spatial extent of the region used for the analysis. For a circle of
11.5 parsecs around the cluster centre (the most homogeneous and complete region), we nd no compelling reason to abandon King's
model, although the Generalised King model introduced here has slightly better tting properties. Furthermore, we nd strong evidence
against radially symmetric models when compared to the elliptic extensions. Finally, we nd that including mass segregation in the
form of luminosity segregation in th&éband is strongly supported in all our models.

Conclusions. We have put the question of the projected spatial distribution of the Pleiades cluster on a solid probabilistic framework,
and inferred its properties using the most exhaustive and least contaminated list of Pleiades candidate members available to date. Our
results suggest however that this sample may still lack about 20% of the expected number of cluster members. Therefore, this study
should be revised when the completeness and homogeneity of the data can be extended beyond the 11.5 parsecs limit. Such a study will
allow for more precise determination of the Pleiades spatial distribution, its tidal radius, ellipticity, number of objects and total mass.

Key words. astrometry — open clusters and associations: individual: M 45 — infrared: stars — methods: data analysis —
methods: statistical

1. Introduction In the case of the Pleiades, cross-matching tihePHRCOS
catalogue (Perryman et al. 1997) with the 2109 candidate mem-
The projected spatial distribution (PSD), also known as numbieers of Bouy et al. (2015), shows that only 70 of them have
surface density, of a stellar cluster is the two dimensional (2[parallax measurements. This gure has roughly doubled with
projection, in the plane of the sky, of its three dimensional (30Ophe rst Gaia data release DR1 (Gaia Collaboration 2016), and
space distribution. Because celestial coordinates are far miwexpected to improve based on the longer time baselines and
easily measured than parallaxes (at least befm&), only a hence more accurate measurements of subse@atnteleases.
small fraction of the objects with stellar positions have distanda preparation for the analysis of these upcoming data sets and to
estimates. Furthermore, the relative uncertainties in the celestiatrow down the set of models that will be tested in the context
coordinates yield far more precise measurements (by a factorodf3D studies, we have initiated a re-examination of the cur-
10%) of distances perpendicular to the line of sight than thosent analytical alternatives to describe the PSD of the Pleiades
achieved by parallaxes along this line so far (except perhagisister.
for very close objects). This explains why most of the previ- The Pleiades PSD has been thoroughly studied in the past.
ous works devoted to studying the spatial distribution of staRin eld et al. (1998) tted King's (King 1962, hereafter King's)
in clusters have been done using the PSD. empirical pro les to the positions 01194 candidate members
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from the literature, which were contained i aradius area. For Table 1. Survey, and derived core and tidal radius for recent studies in
their tted King pro les, they used different mass ranges, withhe literature.
bins centred ab:2;1:65;0:83 and0:3M . Using tidal force$,

they iteratively constrained the tidal radius to a valud &f pc Core Tidal  Survey
( 5.6). They infer a core radii in the 0.9—2.91 pc range in the radius radius radius
different mass bins, and a total mas¥86M . They interpreted (pc) (pc/) )
the gradual increase in the core radii for decreasing mass ranges;
as evidence of mass segregation. Pin eld et al. (19‘5_)8_) 0.9-2.91 13.1/5.6 3
The same year, Raboud & Mermilliod (1998) also tted a Raboud & Mermilliod (1998) 15  175/75 5
King's pro le to a list of 270 candidate members with masses Adams etal. (2001) 23530 1668 10
in the range 0.74—-7.0dl , which were contained within & Converse & Stahler (2008) 13 18/7.7 >
radius area. They found a core radiusl&pc and a tidal radius ~_Converse & Stahler (2010) 20 19583 5

of 17:5pc (7:5 ). Using different approaches, they derived a total

mass within the range of 500-8000 . They also measured an

ellipticity of = 0:17. However, they did not make any explicit(G 20mag) members of nearby clusters. Therefore, itis impor-
mention of the position angle of the axis of the ellipse, antnt to de ne suf ciently complex models to describe these
simply state that it is roughly parallel to the galactic equator. measurements. The early and simple formulations of the PSD

Later, Adams et al. (2001) also tted a King's pro le to (e.g. King) were perfect when a dozen or a few tens of dozens
objects with membership probabilitigs> 0:3 within a radius of members were known. But the accuracy and completeness of
of 10 . They found a core radius of 2.35-3.0 pc and a tidal radidisture surveys will allow us to look in ner detail.
of 13.6-16 pc (5.8-6.9. They estimate a total mass o800M The study of the spatial distribution also has implications
and their measured ellipticities are in the range 0.1-0.35. that go beyond its intrinsic interest. One of them is the existence

Converse & Stahler (2008) tted a King's pro le to a sam-of mass segregation as a result of star formation and dynami-
ple of 1245 candidate members from the Stauffer et al. (200@al interactions in the cluster. This effect has been predicted by
compilation. These objects have masses greater thanMd.08 numerical simulations of the internal cluster dynamics; see, for
and are contained within & radius. They obtained a tidal example, Terlevich (1987), Kroupa et al. (2001), Moraux et al.
radius of18pc (7:7 ) and a core radius af:3pc. They found (2004) and Converse & Stahler (2010). Con rming and quan-
unambiguous evidence of mass segregation using a method ttigyng its dependence on various parameters (e.g. initial mass
devised inspired by econometrics. Later, Converse & Stahlemnction, core mass function, total mass of the cluster, presence
(2010) re ned their previous study (Converse & Stahler 2008)r absence or massive stars, T- or OB-association) shall provide
and obtained a core radius @f0 0:1pc, a tidal radius of important input to the models and simulations of star formation
195 1.0pc ( 8.3), a total number of systems 456 35, and dynamical evolution.
and a total mass &70 35M . In the specic case of the Pleiades, mass segregation has

The previous summary of results shows at least two intdseen reported in the works of Raboud & Mermilliod (1998),
esting points. In the rst place, the King's prole has beenPin eld et al. (1998), Kroupa et al. (2001), Adams et al. (2001),
the preferred choice for the Pleiades cluster, although it whforaux et al. (2004) and Converse & Stahler (2008, 2010). Yet,
created to t the PSD of globular clusters. Since globularoktin (2006), using radial and tangential velocity dispersions,
clusters are farther away than open clusters and in a low-dendidynd no hint of mass segregation in a sample of 340 stars con-
environment, the end of their PSD is usually well within theained in the centra2:3 . However, his results may arise from
survey area, which is not the case for the Pleiades. The sectinel low number and extent of his sample. All the mentioned
point concerns the increasing trend of the tidal radius with thweorks performed their analyses by binning the stellar samples
size of the survey and the publication date (Table 1); as tiremass or distance ranges. It is well known however that tting
surveys increase in area, the derived tidal radii increase as walfunction to a binned data set can introduce biases (Bevington
This may indicate that truncation has not been accounted ®mRobinson 2003; Nousek & Shue 1989), and that modifying the
(see Appendix A and Fig. A.3 particularly). The exception tdin width could improve the tting to a preferred model (Towers
this trend is the work of Adams et al. (2001), in which the tida2012). Thus, the use of bins in previous works and the contra-
radius is well within the survey radius. Since these authors useidtory mass-segregation results found by Loktin (2006) may
low-membership-probability (0:3) objects, their results may be suggest that the hypothesis of mass segregation in the Pleiades
affected by a signi cant contamination rate, which these authorsquires a more solid reexamination.
acknowledge for their5 sample. In this work we aim at addressing this hypothesis on the

The two points mentioned above are tightly related. Witbasis of the largest and least contaminated sample of Pleiades
the exception of the work of Adams et al. (2001), the coverageandidate members found to date: the combined list of candi-
of the rest of the surveys have not reached their estimated tidate members from Bouy et al. (2015) and Olivares et al. (2017).
radius. This indicates that the previously used samples of me¥e avoid the binning biases by using Bayesian inference meth-
bers were spatially truncated. They only contain objects from tloels applied to continuous and thus non-binned distributions. In
inner parts of the cluster. Thus, estimates of the tidal radius magidition, these Bayesian methods allow a quantitative compari-
have been biased, and were, in any case, highly correlated wstin of the competing models, including those with and without
the contamination rate. mass segregation. This will allow us to establish on rm grounds

With Gaia data coming up soon, we will have very accuthe analytical expression of the Pleiades PSD, and its potential
rate measurements of the spatial distribution of all the brightes#pendence on stellar mass.

In Sect. 2 we briey describe the data set that forms the
basis of our analysis. In Sect. 3 we present the set of radially
1 We highlight that their Egs. (10) and (12) seem to be slightly differergymmetric analytical models we used, as well as their exten-
from those reported Binney & Tremaine (2008). sion to biaxially symmetric (elliptical) pro les. We also include
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a luminosity dependence of the core radius (as a proxy to the /<17 /<18 /<19 /<20
investigation of mass segregation). In Sect. 4 we describe the
foundations of model selection in the Bayesian framework. We

then discuss and compare the results that we obtain for the pos-
terior distributions of the various models in Sect. 5, where we

also brie y describe our estimates on the total mass and number
of members in the cluster. Finally, in Sect. 6 we summarise the’
conclusions drawn from the study. &

1071 4

2. The data sample

Density [stars p

The data set used to compare the models in Sect. 3 corre-
sponds to the high-membership-probability candidate members

of Olivares et al. (2017), in the middle and faint luminosity end,

with the addition of theTychoe2 Pleiades high-luminosity can-
didate members from Bouy et al. (2015). This joint data set 10~
comprises the equatorial coordinates RA and Dec (in the fol-
lowing and ), proper motions, photometry, and membership
probabilities of 2060 sources. In this analysis we work only 1 17</<18 18</=19 [ 19</=20 [ Synthetic
with the positions, membership probabilities, ahghotomet-

ric band. The latter is the reddest most available band for this list
of members, and is used as a proxy for the mass and to explore
evidence of mass segregation. 10-!

0 2 4 6 8 10 12 14
Radius [pc]

s pci]

2.1. Completeness of the sample

To properly establish the probabilistic framework, it is necessarﬁ
to take into account the observational constraints of the data. Th2
Pleiades DANCe catalogue is constrained by its sky coverag®
and the different degrees of completeness (see Bouy et al. 2013,
2015, for details). Although the data set extends up to a radius
of 6:5 , Bouy et al. (2015) conservatively assume that the census
is homogeneous in coverage and limiting magnitude only in the
central3 radius area. 10-2 : : : : : : :
Here, we estimate the completeness of the whole of the joint 0 2 4 6 8 10 12 14
Tycho+ DANCe survey in terms of thé band luminosity and Radius [pc]
spatial coverage, which also applies to our list of candidate memg. 1. Density of sources in the combined DANC&ychocatalogue
bers. In Fig. 1 we show the distributions of the number of sources a function of the radial distance to the cluster centre and thag-
in the combined DANCe Fychocatalogue as a function of the nitude.Top panelall sources contained within the limiting magnitudes.
radial position for different limiting magnitudes and bins in théottom panelsources within the 11.5 pc radius of spatial completeness
J band. The radial position is computed assuming a distance(#grtical grey line), and binned in magnitudes. The black line represents
134.4pc to the Pleiades cluster (Galli et al. 2017) and a centhe density of two million sources uniformly distributed in the plane of
at ; = [56:65,24:13]. As can be seen from the top panel of"€ SKY-
this gure, the DANCe +Tychocatalogue is spatially complete
until a radial distance of 11.5pc § ). The latter corresponds less than 19 mag, and (ii) radial distances less than 11.5 pc. This
roughly to the sky coverage of the UKIDSS survey (Lawrencesults in 1954 candidate members, which represents more than
et al. 2007). Above this limit, the density of sources drops witG0% more candidate members than those of Converse & Stahler
two different slopes. The rst one is created by the sawtootf2010), who did the latest analysis of the Pleiades PSD. Account-
pattern at the edge of the DANCe survey, while the last one cang for completeness and the previous truncation in the data set
responds to the more extended selection box used fofttieo  is essential to avoid possible bias in the inferred parameters (see
survey. To evaluate the photometric completeness, we assulyppendix A). Nevertheless, we remind the reader that the inho-
that the distribution of sources in the sky region of the Pleiadesogeneities (e.g. spatial resolutions, gaps in luminosity) of the
is uniform (this simplistic assumption is suf cient for our currentDANCe +Tychodata set are so complex (and some of them only
purpose). We compare the radial density of sources of diffgrartially understood) that they can indeed bias the sample of
entJ magnitude bins with that of a synthetic sample uniformlgandidate members in unknown ways. For example, the gap in
distributed in space and truncated at the completeness radiusuafiinosity coverage between the faint end of hehoe?2 cat-
11.5 pc. The radial distribution of this synthetic sample and thoséogue and the bright end of the DANCe survey (see Fig. 8 of
of the three magnitude bins are shown in the bottom panel Bbuy et al. 2015) may result in undetected sources, therefore
Fig. 1. As can be seen from the latter, the joigthot DANCe unmeasured proper motions and, nally, an incomplete list of
survey is expected to be complete until magnitud® in the candidate members.
J band. Above this limit, the distribution of sources departs Another important constraint is the number of cluster stars
signi cantly from the expected one. Hence, we restrict our listhserved within the survey area coverage. Truncating the prob-
of candidate members to those with: {i)band observed and ability distributions properly accounts for the cluster members
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left outside the truncation radius. However, due to the severgnsity. In the following we usR instead ofr (as is often com-
artefacts surrounding the images of bright sources (e.g. halomnly done in the literature) to refer to the distance from the
spikes, saturation), potential cluster members could also remajystem centre projected on the celestial sphere.

undetected. Furthermore, these artefacts can severely bias anyn addition to the classical King's pro le we have tested two
evidence of mass segregation, as the most massive and brightgitnsions of it. We de ne the Generalised King's pro le (here-
stars are located at the centre of the cluster. However, the statiter GKing) as the classical King's pro le without xing the
tical treatment of the impact of these artefacts lays beyond theponents of the analytical expression. Instead of Eq. (1), we

scope of this work. have
The information provided by the observational constraints,
which we calll, consists of the maximum radilByax = 11.5pc, nR =k 1+ (R:rc)l 1+ (rt:rc)l ; )

and the number of stars observed within this radNis; 1954

These constraints will be incorporated into the model throu . . . .
thelikelihood. %vhhere the classical King's pro le is recovered for= 0:5 and

= 2. To the best of our knowledge, only in the work of
o Robotham et al. (2017) has a similarly modi ed King's pro le
2.2. Contamination been used. However, the pro le used by those authors is more

Olivares et al. (2017) estimate a contamination ra®f 0:20 restrictive than the one presented here, requiring that %,

in their sample of candidate members at the probability thresh@d that both termiR=), and(r:=rc) are at the power of 2.

of Paasi® > 0.84. This would amount to 84 of their 1963 candidate 1 h€ optimised generalised King's pro le (hereafter OGK-
members. Also, Sarro et al. (2014) estimate that the contamiffa@) 1S the GKing pro le with the values of and  xed at

tion rate of their methodology i$1:0 2:0% for a probability "€ Maximum-a-posteriori (MAP) values of the GKing param-
threshold ofp = 0:5, similar to that used by Bouy et al. (2015)e_ters. 'I_'hls maximises the Bayesian evidence and reduces the
to classify the candidate members of tiEycho+ DANCe data dimensionality of the parameter space. ,

set. Thus, in our combinedycho+ DANCe list of candidate 10 avoid the use of a tidal radius in the radial pro le, we
members, we acknowledge a mean contamination rate3e6 have also considered the model proposed by Elson_et al. (1987),
(approx. 156 objects). We expect these contaminating sourég§iceforth EFF, to describe young open clusters in the Large
to be uniformly distributed in right ascension and declinatioffagellanic Cloud. Their surface density (in star counts per solid
because the position on the sky was explicitly removed frof'9!€) is given by

the calculation of membership probabilities. Nevertheless, there ~

may be a mild positive gradient of the density towards the GaladR) = n(0) (1+ (R=c)9)?; 3)

tic centre. In addition, these contaminants may not be uniformly, _ N
distributed inJ band, with possible concentrations around 14 anifith c the core radius, and the slope of the pro le at radii

17 mag, where the entanglement of eld and cluster populatiof&ich larger than the core radius. o

is higher. The quanti cation of this possible dependency of con- Finally, we analyse a more general parameterisation intro-
taminants with photometric magnitude and its consequences %#ed in Lauer et al. (1995), Byun et al. (1996) and Zhao (1997),
beyond the objective of this work and will be analysed in futuré/nere the projected mass density is given as

studies. K0

(R =

AT A IR )

3. Spatial density models
Equation (4) represents a double power law, wiitbeing
the so-called core or break radiusand the exponents of the

In this section we consider spherically symmetric models of tHgner and outer regions, respectivelythe width of the transi-

spatial distribution of Pleiades members. In the following pardion region, andk® a scale constant. Meaningful values of these

graphs we give a brief description of each model, its analyticBframeters ful | the following conditions:> 0and0 .

parameterisation’ and the Corresponding references. The aforementloned-works assume th|s funCtlona| form fOI’ the
Our starting point is the classical King's pro le. Although it Projected surface brightness, the projected mass densityd

was introduced as an empirical law to describe the number sifte volume density, although the latter two are related by

face density of globular clusters, it has also been used to descrip&gration:

open clusters (see Alonso-Santiago et al. 2017; Panwar et al. Z ;

2017, for recent applications), _globular clusters (Myeong et aI(R) = v(r) dz, (5)

2017) and even to study galaxies (Robotham et al. 2017), halo 0

substructure (Sohn et al. 2007) and the dark matter distribution ) ) , i

(Jiang & van den Bosch 2016). The analytical description of ttéh€rezis the distance along the line of sight.

3.1. Spherical models

i i (i In this work we use the same analytical expression as in
surface number density of starss given by Eq. (4) but for the number densityR). We call this model
é} 1 1 the generalised density proie(hereafter GDP), as it com-
n(R) = k P ; (1) prises many simpler models, each of which corresponding to
1+ (Reo)? 1+ (re=r¢)? particular choices of the model parameters. Several density

wherer., the core radius, is a scale factarjs the tidal radius, Pro les proposed to describe galaxi_es can indeed be grouped
andk is a constant related (but not equal) to the central surfab¥ Parameter values. For example= 1 includes models by
Navarro et al. (1997), Hernquist (1990), Jaffe (1983) and Moore

2 In Olivares et al. (2017), individual membership probabilities argt g|. (1999). Similarly, = 1=2; = 0includes the models by
themselves probability distributions. Thupgsy, Stands for the 84th

percentile of those distributions. 3 Although it is also called Nuker pro le by Kiipper et al. (2010).
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Plummer (1911) (with = 5), by Sackett & Sparke (1990) andin each quadrant be Poisson distributed with a mean rate given
by de Zeeuw (1985). The EFF model corresponds also o by Ng = Nig=4. Under this model, the likelihood of any given
1=2; = 0. King's prole, however, cannot be cast into thisproposal for the model parameters,( ¢) will be

general model unless the tidal radiyss xed at in nity. _

For our spatial analysis, we also considered the restricttd= P(N1; N2; N3; Naj ¢; ¢)
generalised pro le (RGDP), corresponding to the generalised= P(N;jNg) P(N2jNg) P(N3jNg) P(N4jNg); (8)
pro le with the value xed at O.

We note that we have used similar names for paramegerswhereN;;i = 1;2; 3;4 is the number of sources in each quadrant,
and in all the aforementioned formulations. However, thesandP(NijNg) is the Poisson distribution with mean raXig,=4
parameters do not share the same meaning amongst models.Suauated al;.
latter is distinctively speci ed by each model relatith.

In all cases, th&? coordinate is de ned with respect to thez 3, Elliptical models

cluster centre. The actual valueshthen depend on the choice ) ) ) )
of this origin (see Sect. 3.2). In this section we extend the aforementioned spherical models to

allow for deviations from radial symmetry. We do this by allow-
ing variations of the radial pro le that depend on the angular
coordinate but still maintain biaxial symmetry. This can be done
In the above, we have de ned six models: King, GKing, OGKin many ways. In this work we focus on the simplest one: the
ing, EFF, GDP and RGDP. Each of them has a different sanalytical expression of the radial pro le is maintained along
of parameters. For example, the King's model depends on t&oy radial direction but the pro le parameters (etgandr; in
parametersr¢ andr), the EFF model depends on two othethe King pro le) have an ellipse-like dependence on the angular
parametersr{ and ), and the generalised pro le GDP dependsoordinate.
on four parameters ( , andrg). This requires the de nition of a coordinate system centred at
In reality, there are always two more parameters that do nite cluster centre (parametersand ), and potentially rotated
appear explicitly in any of the above analytical formulations dfom the RA-Dec system of axes. Thus, we further include the
the number density pro les. These are the cluster centre coordirgle between the principal axes of the ellipse and RA-Dec
nates from which all radial distanc&sare measured. It is not system as a parameter of these models. The coordifaes
a minor question because the problem is degenerate, and thiead Eq. (6) are rotated by angleto obtain coordinatex and
is a maximum likelihood solution for each choice of the clustey. Then,R and are computed from the latter by means of
centre. In principle, one could even choose a poor cluster centre. (7).
estimate that renders the angular distribution of members asym- The radially symmetric parameters of the previous section
metric, and obtain a maximum likelihood t better than thosdave now an angular dependency, which is now expressed by
obtained with a better centred estimate. The models assume geeans of the characteristic radii at the semi-major and semi-
tral symmetry, but this can only be ensured approximately. Theminors axes (denoted by subscriptandb, respectively). These
is a region of non-negligible extent, where the cluster centrew radii are expressed as
may be, and any particular choice of its position will in uence
the posterior distribution inferred. Thus, in order to propagat¢ ) = :
appropriately this uncertainty about the cluster centre position in (rasin( ))? + rpcos())?
our posterior inferences, we have included the two cluster centr . . S
coordinates, ¢ and ¢, as further parameters of our models (theif/"€ré is the position angle measured from the semi-major
allowed intervals will be described in Sect. 4.3). axis, andr, andr, are the parameters representing the char-

For any given choice of the central coordinates, we calcgCteristic radius at the semi-major and -minor axis, respec-
late the radial distance®, and the position angle of each star Uvely: _ . _ o
in our data set. To avoid biases introduced by projection effects e _illustrate this new biaxial dependency in the King's
of objects located far from the cluster centre, we project eaPtC € The surface number density is now

3.2. Central symmetry constraint

fa Ip

9)

object's coordinates into the plane of the sky along the line-
of-sight vector (see for example, Eq. (1) of van de Ven et ar#(R) - Kk 1 - 1 . (10)
2006). R GO

These projected coordinates are
. wherer. andr; are obtained from Eq. (9). Explicitly they are,
X = sin( ¢) cos();
§=cos(c) sin() sin(o) cos() cos( o ©) ro()=p foa Tob : (11)
(reasin( ))? + rep cos( )2

From these projected coordinates, the radial distaRcand

the position angle,, are computed as ()= o la lio (12)
)=7P =
ne — (fasin())? + iy cos())?;
= arctan 2€§) + 2 (mod 2 ): 7) Whererg, andry, are the core and tidal semi-major axis of the

ellipse, andry, andry, correspond to the semi-minor axis. We
The requirement of central symmetry is enforced by thieighlight that we do not constrain the two ellipses to have the
inclusion of a multiplicative term in the likelihood. For a givensame aspect ratio, but they are co-aligned.
set of parameter values of; ., we divide the computed polar ~ For the other model, the surface densities are similarly
angles of individual stars, into four symmetric quadrants (divi- obtained. We do not incorporate any angle dependence for the
sions at[0; =2; ; 3=2]) and require that the number of starexponents; or .
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The position angle of the semi-major axis with respect to thtee probability of nding a star betweeR and R + dR, under
Right Ascension axis () is constrained using the equivalent othe assumption of spherical symmetry. The probability density
the radial symmetry likelihood term, except that now the positidiunction p(R) is constructed from the de nition:
angle has its origin at the semi-major axis.

2 R nR dR

p(R) dR= N ; (15)

3.4. Segregated models

Finally, in this section we introduce another set of pro les t§/hereN is the total number of stars in the system.

revisit the problem of mass segregation in the context of the 'NiS probability is renormalised to integrate to unity at the
truncation radiusRnax Which in our data set corresponds to

Pleiades.
We consider the previous biaxially symmetric models té1-5PC- Thus,
which we add a dependence of the core radius withJtheag- 8 o)
nitude. We select thd magnitude because it is the reddest o (R) = § Remax R dR for R Rmax. (16)
the magnitudes that are available for all candidate members. We 20 0 for R> Ryax

assume that stars of the same mass have approximately the same
magnitude and that distance differences (due to the 3D spafill the probabilities rendered by our set of models are renor-
extent of the Pleiades) average out. The core radius dependemegised according to the previous equation. However, in the

with the J magnitude is modelled as following and for the sake of simplicity, we only present the
non-truncated probabilities.

re(; N =re( )+ (3 Imodd; (13) Applying Eq. (15) to the spherically symmetric King's pro-
le, we obtain

whereJmoge s the mode of the band distribution.
The slope of the relationship, is independent of the angle kK 2 é} 1 1 g
. Therefore, ford = Jnode = 13:6 the model reduces to thep(R) = —— R :
elliptic pro le described in Sect. 5.2. A positive value oforre- N

sponds to smaller values of the core radius for stars brighter than _ o . . .
Jmode = 136; in other words, it describes a system where the Actually, in probabilistic inference we write this probability

(17)

T+ (RA)2 1+ (o)

more massive stars are more concentrated than the less magdsigtion as:
ones. . 1 1
P(Rirc;ro ke ;M 1) = ki R g P ;
1+ (Rc)? 1+ (rery)?
4. Bayesian analysis (18)

As mentioned in Sect. 2, our data set may be contaminatgghere we have de ned a new constaki, = % and made
Thus, in an effort to minimise the possible impact that thesgplicit the dependence of the probability on the underlying ana-
contaminants may have on our inference, we also model thgifical expressionNl ;), the constraints, and the values of the
spatial distribution. Hence, our model of the spatial distributioparameter sek(; r. andr,). In practicek; is treated as a normal-

of stars not only includes the model of the Pleiades cluster, ightion constant (to enforce unit integral) and there is no need to
also a eld component which is modelled by a uniform spatidknow the total number of stars in the system.

distributionU within the maximum radiu&nax. For the generalised King's pro le, this becomes
The measured properties of each of star in our data set can be
assumed to be unaffected by the measured properties of any othg(Rjrc;ry; ; ; ko;1;M2)
star in the data set (this assumption is called statisiickdpen- . .
dencd. Under this assumption, the probability that the data set =ki R 1+ (R=r¢)” 1+ (re=re)” 1 (19)

was generated by the mixture of cluster and eld is the product
of the probabilities that each of the stars was generated by this | jkewise, the expression for the EFF model is
mixture.

Allowing D = fd;; id' to denote our data set, withcom- P(RIrc; ; ka;1;M3) = ks R (1+ (Rx)d)z: (20)
prising the sky coordinates andmagnitude, and the cluster
membership probability of each object, the probabilitylike- And nally, the GDP model is given by
lihood of the data seb, given the modeM , constraintd, and
parameters, is ks R

P(RIrc; ;55 ka1iMa) = (21)

W (Ree) 1+ Ra)¥=) )7
L(Djg;M ;1) = i p(dijg;M D)+ (@ ) U(djl) : (14) with = 0forthe RGDP model.
[ For the elliptical and luminosity segregated density pro les,
- ) the likelihoods are obtained similarly by addingnd replacing
The probability p(djg; M ;1) depends on the pro le under  andr, by re,; re, andra; Iy in the model parameters, and intro-
the likelihood of the biaxial King's pro le is

4.1. Probabilistic framework ]
P(R; J3 TeasTebi ta; Tty Ks; 15 M )

To avoid the use of bins and to properly infer the parameters o
the models presented in Sect. 3, we need to convert the projected_ | g 1 - 1 (22
stellar densities into probability density functions that describe > 1 2 © 27

+ (Rere( ) 1+ (r()=c())
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4.2. Model selection The code to perform the analysis of the present work,

. . . . . together with the data set described in Sect. 2, is available at
In this section we aim at comparing the aforementioned aNgps://github.com/olivares-j/PyAspidistra

lytical parameterizations of the projected stellar densities in the

light of the currently available data. In order to do so, we use the

Bayesian evidence, also known as marginal likelihood. In the f®, Results and discussion

lowing, we useevidencdand its plurakvidence$ to refer to the . i . i

Bayesian evidence. Thevidencs the key for model compari- We apply the Bayesian formalism described in Sect. 4 to the
son in the Bayesian framework. In this framework, the modé&@ta set detailed in Sect. 2. Thus, for each of our models we
ability p(Mj D). This is the probability of modeM given the itsevidenceAppendix B contains the details of the inferred pos-
collected datd. In our opinion, this is the most natural way totrior distributions, gures of the tted densities and marginal

The posterior probability can be expressed as in each analysed model. Table 2 summarisesethidencesind

Bayes Factors resulting from all our models and their extensions.
p(DiM) p(M). In the following we use thesevidencedo discuss the model
pd)

comparison.

The boundaries for decision making from Bayes Factors
using Bayes' theorem. The ratio of posterior probabilities cashould be set ab initio. We mostly discuss our results following
then be expressed as the classical scale by Jeffreys (1961). In this scale, the strength

. ) of the evidencgis said to beinconclusiveif the Bayes Factor
p(MijD) _ p(DMi) pMi). (24) is. 31 weakifitis 3:1 moderateifitis 12:1, andstrongif
p(M D) p(DM ;) pM )’ it is &150:1. Nevertheless, we hope that our conclusions can be

) ) ) ] L _ shared by the reader independently of the scale used to categorise
Ifthere is no difference in the prior probabilities for models tne Bayes Factors.

and |, then the posterior ratio is equal to the marginal likelihood
ratio (also known as Bayes Factor), where the marginal likeli- . ]
hood (i.e. theevidencis the full likelinood marginalised over 5-1. Models with radial symmetry

p(Mj D) = (23)

the model parametexs as follows The upper-left panel of Table 2 summarises #dences
z and Bayes Factors obtained from our radially symmetric mod-
p(DjM) = p(Djg;M)da: (25) els. In addition, Table 3 shows the MAP estimate of each

parameter in the radially symmetric models (uncertainties

It is important to remark that the Bayesian model comparff€ shown in Appendix B in the form of covariance matri-
son naturally incorporates a preference towards the less comptéR): , ,
models if they are equally supported by the data. In fact, the Ve observe that thevidencesluster in two groups. On one
preference is towards models with less effective parametéldnd there is the family of King's models, where the evidence
(understood as parameters that the data can constrain). to compare between them is inconclusive and weak in favour

The computation of the posterior probability distribution@f OGKing over GKing. On the other hand there are the EFF,
and theevidenceof each model is carried out in practice using>PP, and RGDP, where there is weak evidence supporting EFF
the Nested Sampling (Skilling 2006) algorithm as implementéd/e" GDP and RGDP. There is inconclusive evidence supporting

in PyMultiNest(Buchner et al. 2014). RGDP over GDP. o
Comparing the two groups shows that models in King's fam-

. ily provide evidence that is: inconclusive and weak over the EFF,
4.3. Priors weak and moderate over RGDP, and moderate over GDP. Using

In the spherical models, we have assumed exponential prioﬁ'@,s information only, we conclude that the tidal radius is an
with a scale value of 1, and truncated at 100, for all expdMportant parameter. .
nent parameters ; , normal priors for the central coordinates N addition, we observe that in GDP and RGDP, param-
(with mean af56:65 ; 24:13 | and standard deviation ofjland €tersre and show large correlations (0.85 and 0.92 for
half-Cauchy priors for radial parameters (with scale parametePP and RGDP, respectively) and are relatively unconstrained
at 10 pc). These priors fall in the categoryvedakly informative With large uncertainties; see Appendix B. Despite this fact,
ones (see Gelman 2006). the models still prowde_ewdences:omparable to those of the

In the biaxially symmetric models, we use the same priors &1er models, suggesting that these two parameters, although
for the radially symmetric ones but we restrict the semi-majélecessary for the model, are unconstrained by the data, and
axes of the core and tidal radii to be larger than, or at ledéerefore not penalised by thevidence Aiming at eliminat-
equal to, their corresponding semi-minor axis. We also includdRg this source of degeneracy, we tested models in which one
uniform prior for the angle 2[ =2; =2). of these two parameters was removed. However, the ts and

In the luminosity segregated models, in addition to the prévidenceresulting from them were poorer than that of the
vious priors, we use a norma\, (0; 0:5), as a prior for , which RGDP. Thus, we consider these parameters as necessary for this

represents our prior beliefs of almost negligible luminositynodel. _ _ o

segregation. We nd that the introduction of more exibility in the ana-
lytical expressions of the classical radially symmetric pro les

4 Since the Bayesian evidence is a number that can be computed_for

each model and/or data set (see Eq. (25)), we use the gliddgnces ° The Jeffreys scale is used to relate the Bayes Factors, which con-
to address any set containing the Bayesian evidence of more than taie the Bayesian evidences of the two models, to the possible shared
model. understanding of the word evidence.
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Table 2. Natural logarithm of thesvidencedor each pro le density (diagonal) and Bayes Factors (off-diagonal elements, witvitiencefor the
model speci ed in the column header placed in the denominatoR(EM ow)=p(DjM column))-

Radial Biaxial Segregated
EFF GDP  GKing King OGKing RGDP EFF GDP  GKing King OGKing RGDP EFF GDP GKing King OGKing RGDP
EFH 4569.15 8.83 0.83 0.40 0.19 2|53<1le 2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2
GDP| 0.11 4571.33 0.09 0.05 0.02 0p9<le 2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2
GKing 1.21  10.64 4568.97 0.48 0.23 305<le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2
King 2.51 2217 2.084568.23 0.49 6.35 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2
OGKing 513 4531 4.26 2.044567.52 1299 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2
RGDR 0.40 3.49 0.33 0.16 0.084570.08 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2 <le2
EFF  >999 >999 >999 >999 >999 >9PpA557.32 5.14 0.08 0.08 0.01 0/84<le 2 <le2 <le2 <le2 <le2 <le2
GDP  >999 >999 >999 >999 >999 >999 0.19 4558.96 0.02 0.02 <1 01§ <le2 <le2 <le2 <le2 <le2 <le2
GKing >999 >999 >999 >999 >999 >999 12.31 63.26 4554.81 0.97 0.13 10.37 <le 2 0.01 <le2 <le2 <le2 <le2
King >999 >999 >999 >999 >999 >909 12.64  64.93 1.034554.78 0.14 10.64 <le 2 0.01 <le2 <le2 <le2 <le?2
OGKing >999 >999 >999 >999 >999 >099 91.95 472.37 7.47 7.284552.80 77.41  0.04 0.10 <le2 <le2 <le?2 0.04
RGDR >999 >999 >999 >999 >999 >909 1.19 6.10 0.10 0.09 0.014557.1% <le2 <le2 <le2 <le2 <le2 <le?2
EFF  >999 >999 >999 >999 >999 >9P9 >999 >099 212.43 206.96 28.45  >998549.45 2.95 0.10 0.03 0.16 115
GDP  >999 >999 >999 >999 >999 >909886.29 >999 71.98 70.13 9.64 74615 0.34 4550.53 0.03 0.01 0.05 0.39
GKing >999 >999 >999 >999 >999 >999 >999 >999 >999 >999 293.70 >999 10.32 30.47 4547.12 0.32 1.64 11.86
= King >999 >999 >999 >999 >999 >999 >999 >999 >999 >099 913.86 >999 32.12 94.81 3.114545.98 5.10 36.91
OGKing >999 >999 >999 >999 >999 >999 >999 >999 >999 >999 179.23 >999 6.30 18.59 0.61 0.204547.61 7.24
RGDA  >999 >999 >999 >999 >999 >999 >999 >099 184.89 180.13 24,76  >999 0.87 2.57 0.08 0.03 0.144549.59

Radial

Biaxial

gregated

S

Notes.Theevidenceorresponds to the data set truncated at 11.5 pc.

Table 3. Maximum-a-posteriori estimates of the inferred parameters @gainst the GDP model. We can conclude that there is strong evi-

each radially symmetric model. dence for the family of King's models and against the GDP one.
The evidence is still moderate and too weak to compare the rest
c[] e[l relpc] relpc] of the models.

Additionally, we compute a posteriori (from the MCMC

EFF 56.66 24.18 2.23 2.53 . 2 .
GDP 56.66 2417 302 064 295 009 chains) the ellipticitie% . and ., which are de ned as,
GKing 56.66 24.16 142 1817 0.46 1.48 _ leo .
King 56.66 24.16  2.04 32.08 c=1 P
OGKing 56.66 24.17 1.38 18.87 rtcba
RGDP 56.66 24.17 3.11 0.69 3.13 =1 r—;

ta

with the latter available only for the King's family of models.
does not provide an increased amounewidenceand results, Table 4 shows the MAP estimate for the parameters in the

in some cases, in unconstrained parameters and a loss of fipsels of this section, together with the mode of the distri-
interpretability associated to the original formulations. TherdUtions of ellipticities. Uncertainties for the latter are given in

: s L : ; dix B.
fore, the competing models are within the King's family, with ‘PPN . . . .
insuf cient evidence to select amongst them. Only additional, We can observe that models with no tidal radius have similar

-~ ; Al o llipticities with a mean value d#:23 0:01 This value is
perfectly acceptable prejudices like physical interpretability of° € -
the ability to compare with previous results can be invoked fmilar to the 0.17 found by Raboud & Mermilliod (1998), who

choose one (e.g. King's pro le) over the rest. use a multicomponent analysis to derive the directions (although
The Bayes Factors seem to indicate (with inconclusive e\fS value is not given) and the aspect ratio of the ellipse's axes.
dence however) that the best model is the OGKing. Howev owever, it is very interesting to see that the models within

the fact that this pro le has a largavidencethan any of the ing's family result in lower values of the ellipticity in the cen-
e ; ; ; Ji@l region and larger values in the outer one. This result is

from xing the values of and of the GKing model to their expected from the interaction with the galactic potential and is
MAP values. predicted by numerical simulations of open clusters (see, e.g.

Comparing the rest of the models, we see that the podrevich 1987).

est model is GDP with moderate evidence against it. The BYcomparing thevidencesf the biaxially symmetric mod-

best models are again in King's family, followed by EFF an§'s 10 those of the radially symmetric ones, we can con_clude
RGDP. ’ that in all cases there is strong evidence in favour of the biaxial

The conclusion from the comparison of these radially synfl0dels.
metric pro les is that (i) there is no compelling reason to
abandon the widely used King pro le, and (i) there are slightly.3. Models with luminosity segregation
better models, but we lack evidence to prove if they truly ePrhe lower-
resent a requirement to make the King's pro le more exible t
accommodate the data.

right panel of Table 2 summarises gwdencesand
OBayes Factors of models with luminosity segregation. Also,
Table 5 shows the MAP of the inferred distributions for this set
of models, together with the derived ellipticities.

5.2. Biaxially symmetric models We observe that the ellipticities follow the same pattern
as those of the previous section. This is expected because we

The central panel of Table 2 contains the logarithm ofelie Py o ; ;
dencesand Bayes Factors of the biaxially symmetric modelﬁ(glgggﬁiggog%léhe luminosity segregation as independent of

The evidencedollows a pattern similar to that observed for the
radially symmetric models, with the exception of those that afe The ellipticity used here is also known as “ attening”.
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Table 4. Maximum-a-posteriori estimates of the inferred parameters in each biaxially symmetric model.

c [ ] c [ ] [rad] lca [pc] la [pc] Ich [pc] I'tb [pC] rc rt
EFF 56.66 24.15 0.99 2.61 211 258 0.22
GDP 56.64 24.15 1.01 3.90 3.14 0.68 3.28 0.04 0.23
GKing 56.66 24.14 0.94 1.35 18.00 121 12.79 0.48 1.34 0.10 0.30
King 56.64 24.20 1.01 2.05 51.23 2.04 20.92 0.07 0.64
OGKing 56.68 24.16 1.04 151 22.63 1.38 14.54 0.09 0.36
RGDP 56.68 24.17 0.96 4.05 3.04 0.78 3.32 0.24

Notes.Ellipticities are derived a posteriori using the inferred parameters.

Table 5. Maximum-a-posteriori estimates of the inferred parameters in each luminosity segregated model.

o[l [l [rad] realpc] ralpc] renlpc] ruw[pc] [pcmagl] o«
EFF 56.66 2416  1.02  2.65 2.22 2.60 012 0.8
GDP 56.68 2417 101  3.60 3.19 0.63 314 013 0.23 018
GKing 56.66 2416 083 139 16.88 122 1261 0.67 128 013 0.05 0.38
King 56.62 2419 096 234 3849 237 20.49 0.9 0.05 0.60
OGKing 56.61 2417  0.99 162 2208 159 14.04 0.0 0.07 0.36
RGDP  56.62 2417 096  3.78 3.35 0.73 3.34 0.24 0.19

Notes.Ellipticities are derived a posteriori using the inferred parameters.

The luminosity segregation inferred here is non-negligibl&ble 6. Mode of the distribution of total number of stars in the cluster.
with in the range 0.1-0.25c mag?!, thus indicating that it

is indeed an ilmportant parameter. However, in all the.mod— GKing King OGKing

els, the marginal posterior distribution of does not dis-

card the zero value (see the marginal posterior ofin Ctr 2087 2251 2086

Appendix B). Ell 2209 2509 2257
The evidenceprovided by the models with luminosity seg- Seg 2272 2455 2231

regation follow a similar pattern as those from radial symmetry.
However, in this case the best model is the classical King's,
which shows only moderate evidence against the EFF, RGDP, \ye 5150 estimated the total mass of the cluster using the

and GDP models. The evidence of King's model over GKingqqierior samples of the parameters returnedPipiultiNest

and OGKing is weak. o To gain an estimate of the total mass we use the tidal force
The evidencegprovided by the luminosity segregated modzeg iting from the interaction of the self-gravitating cluster

els lead to them being strongly favoured over the radiallyiy the galactic potential. A detailed derivation of the Jacobi

and biaxially symmetric ones in all cases. We can conclu Sdius under the Hill's approximation can be found at p. 681 of

that, despite having a small value qf the luminosity seg- ginney & Tremaine (2008). Following the mentioned authors,
regation is an important parameter regardless of the modgk jacobi radius is given by,

used. '
113
= o0 (26)
5.4. Total mass and number of members 4 oAo

In this section we use the inferred values of the paramerereG is the gravitational constanty the total mass of the
ters in King's family of models to derive simple estimatesluster, and o the circular frequency of the cluster around the
of the total number of members and mass of the Pleiadgalactic centre, which can be expressed in terms of the Oort's
cluster. constant®yp andByas ¢=Ag Bg.

For each model and extension within the King's family, we In the following, we assume an over-simplistic correspon-
estimate the total number of cluster members by integrating tdence between the tidal radius of the King's family of mod-
surface density pro le until the tidal radii inferred for the modelels and Jacobi radius. Binney & Tremaine (2008, p. 677)
This is done for each set of parameters returneBydMultiNest provide a detailed list of reasons why this correspondence
The resulting distributions of the total numbers fore each modisl only approximate. Thus, using the Oort's constant values
and extension in the King's family are shown in Fig. 2. Additiongiven by Bovy (2017,A = 153 0:4kms'kpc?! and B =
ally, Table 6 shows the mode of these distributions. As can bd1:9 0:4kmstkpc 1), we can derive an estimate of the
seen from this table, our current data set (with 1954 membergtal mass of the cluster for each inferred value of the tidal
although twice as large as previous studies in the literature, stildius.
lacks almost one fth of the predicted number of objects in the Figure 3 shows the distributions of the total mass derived
cluster. from the posterior distributions of the parameters of the King's
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GKing+Ctr [ cking King 0GKing

GKing-+Ell
GKing+Seg
| King+Ctr
| King+Ell
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|4 OGKing+Ell
I 0GKing+Seg
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Total number of systems 107>
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Fig. 2. Distribution of the total number of systems within the tidal radius Total mass [Mo]

in each model and extension of the King's family. The abbreviations;
Ctr, Ell, and Seg stand for the radial and biaxial symmetric models, a
those with luminosity segregation, respectively.

. 3. Distribution of the total mass of the cluster derived from each
xially symmetric and luminosity segregated model of the King's

family.
Table 7. Mode of the distribution of total mass of the cluster.
GKing King OGKing 6. Conclusions
Ctr 1408 8584 2277 In this work we have formulated the existing radially symmetric
Ell 1956 6049 3571 alternatives for the spatial distribution of stars in open clusters
Seg 2247 6605 3508 in a probabilistic framework. The set of distributions reviewed
include (i) the classical King's pro le with two variants put for-
Notes.Units in solar masses. ward by us, (ii) the EFF model, and (i) a general pro le inspired

by galactic pro les together with a more restricted version of it.
We have used Bayesian techniques to both obtain posterior prob-

family of models with biaxial symmetry and luminosity segreability distributions for the parameters, amdidencedor each
gation (the distributions of total mass resulting from the radiahodel. With them, we compare and select the best model, given
and biaxial models are shown in Appendix B). As a sunthe data (and its possible biases). Furthermore, we have com-
mary, Table 7 shows the mode of each of these total massted Bayes Factors for all pairwise model comparisons. Due to
distributions. high correlations among theig and parameters, the GDP and

As can be seen from this gure and table, inferring the totaRGDP models loose their physical interpretability. The result of
mass by means of the poorly constrained tidal radius leadstlee comparison amongst models with radial symmetry is that
large uncertainties and probably biased estimators. This effélae King's family of models is only mildly superior, with weak
has already been observed by Raboud & Mermilliod (19983nd moderate evidence, to those models without the tidal radius
who derived a total mass of 4080 with a con dence inter- parameter.
val ranging from 1600/ to 8000M . These values are in good  Furthermore, we have analysed biaxially symmetric exten-
agreement with the ones reported in Table 7 and observedsions of our set of models. The results indicate that deviations
Fig. 3. from spherical symmetry have strong evidence when compared

Given the large ellipticity of the cluster, we also investo the more simple radially symmetric models. Additionally,
tigated the possibility of deriving the total mass by mearthe distribution of ellipticities derived from the EFF, GDP, and
of the tidal elongation effect. However, the values determindRIGDP models peak a®:22 0:01, which is similar to the
are even more poorly constrained than those determined usuadue of 0.17 found by Raboud & Mermilliod (1998). Within
Eq. (26). the King's family, the models return ellipticities that are small

The results of this section show that: (i) there is still a largémean = 0:07 0:02) and large (mean; = 0:44 0:14)
fraction (up to 20%) of cluster members that lay beyond the the inner and outer parts of the cluster, respectively. This
spatial coverage of our data set, and (ii) although poorly uncoeffect is expected from the dynamical interaction of the clus-
strained, the distributions of the total mass of the cluster seaar with the galactic potential, and is also predicted by numerical
to suggest that it is highly unlikely that the total mass of theimulations.
cluster lays below the 100@ limit, as commonly stated in We use Bayesian model selection with Bayes Factors to anal-
the literature. However, the large and unconstrained mass dise mass segregation. We prefer to remain in the domain of direct
tribution could also be an artefact resulting from: (i) the poasbservables and study potential differences in the parameters
correspondence between the Jacobi radius and the tidal radafshe spatial distribution as a function not of mass, but of the
(ii) the poorly constrained values of the tidal radius, and (iigpparentl-band magnitude. The Bayes Factors show strong evi-
dynamical effects not taken into account to derive Eq. (26) (e.dence in favour of the luminosity segregated models, and against
the cluster is not a point mass but a self gravitating and rotatitige simpler biaxially symmetric ones. We interpret this result as
system). strong evidence for mass segregation.

A70, page 10 of 39


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731996&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731996&pdf_id=0

J. Olivares et al.: The seven sisters DANCe. IlI.

The above conclusions heavily depend on the sample R&ferences
Pleiades members selected for the analysis. In our probabiljs-

. . . oo ams, J. D., Stauffer, J. R., Monet, D. G., Skrutskie, M. F., & Beichman, C. A.
tic analysis we took into account the possibility that our samp@zom’ AJ, 121, 2053

is Contaminat?d, bUt &band-dependent_ cc_)ntamination rafe ( Alonso-Santiago, J., Negueruela, 1., Marco, A, et al. 2017, MNRAS, 469, 1330
band contamination gradient) could mimic a mass segregatiBevington, P. R., & Robinson, D. K. 2003, Data Reduction and Error Analysis
such as the one observed here. In addition, the halos and arteor the Physical Sciences (McGraw-Hill)

facts in the images of the central and bright stars can induc&gney: J- &PTrer;‘ai”e' S. 2008, Galactic Dynamics, 2nd edn. (Princeton
. . . niversity Press
spatial incompleteness that could also arti cially enhance thg,,y 1. gertin, E., Moraux, E., et al. 2013, A&A, 554, A101

slope of the luminosity segregation. Thus, our results must Beuy, H., Bertin, E., Sarro, L. M., et al. 2015, A&A, 577, A148
taken with care. In the near future, we expect to conduct simil&evy, J. 2017, MNRAS, 468, L63
studies given the more homogenous and well characterised o%t‘é{‘”er’ J., Georgakakis, A., Nandra, K., et al. 2014, A&A, 564, A125

L un, Y.-l., Grillmair, C. J., Faber, S. M., et al. 1996, AJ, 111, 1889
sets (e.g. new releases@ia's data). Converse, J. M., & Stahler, S. W. 2008, ApJ, 678, 431

Although the GKing and OGKing models introduced herggonyerse, J. M., & Stahler, S. W. 2010, MNRAS, 405, 666
have greateevidencesand tting properties than the classicalde zeeuw, T. 1985, MNRAS, 216, 273

King's pro le, there is no strong evidence supporting an abarison, R. A.W., Fall, S. M., & Freeman, K. C. 1987, ApJ, 323, 54

; ; Foreman-Mackey, D. 2016, The Journal of Open Source Software,
donment of the latter. Nevertheless, the GKing pro le is a good® DOI- 10.21105//055.00024

alternative to the King's classical pro le and should be comparegha coliaboration (Prusti, T, et al.) 2016, AGA, 595, Al

with it in light of new and more complete data sets. Galli, P. A. B., Moraux, E., Bouy, H., et al. 2017, A&A, 598, A48
From the model selection process, we can conclude tifggiman, A. 2006, Bayesian Anal., 1, 515

the classical King's pro le extended to include biaxial symernquist, L. 1990, ApJ, 356, 359

pro s . Jaffe, W. 1983, MNRAS. 202, 995
metry and mass/luminosity segregation should be the Start'ﬂﬂreys, H. 1961, Theory of Probability, 3rd edn. (Oxford: Oxford Univrsity

point in future analyses of the spatial distribution of open press)
clusters. Jiang, F., & van den Bosch, F. C. 2016, MNRAS, 458, 2848
Finally, we use the posterior distributions of the parametefég. |. 1361 Al?h?g?{w v, 3. 2001, MNRAS. 321 699
in King's model family to obtain rough estimates of the totaE[]"“ppe"’;: A.'H?\r/?/f Kroupa, PL.J,rBe’Z’urﬁgardt,’ H. & Heggie, D. C. 2010, MNRAS,
mass and number of systems in the cluster. We observe thalg; 2241
even the largest census of candidate members (Bouy et al. 2QMtuer, T. R., Ajhar, E. A., Byun, Y.-I., et al. 1995, AJ, 110, 2622
Olivares et al. 2017) may lack up to 20% of the predicted nunhawrence, A., Warren, S. J., Aimaini, O., et al. 2007, MNRAS, 379, 1599

ber of stellar systems. The probability distribution function ofoktin. A. V. 2006, Astron. Rep., 50, 714
the cluster total mass, which is determined using approximatiowgflrif" Quinn, T., Governato, F., Stadel, J., & Lake, G. 1999, MNRAS, 310,

of the tidal fqr(_:e exerted b_y the galactic and cluster potential§oraux, E., Kroupa, P., & Bouvier, J. 2004, A&A, 426, 75
reveals that it is highly unlikely that the true cluster total masgyeong, G. C., Jerjen, H., Mackey, D., & Da Costa, G. S. 2017, ApJ, 840, L25
lays below the 1000 limit. Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493

The results of this work suggest that, although the Pleiadfigisek %, A, & Shue, D- R 1989, fps, 42,1207 -

cluster is one of the most studied in the literature, the daught@ig,ar, N. samal, M. R., Pandey, A. K., et al. 2017, MNRAS, 468, 2684

of Atlas still keep many of their secrets within the oceans of theerryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. 1997, A&A, 323, L49
sky; probably awaiting the arrival of the n&aia's data. Pin eld, D. J., Jameson, R. F., & Hodgkin, S. T. 1998, MNRAS, 299, 955
Plummer, H. C. 1911, MNRAS, 71, 460

Raboud, D., & Mermilliod, J.-C. 1998, A&A, 329, 101
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Appendix A: Effects of truncation on King's

pro le
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Fig. A.3. Mixture of the ten posterior distributions of the core and tidal
radius (. andry, respectively) inferred under different sample sizes (line
styles) and truncation radii (colours) without correcting for truncation.
The true parameter values are shown with the vertical grey lines.

Fig. A.1. Mixture of the ten posterior distributions of the core and tidal
radius (. andry, respectively) inferred under different sample sizes (line
styles) and truncation radii (colours). The true parameter values arglues. However, due to the large asymmetry in the posterior dis-

shown with the vertical grey lines.
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Fig. A.2. Mean relative errorr¢ andry, respectively) of the MAP statis-
tic inferred from ten random realisations of different sample sizes (line
styles) and truncation radii (colours). The uncertainties correspond S
the standard deviation of the ten inferred MAPs.

Statistical truncation occurs when an unknown number
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tributions of the tidal radius at the lower truncation radius (5 pc),
the MAP statistic can be severely biased. Figure A.2 shows the
mean relative error of this statistic as a function of the trun-
cation radius. As can be seen, the larger biases appear at the
extreme case where the truncation radius is only one fourth of
the true tidal radius. We note that although the MAP estimates
of each of the ten realisations are biased, estimates are made
in a similar way above and below the true value; except at the
truncation radius of 5 pc, where they slightly over estimate the
value. Also, the MAP is unbiased above truncation radii of half
the tidal radius, in spite of the number of stars (at least for the
tested values).

This example shows that the inference of the parameters
in the King's pro le can be biased even after truncation has
been accounted for. In particular, the tidal radius can be severely
affected by truncation radius below one half of the tidal radius.
Since this phenomenon is observed under the weakly informative
priors used (half-Cauchy centred at zero and scale parameter of
100), this effect can be generalised to any maximum-likelihood
timator, the 2 statistic particularly.

Finally, as can be seen in Fig. A.3, inferring King's pro le
parameters without properly accounting for truncation leads to
g%/en larger biases.

sources lay beyond a threshold value. This threshold value can

originate in the measuring process or in the post-processing

pendix B: Posterior distributions

the data. The resulting data set does not contain any informatio

about objects beyond the threshold.

This appendix contains the details of the inference performed

Performing inference on truncated data can bias the recdor each of the models and extensions presented in Sect. 3. It is

ered parameters if the truncation mechanism is not includedstructured in the same way as that section. It starts with the radial
the analysis. Nevertheless, bias can still appear if poor statisedels, then continues with the biaxial extensions, and nishes
tics are used to summarise the results. Practically speakingwith the luminosity segregated ones. For each extension we give:
the truncation is too restrictive it could also lead to bias due {9 the uncertainties of the MAP for each model, and (ii) gures

a reduced sample size. To estimate the impact of these effedepicting: (a) the number surface density (i.e. the number of stars
we generated synthetic data sets from the King's pro le, at tryser square parsec), and (b) the univariate and bivariate marginal
values ofr; = 2:0pc andr; = 20:0pc, and infer the parametersposterior distributions obtained froRyMultiNestin the form of
under different sample sizes (1000, 2000, and 3000 objects) andorner plot (Foreman-Mackey 2016). Since the MAP is com-
truncation radii (5, 10, 15, 20 pc). We repeat each estimation tpated in the joint posterior, it does not necessarily coincides with
times to account for randomness in the sample. Figure A.1 shatie modes of the marginal distributions.

the posterior distributions inferred at each sample size and trun- The MAP uncertainties and correlations are summarised by
cation radius. As can be seen, accounting for truncation resultcovariance matrices. These are computed using the 68.2% of
posterior distribution that correctly recovers the true parameteamples from the MCMC that were the closest to the MAP
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Table B.1.Covariance matrix of the radially symmetric EFF model. Table B.4.Covariance matrix of the radially symmetric King model.

c[]l <[] relpel ¢l ¢[] relpe]l rifpe]

«[] 0007 0.000 0.000 0.000 <[] 0018 0001 0001 0.001

<[] 0000 0.006 0.001 0.000 «[] 0001 0017 0002 0.021

re[pc] 0.000 0.001 0.058 0.030 re[pc] 0.001 0.002 0144 0.945
0.000 0.000 0.030 0.027 riffoc)  0.001  0.021 0.945 37.437

Table B.2.Covariance matrix of the radially symmetric GDP model. Table B.5.Covariance matrix of the radially symmetric OGKing model.

c[1 <[] rclpc] e[l [l relpel  rilpc]

<[] 0.012 0000 0.004 0.000 0.002 0.000 cl] 0.011  0.001 0.001 0.003
<[] ©0.000 0012 0.006 0.002 0.006 0.001 c[] 0.001  0.010 0.000 0.000
re[pc] 0.004 0.006 0589 0.062 0.330 0.004 re[pc] 0.001 0.000 0.054 0.100

0.000 0.002 0.062 0.046 0.059 0.016 r[pc] 0.003 0.000 0100  1.951

0.002 0.006 0.330 0.059 0.256 0.028
0.000 0.001 0.004 0.016 0.028 0.028

Table B.6.Covariance matrix of the radially symmetric RGDP model.

Table B.3.Covariance matrix of the radially symmetric GKing model.

c[] c [1 relpc]

¢ [l c[] relpel  rilpc] ¢[1 0014 0.000 0.003 0.000 0.001
¢[] 0022 0001 0002 002l 0.001 0.000 ¢[] 0000 0012 0.006 0.000 0.005
<[] 0001 0019 0007 0.046 0.004 0.005 re[pc]  0.003 0.006 0.804  0.089 0.466
rc[pc] 0.002 0.007 1376 1469 0126  0.317 0.000 0.000 0.089 0.051 0.061
r(fpc]  0.021 0.046 1469 19.684 0.214 1139 0.001 0.005 0.466 0.061 0.311

0.001 0.004 0.126 0.214 0.364 0.027
0.000 0.005 0.317 1139 0.027 0.141

core and tidal (when available) semi-major and semi-minor axes
value. They represent ti2 uncertainties and correlations ofresulting from thePyMultiNestsamples.
the parameters at the vicinity of the MAP. Finally, this appendix also contains the distributions of the
For the biaxial and luminosity segregated models we alsotal mass of the cluster derived from the radial and biaxial
give the ellipticity distributions computed a posteriori from thenodels in the King's family.
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Table B.7.Covariance matrix of the biaxially symmetric EFF model.

cl] cl] [rad] realpc] re [pc]
cl1] 0.007 0.000 0.001 0.000 0.000 0.000
c ] 0.000 0.006 0.001 0.000 0.001 0.001
[rad] 0.001 0.001 0.063 0.000 0.002 0.000
rea [PC] 0.000 0.000 0.000 0.131 0.056 0.049
rev [PC] 0.000 0.001 0.002 0.056 0.093 0.047
0.000 0.001 0.000 0.049 0.047 0.040
Table B.8.Covariance matrix of the biaxially symmetric GDP model.
cll Il [rad] realpc] re [pc]
c ] 0.007 0.001 0.001 0.002 0.000 0.001 0.000 0.001
c[1 0.001 0.005 0.001 0.005 0.005 0.002 0.0050.001
[rad] 0.001 0.001 0.185 0.051 0.031 0.008 0.0430.010
rea [PC] 0.002 0.005 0.051 1.204 0.801 0.101 0.5470.006
reo [PC] 0.000 0.005 0.031 0.801 0.788 0.074 0.4800.009
0.001 0.002 0.008 0.101 0.074 0.044 0.0700.016
0.000 0.005 0.043 0.547 0.480 0.070 0.3630.033
0.001 0.001 0.010 0.006 0.009 0.016 0.033 0.025
Table B.9.Covariance matrix of the biaxially symmetric GKing model.
¢ [] cl] [rad] realpc] rwalpc] relpc] rw[pc]
c ] 0.013 0.001 0.004 0.001 0.004 0.002 0.015 0.002 0.001
c[1 0.001 0.010 0.001 0.002 0.014 0.004 0.005 0.002 0.002
[rad] 0.004 0.001 0.256 0.029 0.205 0.058 0.003 0.022 0.027
Iea [PC] 0.001 0.002 0.029 1.587 0.041 0.379 0.437 0.194 0.131
ra [PC] 0.004 0.014 0.205 0.041 25.850 0.956 5.304 0.227 0.677
ren [PC] 0.002 0.004 0.058 0.379 0.956 0.433 0.575 0.031 0.144
Iy [pC] 0.015 0.005 0.003 0.437 5.304 0.575 6.150 0.015 0.436
0.002 0.002 0.022 0.194 0.227 0.031 0.015 0.291 0.028
0.001 0.002 0.027 0.131 0.677 0.144 0.436 0.028 0.076
Table B.10.Covariance matrix of the biaxially symmetric King model.
c[] c[] [rad] realpc] ralpc] reo[pc] i [pC]
c[1 0.019 0.000 0.004 0.002 0.057 0.002 0.001
c[1 0.000 0.015 0.007 0.010 0.094 0.001 0.001
[rad] 0.004 0.007 0.359 0.124 1.582 0.010 0.190
rea [PC] 0.002 0.010 0.124 1.428 6.175 0.074 1548
r'a [PC] 0.057 0.094 1582 6.175 371.812 1108 23.841
reo [PC] 0.002 0.001 0.010 0.074 1.108 0.154 1.157
Iy [PC] 0.001 0.001 0.190 1.548 23.841 1157 53.033
Table B.11.Covariance matrix of the biaxially symmetric OGKing model.
cl] cl] [rad] realpc] rwalpc] relpc] rw[pc]
c[1 0.009 0.001 0.000 0.001 0.006 0.001 0.002
c[1 0.001 0.007 0.002 0.004 0.011 0.001 0.002
[rad] 0.000 0.002 0.194 0.031 0.166 0.009 0.121
rea [PC] 0.001 0.004 0.031 0.248 0.462 0.011 0.080
ra [PC] 0.006 0.011 0.166 0.462 14.223 0.095 0.391
ren [PC] 0.001 0.001 0.009 0.011 0.095 0.059 0.176
Iy [pC] 0.002 0.002 0.121 0.080 0.391 0.176 3.509
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Fig. B.1. Inferred density of the radially symmetric pro les shown by means of the MAP value (red line) and 100 samples from the posterior
distribution (grey lines). For comparison the data has been binned with Poissonian uncertainties (black dots).
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Fig. B.2. Projections of the posterior distribution for the radially symmetric EFF model.

Table B.12.Covariance matrix of the biaxially symmetric RGDP model.

A70, page 16 of 39

c[l <[] [rad] realpc] re[pc]
¢[] 0010 0001l 0003 0.003 0.000 0.000 0.000

¢ 1] 0.001 0.008 0.001 0.006 0.005 0.001 0.004
[rad]  0.003 0.001 0208 0.037 0.030 0.0l 0.029
ra[pc] 0.003 0.006 0.037 1320 0.864 0115 0.590
reo[pc] 0000  0.005 0.030 0.864 0.823 0.084 0507
0.000 0.001 0001 0115 0.084 0.045 0.062
0.000 0.004 0029 0590 0507 0.062 0.355
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Fig. B.3. Projections of the posterior distribution for the radially symmetric GDP model.

Table B.13.Covariance matrix of the luminosity segregated EFF model.

c[] ¢ [] [rad] realpc] re[pc] [pcmag !]

e[ 0.007 0.001 0.000 0.001 0.001 0.000 0.000
e[ 0.001 0.006 0.002 0.001 0.002 0.001 0.001
[rad] 0.000 0.002 0.085 0.009 0.002 0.005 0.001
rea [PC] 0.001 0001 0009 0151 0.078  0.060 0.008
Feo [PC] 0.001 0.002 0002 0.078 0126 0.061 0.012
0.000 0.001 0.005 0.060 0.061 0.048 0.004
[pcmag!] 0.000 0.001 0001 0.008 0.012 0.004 0.006
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Fig. B.4. Projections of the posterior distribution for the radially symmetric GKing model.

Table B.14.Covariance matrix of the luminosity segregated GDP model.

c[l [l [rad] realpc] re[pc] [pcmag ']

c[] 0.010 0.001 0.000 0.000 0.003 0.001 0.003 0.001 0.001
c[] 0.001 0.008 0.002 0.003 0.004 0.000 0.0040.001 0.001
[rad] 0.000 0.002 0.321 0.102 0.064 0.010 0.0710.012 0.014
rea [PC] 0.000  0.003 0.102 1122 0.789  0.092 0.5060.003 0.061
rep [PC] 0.003 0.004 0.064 0.789 0.828  0.072 0.4720.011 0.069
0.001  0.000 0.010 0.092 0.072 0.051 0.0680.019 0.004
0.003 0.004 0.071 0.506 0.472 0.068  0.3540.040 0.040

0.001 0.002 0.012 0.003 0.011 0.019 0.040 0.031 0.003
[pcmag ] 0.001  0.001 0.014 0.061 0.069 0.004 0.0400.003 0.016
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Fig. B.5. Projections of the posterior distribution for the radially symmetric King's model.
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Fig. B.6. Projections of the posterior distribution for the radially symmetric OGKing model.
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Fig. B.7. Projections of the posterior distribution for the radially symmetric RGDP model.
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Fig. B.8. Inferred density of the biaxially symmetric pro les shown by means of the MAP value (red line) and 100 samples from the posterior
distribution (grey lines). For comparison the data has been binned with Poissonian uncertainties (black dots).
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Fig. B.9. Projections of the posterior distribution for the biaxially symmetric EFF model.
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Fig. B.10. Projections of the posterior distribution for the biaxially symmetric GDP model.
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Fig. B.11.Projections of the posterior distribution for the biaxially symmetric GKing model.
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Fig. B.12.Projections of the posterior distribution for the biaxially symmetric King's model.
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Fig. B.13.Projections of the posterior distribution for the biaxially symmetric OGKing model.
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Fig. B.14.Projections of the posterior distribution for the biaxially symmetric RGDP model.
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Fig. B.15. Ellipticity distributions of the biaxially symmetric models. The numbers shown in brackets represent the 16th percentile, the mode, an
the 84th percentile (also shown by means of vertical grey lines).

A70, page 29 of 39



A&A 612, A70 (2018)

Table B.15.Covariance matrix of the luminosity segregated GKing model.

c[]l c[] [rad] realpc] ralpcl rewlpc] rw[pc] [pcmag ']
c[] 0.015 0.001 0.003 0.002 0.054 0.007 0.032 0.003 0.003 0.002
c[1 0.001 0.012 0.006 0.004 0.076 0.017 0.0330.000 0.007 0.003
[rad] 0.003 0.006 0.306 0.060 0.406 0.186 0.138 0.017 0.067 0.027
Iea [PC] 0.002 0.004 0.060 4.645 1.703 2.322 1.919 0.388 0.563 0.167
ra [PC] 0.054 0.076 0.406 1.703 85.273 4.036 19.4970.637 2.217 0.511
ren [PC] 0.007 0.017 0.186 2.322 4.036 2.409 2.465 0.135 0.632 0.226
I [PC] 0.032 0.033 0.138 1919 19.497 2.465 17.3470.149 1.308 0.292
0.003 0.000 0.017 0.388 0.637 0.135 0.149 0.342 0.023 0.003
0.003 0.007 0.067 0.563 2.217 0.632 1.308 0.023 0.232 0.067
[pcmag 1] 0.002 0.003 0.027 0.167 0.511 0.226 0.2920.003 0.067 0.037
Table B.16.Covariance matrix of the luminosity segregated King model.
¢l ¢[1 [radl ralpcl ralpcl relpc] rwlpc]  [pcmag’]
c[1] 0.018 0.001 0.003 0.015 0.105 0.002 0.019 0.000
c[1] 0.001 0.014 0.004 0.009 0.123 0.001 0.010 0.000
[rad] 0.003 0.004 0.328 0.118 1317 0.005 0.064 0.004
rea [PC] 0.015 0.009 0.118 1547 5.348 0.110 1.293 0.002
ra [PC] 0.105 0.123 1317 5.348 220.118 1423 16.847 0.041
rep [PC] 0.002 0.001 0.005 0.110 1423 0.192 1.046 0.014
Iy [PC] 0.019 0.010 0.064 1293 16.847 1046 32.386 0.069
[pcmag '] 0.000 0.000 0.004 0.002 0.041 0.014 0.069 0.004
Table B.17.Covariance matrix of the luminosity segregated OGKing model.
c[]l <[] [rad] ralpc] ralpc] rwlpc] rwlpc]  [pecmag ]
c[] 0.009 0.000 0.002 0.002 0.010 0.000 0.005 0.001
c[1] 0.000 0.006 0.002 0.002 0.013 0.002 0.005 0.001
[rad] 0.002 0.002 0.176 0.019 0.137 0.008 0.104 0.008
rea [pC] 0.002 0.002 0.019 0.175 0.381 0.025 0.080 0.002
ra [pC] 0.010 0.013 0.137 0.381 10.973 0.093 0.386 0.009
r'ep [PC] 0.000 0.002 0.008 0.025 0.093 0.070 0.186 0.008
Iy [pcl 0.005 0.005 0.104 0.080 0.386 0.186 2.807 0.023
[pcmag '] 0.001 0.001 0.008 0.002 0.009 0.008 0.023 0.005
Table B.18.Covariance matrix of the luminosity segregated RGDP model.
c[l c[] [rad] realpc] re[pc] [pcmag ']
c[] 0.010 0.000 0.000 0.002 0.001 0.000 0.001 0.001
c[] 0.000 0.008 0.003 0.006 0.009 0.001 0.006 0.002
[rad] 0.000 0.003 0.237 0.078 0.056 0.003 0.046 0.012
rea [pC] 0.002 0.006 0.078 1481 1.074 0.125 0.667 0.081
r'e [PC] 0.001 0.009 0.056 1.074 1.078 0.090 0.609 0.088
0.000 0.001 0.003 0.125 0.090 0.050 0.062 0.005
0.001 0.006 0.046 0.667 0.609 0.062 0.390 0.047
[pcmag '] 0.001 0.002 0.012 0.081 0.088 0.005 0.047 0.016
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Fig. B.16.Inferred density of the luminosity segregated models. The data are binned in three bind batieJ < 12,12. J. 15 and15<J

(with colours green, cyan and magenta, respectively). The MAP is shown by means of three coloured solid lines, the colours correspond to the
of the J band bins. In these MAPs, the core radius is increased accordingly to Eq. (13) using the mean valudeahtha each bin. Also shown

are 100 samples from the posterior distribution (grey lines).
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Fig. B.17.Projections of the posterior distribution for the luminosity segregated EFF model.
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Fig. B.18. Projections of the posterior distribution for the luminosity segregated GDP model.
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Fig. B.19.Projections of the posterior distribution for the luminosity segregated GKing model.
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Fig. B.20.Projections of the posterior distribution for the luminosity segregated King's model.
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Fig. B.21.Projections of the posterior distribution for the luminosity segregated OGKing model.
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Fig. B.22.Projections of the posterior distribution for the luminosity segregated RGDP model.
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Fig. B.23. Ellipticity distributions of the luminosity segregated models. The numbers shown in brackets represent the 16th percentile, the mod
and the 84th percentile (also shown by means of vertical grey lines).
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Fig. B.24.Distribution of the total mass of the cluster derived from eachRig. B.25. Distribution of the total mass of the cluster derived from each
radially symmetric model of the King's family. biaxially symmetric model of the King's family.
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