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Abstract We use data from the 2013–2014 Cluster Inner Magnetosphere Campaign, with its uniquely
small spacecraft separations (less than or equal to electron inertia length, λe), to study multiscale magnetic
structures in 14 substorm-related prolonged dipolarizations in the near-Earth magnetotail. Three time scales
of dipolarization are identified: (i) a prolonged growth of the BZ component with duration ≤20 min; (ii) BZ
pulses with durations ≤1 min during the BZ growth; and (iii) strong magnetic field gradients with durations
≤2 s during the dipolarization growth. The values of these gradients observed at electron scales are several
dozen times larger than the corresponding values of magnetic gradients simultaneously detected at ion
scales. These nonlinear features in magnetic field gradients denote the formation of intense and localized
(approximately a few λe) current structures during the dipolarization and substorm current wedge formation.
These observations highlight the importance of electron scale processes in the formation of a 3-D substorm
current system.

1. Introduction

The dipolarization of the Earth’s magnetotail magnetic field, observed as an increase in the positive BZ
component, is an essential element of substorm onset (e.g., Baumjohann et al., 1999; Sergeev et al., 2012,
and references therein). The source(s) of these perturbations is still debated. According to one widely
discussed scenario, the development of plasma instabilities triggers current disruption in the near-Earth
plasma sheet (PS) (Lui, 1996; Lui et al., 1991; Roux et al., 1991). Another scenario considers magnetic
reconnection-induced bursty bulk flows (BBFs), which transport magnetic flux and energy to the inner
magnetosphere and destabilize the near-Earth PS (e.g., Angelopoulos et al., 1992, 1994; Baker et al., 1996;
Baumjohann et al., 1990; Hayakawa et al., 1982). BBFs are accompanied by BZ enhancements—that is, dipo-
larization fronts (DFs) which are spatial structures traveling with the flow. DFs are often associated with
impulsive electric fields, wave bursts, and enhancements of energetic particle fluxes (e.g., Deng et al.,
2010; Ergun et al., 2014; Khotyaintsev et al., 2011; Ohtani et al., 2004; Runov et al., 2009, 2011; Zhou
et al., 2009).

DFs have been studied extensively in the last decades. It was shown that they represent kinetic structures
with vertical thin (~thermal ion gyroradius) current sheets (CSs) embedded within the BBF (e.g., Fu et al.,
2012; Khotyaintsev et al., 2011; Runov et al., 2009; Sergeev et al., 2009). Later studies showed that at smaller
sub-ion gyroscales, DFs are made of complex and structured CSs that may contain small-scale dissipative
layers (e.g., Angelopoulos et al., 2013; Balikhin et al., 2014).

In the transition region (the so-called flow braking region), where the stretched magnetotail-like magnetic
configuration transforms to a more dipole-like shape (at X ~ �10 RE), BBFs are decelerated and oscillate
(e.g., Baumjohann, 2002; Panov et al., 2010, 2015; Shiokawa et al., 1997). This results in the formation of a
magnetic flux pileup region, perturbations of the near-Earth PS, and a cross-tail current through the develop-
ment of various plasma instabilities (e.g., Grigorenko et al., 2014; Lui, 2004; Roux et al., 1991, and references
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therein). The perturbations of the CS are manifested in the development of long-lasting dipolarizations (tens
of minutes), which can be preceded and/or composed of multiple positive pulses in the BZ field.

The origin of these pulses has been debated to be either the passage of spatial magnetic structures—
DFs/dipolarizing flux bundles (DFBs) (e.g., Gabrielse et al., 2014, 2017; Liu et al., 2013, 2014; Nakamura
et al., 2013; Runov et al., 2011), which then pile up in the near-Earth PS and cause a prolonged dipolariza-
tion—or signatures of a near-Earth instability that leads to a global dipolarization (e.g., Lui, 2004).

The reduction and/or diversion of the cross-tail electric current at macroscale is manifested in a gradual
growth of the BZ field (e.g., Lui, 2011). The arrival and subsequent pileup of multiple DFs with their own cur-
rent systems (e.g., Liu et al., 2015) result in the formation of a multiscale 3-D current pattern that contributes
to the formation of a substorm current system. Knowledge of the electric current structure in this region and
its evolution during the dipolarization is crucial for the understanding of the processes responsible for the
formation of the substorm current wedge (SCW).

In the present paper, we use data from the Cluster Inner Magnetosphere Campaign, with its uniquely small
spacecraft separations (down to a few kilometers), to study the magnetic structure of prolonged dipolariza-
tions in the near-Earth PS (at�15 RE ≤ X ≤�7 RE) associated with the arrival and braking of multiple BBFs and
DFs. The very small separation between Cluster 3 and Cluster 4 permits, for the first time, the observation of
strong magnetic gradients at electron scales, suggesting that intense and localized current structures form
during prolonged dipolarization growths. These observations denote the importance of the processes occur-
ring at electron scales in the formation of a 3-D substorm current system.

2. Observations

In this study we used the Cluster magnetic field data collected by the fluxgate magnetometer (Balogh et al.,
2001) in both spin (4 s) and high-time resolution mode (22.4 Hz), electric field data (spin resolution mode)
collected by the Electric Field and Wave instrument (Gustafsson et al., 2001), ion moments from the
Composition and Distribution Function Analyzer (Réme et al., 2001), and electron moments collected by
the Plasma Electron and Current Experiment (Johnstone et al., 1997). The geocentric solar magnetospheric
coordinate system is used for orbit, magnetic field, and ion data.

2.1. Overview of Dipolarization in the Near-Earth PS

In this section we present an overview of the PS dynamics during a dipolarization event observed by the
Cluster spacecraft in the postmidnight sector at X~ � 9 RE on 20 July 2013. This event is representative of
14 similar dipolarization events analyzed in section 3. Figure 1 shows an overview of this event. The location
of Cluster is shown in the (XY) and (YZ) planes in the right part of the figure. During the interval of interest,
Cluster-3 (C3) and Cluster-4 (C4) had very close locations: ΔXC3-C4 ~ 6.5 km; ΔYC3-C4 ~ 65 km; ΔZC3-C4
~ 6.5 km. The position of C4 relative to C3 is shown in the two bottom panels in the right part of Figure 1.

The growth of the dipolarization was observed between 01:37 and 01:50 UT along with a decrease in the AL
index (see Figures 1a and 1c). After reaching a dipolarized state, the BZ value remained large. During the
entire interval, Cluster-1 (C1), C3, and C4 were located in the northern PS in the region with |BX| ≤ 10 nT (see
Figure 1d). C2 was initially located in the outer part of the southern PS (at BX ~ �20 nT), and it was gradually
approaching the equatorial plane as the dipolarization progressed.

The onset of dipolarization is manifested in a sharp increase of the positive BZ field (DF) observed at
~ 01:37:20 UT by C1 (marked by a vertical black dashed line), then by the pair C3-C4 at ~ 01:37:35 UT (marked
by a vertical magenta dashed line). At the location of C2, the gradual growth of the BZ field started after
01:37:40 UT (marked by a red vertical line) without a pronounced DF. This is possibly because C2 was located
in the outer PS at the beginning of the event.

This event displays typical features reported in many earlier studies (e.g., Apatenkov et al., 2007; Baumjohann
et al., 1999; Birn et al., 2011; Ge et al., 2011; Kronberg et al., 2017). The onset of dipolarization coincides with
the beginning of the decrease of AL, indicating the formation of the SCW (see Figure 1a). At the location of
Cluster, the onset-related DF was observed along with a tailward flow (see Figure 1e). At this time, the
Time History of Events and Macroscale Interactions during Substorms P3 probe was also located in the north-
ern PS at X ~�8.5 RE but ~3 RE duskward of Cluster (not shown). The P3 probe observed the onset-related DF
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along with the arrival of earthward moving BBF ~1 min earlier than at C1. This indicates that Cluster was
located near the dawnside of the BBF channel and close to the flow braking region, thus detecting a
reflected/diverted or vortical flow feature (e.g., Birn et al., 2011; Keika et al., 2009; Keilling et al., 2009;
Panov et al., 2010).

The dawnward diversion of the onset-related DF is evident from the time sequence of its observations by the
Time History of Events and Macroscale Interactions during Substorms P3 probe and different Cluster satel-
lites. It is also confirmed by the normal directions (N) deduced from the minimum variance analysis (MVA)
(Sönnerup & Scheible, 1998) applied to this DF observed by P3, C1, C3, and C4: NP3 = [0.9, �0.2, �0.35],
NC1 = [�0.6, �0.6, 0.5], and NC3,C4 = [�0.2, �0.8, 0.5]. The azimuthal deflection of the DF also confirms that
Cluster was located near the flow braking region (e.g., Ge et al., 2011).

Figure 1. An overview of dipolarization observed on 20 July 2013. From top to bottom are shown, (a–d) AL index; the |B|; BZ
and BX from four Cluster; (e) three components of proton bulk velocity from C4; (f) the dawn-dusk component of
electric field, EY, from four Cluster; (g) electron density, Ne, from C3; (h) the ΔBX/ΔYC3-C4, and (i) the ΔBX/ΔYC1-C4. The gray
profiles display the ΔBX/ΔY including the background level, while the black profiles show only the ΔBX/ΔY values that
exceed the background level.
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After the dipolarization onset, two enhancements of positive VX were observed between 01:38 UT and
01:42 UT, indicating the arrival of BBFs at Cluster’s location (see Figure 1e). Later, after 01:42 UT, the VX experi-
enced negative and positive variations indicating oscillations of the flux tubes (e.g., Panov et al., 2015, and
references therein).

During the gradual growth of the BZ field at 01:37–01:50 UT, short positive pulses of BZ with durations
approximately tens of seconds were detected by Cluster (see Figure 1c). The strongest BZ pulse with an ampli-
tude of ΔBZ ~ 10 nT was detected by all Cluster satellites except C2 around 01:40 UT. The pulse propagated
dawnward with VY ~�400 km/s as estimated by a timing analysis of the high-resolutionmagnetic field obser-
vations. Just after the pulse, there is a strong increase of positive VX up to ~600 km/s, indicating the arrival of
the fast earthward flow at Cluster’s location (see Figure 1e). Simultaneously with the flow burst at 01:39:45 UT,
a pulse of the dawn-to-dusk electric field (EY) with an amplitude of ~35 mV/m and a drop in the electron den-
sity were detected (see Figures 1f and 1g). This interval is shaded in pink in Figure 1.

Figure 1h displays the time profiles of ΔBX/ΔY[C3-C4] calculated between the closely spaced C3 and C4 by
using high-resolution magnetic field data. As will be shown below, the normals (N) to the magnetic struc-
tures, which are associated with strong gradients, are directed mostly along the Y axis, while the direction
of maximum magnetic field variation (L) is almost along the X axis (that is, ΔBX/ΔY[C3-C4] ~ ΔBL/ΔN[C3-C4]).
The gray profile shows ΔBX/ΔY[C3-C4] including the background level, while the black profile shows only
ΔBX/ΔY[C3-C4] values which exceed the background amplitude. |ΔBX/ΔY[C3-C4]| values below the background
cutoff value are set to zero. The background cutoff value was estimated by averaging |ΔBX/ΔY[C3-C4]| for
2 min before the dipolarization onset (at 01:35–01:37 UT).

The ΔBX/ΔY[C3-C4] values which contribute to the electric current density JZ experience the strongest bipolar
variations during the pink shaded interval (see Figure 1). For comparison, in Figure 1i we present ΔBX/ΔY[C1-C4]
calculated between C1 and C4. The amplitude of ΔBX/ΔY[C1-C4] variations is up to 100 times smaller than the
amplitude of ΔBX/ΔY[C3-C4] variations. This indicates the transient generation of a strong magnetic field
gradient between C3 and C4 (i.e., at the spatial scale ~ 65 km). Below we present a detailed analysis of the
associated current structures as observed by C3 and C4.

2.2. Analysis of Current Structures Associated With Strong Magnetic Gradients

In the left part of Figure 2, we show a zoom of the pink shaded interval shown in Figure 1 (01:39–01:40:20 UT).
In this interval, a pulse in BZ is observed along with an increase in the ion VX, a decrease in the electron density
and a positive pulse in the EY field. The strongest ΔBX/ΔYC3-C4 variations (with amplitudes >20 nT/1,000 km,
see gray shaded intervals in Figure 2) are detected at the leading and trailing edges of the BZ pulse.

The first strong bipolar variation in ΔBX/ΔYC3-C4 was observed in the 2 s interval 01:39:37–01:39:39 UT (interval
“I”), at the leading edge of the BZ pulse and the high-speed plasma flow, just before a positive pulse in the
dawn-dusk electric field EY (see Figures 2a, 2d, and 2e). Unfortunately, for electric field and plasma moments
we only have 4 s time resolution data. Thus, we cannot perform an exact timing analysis of the relationship
between the bursty appearance of strong magnetic gradients and the dynamics of electric field and
plasma characteristics.

The amplitude of the positive ΔBX/ΔYC3-C4 pulse reached 57 nT/1,000 km. During this 2 s interval, the stron-
gest difference between the magnetic field components measured by C3 and C4 was observed for the BX
field. The difference between the other components was significantly smaller: ΔBY[C3-C4] ≪ ΔBX[C3-C4] and
ΔBZ[C3-C4] ~ 0 nT. Since the electric current density JZ is proportional to ΔBX/ΔY: JZ ~ μ0

�1·ΔBX/ΔY, we surmise
that the transient enhancement in ΔBX/ΔY denotes the crossing of a current structure (possibly a current fila-
ment) with an intense JZ. The negative part of the bipolar ΔBX/ΔYC3-C4 variation has much smaller amplitude.

The second enhancement in the |ΔBX/ΔYC3-C4| (interval “II”) was observed at 01:39:50–01:39:55 UT. During this
interval, only positive variations of ΔBX/ΔYC3-C4 with amplitudes of up to ~53 nT/1,000 km were observed. By
the end of this interval, the value of the positive ΔBX/ΔYC3-C4 decreased to zero.

The third strong bipolar variation of ΔBX/ΔYC3-C4 (interval “III”) was observed immediately after the second
one at 01:39:55–01:39:59 UT. Both “II” and “III” enhancements in ΔBX/ΔYC3-C4 took place at the trailing edge
of the high-speed plasma flow and the BZ pulse and after the pulse in EY.
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To estimate, at least partially, the spatial scales of the electric current structures associated with theΔBX/ΔYC3-C4
bursts, we applied the MVA analysis to high-resolution magnetic field data observed during the intervals
“I”–“III”. In all three intervals, C3 and C4 observed similar variations in BX, suggesting that a spatial structure
crossed the positions of C3 and C4.

For interval I (01:39:37.300–01:38:00.100 UT), the directions of N at the position of C3 and C4 are very similar:
NC3 = [�0.4,0.86,0.3]; NC4 = [�0.5,0.8,0.3]. The eigenvalue ratios are λ2/λ1 ~ 12 and λ3/λ2 ~ 9. We estimated the
propagation velocity (Vprop) of the current structure along N using time delays in the BX variations observed
by C3 and C4. The estimate is Vprop ~ 400 km/s and the direction is mainly dawnward.

For interval II (01:39:49.600–01:39:53.900 UT), we obtained NC3 = [�0.5,0.84,0.2], NC4 = [�0.5,0.86,0.2], and λ2/
λ1 ~ 9, λ3/λ2 ~ 6. In this interval, Vprop decreased to 300 km/s and changed its direction to duskward.

For interval III (01:39:55.400–01:39:59.400 UT), we defined NC3 = [�0.4,0.8,0.5], NC4 = [�0.4,0.75,0.5], and λ2/
λ1~8.5, λ3/λ2~7. For this interval, Vprop ~ 180 km/s and the direction is dawnward.

Thus, for all three intervals of strong magnetic gradients, the N has similar directions at C3 and C4 and it is
mainly directed along Y. The changes in the direction of Vprop are more or less consistent with the changes
in the sign of the proton velocity VY as observed by the Composition and Distribution Function Analyzer
instrument on board C4 (see Figure 2d). Some delay between the VY and Vprop reversals may be due to the
difference in time resolutions between magnetic field and ion data. These changes in magnitude and direc-
tion of Vprop indicate the oscillation and braking of the magnetic flux tubes.

In the right part of Figure 2, we present spatial profiles of the electric current JZ
* ~ μ0

�1 · ΔBX/ΔYC3-C4 versus
the coordinate l, which was calculated for each time ti within intervals I – III as l = Vprop·ti, and then shifted so
that the zero l value corresponds to the maximum of JZ

* observed in the given time interval.

Figure 2. In the left column, a zoom of the pink shaded interval shown in Figure 1. From top to bottom are shown the (a) BZ
field and (b) electron density, Ne, from C3; the (c) ΔBX/ΔYC3-C4; (d) three components of proton bulk velocity; and (e) the
dawn-dusk electric field, EY, from C4. Three intervals (I–III) of strong ΔBX/ΔYC3-C4 variations are shaded in gray. In the
right part of the figure the spatial profiles of the electric current density JZ

* estimated for intervals I–III are shown.
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During interval “I,” the bipolar variation of ΔBX/ΔYC3-C4 provides the corresponding bipolar structure in the JZ
*

current. The half-thickness of the positive current JZ1
* is LJ1 ~ 100 km or ~3λe (here λe ~ 37 km is the electron

inertia length at the time of the positive ΔBX/ΔYC3-C4 burst). The half-thickness of the negative current struc-
ture is LJ2 ~ 150 km ~3λe (λe ~ 47 km). The absolute values of the JZ

* current density are 46 nA/m2 and
25 nA/m2, respectively. The total 3-D current density may be even larger.

For interval “II,” we obtain a more complicated shape of the JZ
* profile, consisting of four bursts (or filaments)

of JZ*. The spatial scales L of these filaments are LJ1 ~ 200 km (~4.5λe); LJ2 ~ 150 km (~3λe); LJ3 ~ 170 km
(~3.5λe), and LJ4 ~ 100 km (~2λe). The current density JZ

* ranges from ~24 nA/m2 to ~43 nA/m2.

During interval “III,” the bipolar current structure is observed again. The spatial scale of the negative JZ
* cur-

rent is LJ1 ~ 200 km ~5λe (λe ~ 40 km). Therein, a thinner current with L ~ 100 km ~2.5λe is embedded. The
peak current density in this structure is ~65 nA/m2. The spatial scale of the positive JZ

* current
is LJ2 ~ 120 km ~3λe and the density is JZ

* ~ 30 nA/m2. It is worth noting that the sign change in Vprop is
observed just at the beginning of interval III. The reversal motion of the flux tube along with the change in
JZ* may be interpreted as a temporal variation in the electric current. However, since we cannot estimate
the total 3-D current density and its direction, we cannot determine if this variation is really caused by a fast
(≤1 s) reconfiguration of the electric current structures at the trailing edge of the BZ pulse.

3. Statistical Study of Strong Magnetic Field Gradients During Dipolarizations

During the entire magnetotail season of the 2013–2014 Cluster Inner Magnetosphere Campaign, we
found 13 additional dipolarization events similar to the one discussed in section 2. During all these
events, Cluster was located in the PS at �15 RE ≤ X ≤ �7 RE and had similar satellite configurations:
the separation of C3 and C4 was of the order of the electron inertial length or less (|ΔXC3-C4|

median~30 km;
|ΔYC3-C4|

median~40 km; |ΔZC3-C4|
median~7 km), while the separation between C1 and C4 was ~1–2 ion

inertia lengths.

The dates of the events are listed in the supporting information, along with the maximum values of the
AL index (|AL|max) and the maximum values of the BZ component (BZmax) measured during each
dipolarization event.

All dipolarizations in our database, except for the one on 10 September 2013, were associated with geomag-
netic perturbations and a significant decrease in the AL index. The magnetic structure of the dipolarizations
exhibited features similar to those discussed in the previous section. The duration of the prolonged BZ growth
for the events ranges from a few minutes to ~20 min. Multiple short duration (≤1 min) BZ pulses were
observed during the BZ growth for all events in our list.

To determine the statistical properties of these magnetic field gradients, we first applied the analysis
described in section 2 to each event and identified the short intervals during which ΔBX/ΔY[C3-C4] exceeded
a background value. We then applied MVA analysis to these intervals in order to calculate ΔBL/ΔN[C3-C4]. For
further analysis of each (typically short, as discussed next) magnetic field gradient interval, the following con-
ditions had to be satisfied: (1) MVA vectors calculated at C3 and C4 within 20° from each other, (2) eigenvalue
ratios λ2/λ1 and λ3/λ2 ≥ 6.0, and (3) a normal (N) along the direction of the largest C3-C4 separation (Y or X for
our events). All intervals of strongmagnetic gradients that did not fulfill these conditions were excluded from
the statistical analysis described next.

In all events, the strongest values of ΔBL/ΔN[C3-C4] were observed during the dipolarization growth near the
leading and trailing edges of the BZ pulses. The normals to these pulses were oriented mainly in the (XY)
plane, and condition (3) was almost always fulfilled.

To determine the phase of dipolarization during which the strong magnetic gradients are generated, we per-
formed a superposed epoch analysis. The analysis was applied to the following parameters: BZ*, ΔBL/ΔN[C3-C4],
ΔBL/ΔN[C1-C4] calculated simultaneously with ΔBL/ΔN[C3-C4], and the AL* index. Here BZ* and AL* are the
values of the BZ field and the AL index observed in each event and normalized to the maximum values
BZmax and |AL|max, respectively (see the list of events presented in the supporting information). As the epoch
time (t = 0), we use the dipolarization onset for each event. To determine the onset we used the method
described in Grigorenko et al. (2016).
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Figures 3a–3d show the resulting superposed epoch profiles. Lower
and upper quartiles are displayed in light green. The decrease in AL
index to its minimum value starts almost simultaneously with the
dipolarization onset (at t = 0) and ends ~17 min after the onset (this
period is shaded pink in Figures 3a–3d). During this period, the
magnetic gradients |ΔBL/ΔN[C3-C4]| and the corresponding electric
current density |JM

*|, as estimated between C3 and C4 at small
electron-type scales, transiently increased up to a few hundred
nA/m2 (see Figure 3b). The absolute values of electric current density
|JM

*|, calculated as |JM
*| ~ μ0

�1·|ΔBL/ΔNC3-C4|, are scaled according to
the right vertical axis of Figure 3b. By contrast, at ion scales (as esti-
mated between C1 and C4 according to their larger separation), the
values of ΔBL/ΔN[C1-C4] and the corresponding values of |JM

*| are much
smaller (see Figure 3c).

Figure 3e shows a histogram of the occurrence frequency of strong
|ΔBL/ΔNC3-C4| gradients (≥25 nT/1,000 km, which corresponds to
|JM

*| ≥ 20 nA/m2) with a given duration. The occurrence frequency
was calculated as the ratio of the number of strong gradients
having durations within a given bin to the total number of strong
gradients observed for all events. Themajority of strong enhancements
in |ΔBL/ΔNC3-C4| are very short, with durations ~0.1 s.

Figure 3f displays a histogram of the probability distribution of mag-
netic gradients |ΔBL/ΔNC3-C4| and the corresponding electric current
density |JM

*|. Values of |ΔBL/ΔNC3-C4| are binned according to the bot-
tom horizontal axis, and the corresponding values of |JM

*| are given in
the upper horizontal axis. The probability was calculated as the ratio
of the total duration of |ΔBL/ΔNC3-C4| (and |JM

*|) within a given range
of values to the total duration of all dipolarizations. The observation
probability is very small and decreases rapidly as ΔBL/ΔNC3-C4 and
|JM

*| increase.

4. Discussion and Conclusions

The small separation between the C3 and C4 spacecraft, which
was achieved in the near-Earth PS during the Cluster Inner
Magnetosphere Campaign in 2013–2014, permitted the observation
of strong, transient magnetic gradients generated at electron scales
at the leading and trailing edges of the BZ pulses during the prolonged
dipolarization growth. This finding is obtained from the analysis of 14
such dipolarization events associated with the arrival of multiple BBFs
with DFs.

Three time scales in the dipolarization evolution are identified: (i) a
prolonged growth of the BZ component with duration ≤20 min;
(ii) BZ pulses with durations ≤1 min observed during the BZ growth;

and (iii) strong and fast variations of ΔBL/ΔN (≤ 2 s) at the leading and trailing edges of the BZ
pulses. These strong enhancements in ΔBL/ΔN show that the formation of intense and localized
current structures, with current densities up to a hundred nA/m2, are frequent and typical during
dipolarization growth.

The majority of strong magnetic gradients with amplitude ΔBL/ΔNC3-C4 ≥ 25 nT/1,000 km have very short
durations of less than 1 s. For typical values of propagation velocities of these structures obtained from
our analysis (~100–400 km/s), these durations imply spatial scales for the current structures smaller than a
few hundred kilometers, that is, approximately a few λe.

Figure 3. (a–d) The results of epoch superposition analysis applied to 14
dipolarization events. The absolute values of electric current density |JM

*| are
scaled according to the right vertical axis of Figures 3b and 3c. (e) A histogram
of the occurrence frequency of strong |ΔBL/ΔNC3-C4| gradients with a given
duration. (f) A histogram of the probability distribution of |ΔBL/ΔNC3-C4| and
the corresponding |JM

*|. Values of |ΔBL/ΔNC3-C4| are binned according to the
bottom horizontal axis, and the |JM

*| are given in the upper horizontal axis.
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Multiple, transient BZ pulses during gradual dipolarization growth in the near-Earth PS were reported in many
previous studies (e.g., Grigorenko et al., 2016; Gabrielse et al., 2017; Liu et al., 2013, 2014; Nakamura et al.,
2009). The associated current system was shown to contribute to the formation of the 3-D substorm current
system (e.g., Liu et al., 2013; Sergeev et al., 2012). Our superposed epoch analysis further demonstrates a good
agreement between the decrease in the AL index, the prolonged growth of the BZ field, and the transient
appearance of strong and short magnetic gradients denoting the generation of intense electric currents at
electron scales.

From such two-spacecraft data analysis we cannot determine the total current density and the direction of
the electric current in these structures. However, our analysis (assuming a 1-D current structure) showed that
the observed ΔBL/ΔN typically mainly contributes to the JZ current density. Also, since after the dipolarization
onset |B| ~ BZ, the JZ current is almost field aligned.

This finding complements recent MMS observations of strictly localized (approximately a few tens of
kilometers) and short-lived field-aligned currents observed in the plasma sheet boundary layer (PSBL) during
a substorm (Nakamura et al., 2016). These PSBL currents may represent the high-latitude extensions of the
intense, transient current structures generated at electron scale in the deep PS, as reported in the
present study.

Since field-aligned currents generated in the near-Earth PS in the course of dipolarization can contribute to
the 3-D substorm current system, the origin of these currents is an important question. Do they represent
“short-lived” structures, which dissipate within seconds, or do they represent propagating spatial structures
which are observed only for a short time because of their highly localized nature?

The results of our analysis rather support a highly localized nature. The spatial scales of the strong magnetic
gradients and associated electric current structures are much smaller than the spatial scales of magnetic fluc-
tuations expected from the development of, for example, cross-field current instability or the shear flow bal-
looning instability in the near-Earth PS (e.g., Kalmoni et al., 2015; Lui, 2016). The close similarity between the
magnetic fluctuations observed at each Cluster spacecraft, as well as the similar propagation velocities of the
fluctuations (Vprop) and corresponding component of plasma bulk velocity, all point to a spatial nature. This is
consistent with the resemblance reported between Vprop values and the propagation velocities of DFs in pre-
vious works (e.g., Nakamura et al., 2009; Runov et al., 2009). All these arguments support the hypothesis that
these intense electric currents are part of a multiscale electric current system associated with DFs.

In conclusion, our observations show the importance of processes occurring at electron scales during the pro-
longed dipolarization growth in formation of the 3-D substorm current system. This phenomenon requires
further detailed studies using multipoint magnetic field observations at sub-ion spatial scales with high
time resolution.
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