MAVEN Observations of Solar Wind-Driven Magnetosonic Waves Heating the Martian Dayside Ionosphere - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Journal of Geophysical Research Space Physics Année : 2018

MAVEN Observations of Solar Wind-Driven Magnetosonic Waves Heating the Martian Dayside Ionosphere

C. M. Fowler
  • Fonction : Auteur
L. Andersson
  • Fonction : Auteur
R. E. Ergun
  • Fonction : Auteur
Y. Harada
  • Fonction : Auteur
T. Hara
  • Fonction : Auteur
G. Collinson
  • Fonction : Auteur
W. K. Peterson
  • Fonction : Auteur
J. Espley
  • Fonction : Auteur
J. Halekas
J. Mcfadden
  • Fonction : Auteur
D. L. Mitchell
  • Fonction : Auteur
M. Benna
  • Fonction : Auteur
B. M. Jakosky
  • Fonction : Auteur

Résumé

We present Mars Atmosphere and Volatile EvolutioN observations of large-amplitude magnetosonic waves propagating through the magnetosheath into the Martian ionosphere near the subsolar point on the dayside of the planet. The observed waves grow in amplitude as predicted for a wave propagating into a denser, charged medium, with wave amplitudes reaching 25 nT, equivalent to ∼40% of the background field strength. These waves drive significant density and temperature variations (∼20% to 100% in amplitude) in the suprathermal electrons and light ion species (H+) that correlate with compressional fronts of the magnetosonic waves. Density and temperature variations are also observed for the ionospheric electrons, and heavy ion species (O+ and O2+); however, these variations are not in phase with the magnetic field variations. Whistler waves are observed at compressional wave fronts and are thought to be produced by unstable, anistropic suprathermal electrons. The magnetosonic waves drive significant ion and electron heating down to just above the exobase region. Ion heating rates are estimated to be between 0.03 and 0.2 eVs-1 per ion, and heavier ions could thus gain escape energy if located in this heating region for ∼10-70 s. The measured ionospheric density profile indicates severe ionospheric erosion above the exobase region, and this is likely caused by substantial ion outflow that is driven by the observed heating. The effectiveness of these magnetosonic waves to energize the plasma close to the exobase could have important implications for the long-term climate evolution for unmagnetized bodies that are exposed to the solar wind.
Fichier principal
Vignette du fichier
JGR Space Physics - 2018 - Fowler - MAVEN Observations of Solar Wind%u2010Driven Magnetosonic Waves Heating the Martian Dayside.pdf (8.4 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-03678216 , version 1 (25-05-2022)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

C. M. Fowler, L. Andersson, R. E. Ergun, Y. Harada, T. Hara, et al.. MAVEN Observations of Solar Wind-Driven Magnetosonic Waves Heating the Martian Dayside Ionosphere. Journal of Geophysical Research Space Physics, 2018, 123, pp.4129-4149. ⟨10.1029/2018JA025208⟩. ⟨insu-03678216⟩
11 Consultations
8 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More