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ABSTRACT

Stellar magnetic fields are poorly understood, but are known to be important for stellar evolution and exoplanet habitability. They
drive stellar activity, which is the main observational constraint on theoretical models for magnetic field generation and evolution.
Starspots are the main manifestation of the magnetic fields at the stellar surface. In this study we measured the variation in their
latitude with time, called a butterfly diagram in the solar case, for the solar analogue HD 173701 (KIC 8006161). To this end, we
used Kepler data to combine starspot rotation rates at different epochs and the asteroseismically determined latitudinal variation in the
stellar rotation rates. We observe a clear variation in the latitude of the starspots. It is the first time such a diagram has been constructed

using asteroseismic data.
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1. Introduction

Solar activity is characterized by an 11 year cycle of the number
and area of sunspots (Schwabe 1844). Its monitoring is impor-
tant in many fields, such as Earth climate (Haigh 2007 or space
travel studies (Pulkkinen 2007). Sunspots are regions of high
concentration of the solar magnetic field (Solanki 2003), indi-
cating that the field is the main driver of the activity cycle. In
order to understand the solar magnetic behaviour, dynamo mod-
els have been developed (Charbonneau 2010). Their aim is to
explain how an initially weak magnetic field can be amplified
to the values observed in the Sun. A traditional observational
test to which these models ought to comply is to reproduce the
butterfly diagram which describes the evolution of the latitude
of the solar active regions with time (Maunder 1904). Activ-
ity has also been observed in other stars. It is important in
order to understand stellar evolution, for instance through mag-
netic braking (Thompson et al. 2003), and exoplanet habitability
(Vidotto et al. 2013).

Recovering stellar butterfly diagrams is however a difficult
task that requires locating individual spots or groups of spots
on the stellar surface. Spot mapping using photometric data
alone is known to be hampered by degeneracies in light curve
models (e.g. Walkowicz et al. 2013), so that spectroscopic or

Article published by EDP Sciences

interferometric data are usually favoured in order to recover stel-
lar brightness maps (Vogt & Penrod 1983; Roettenbacher et al.
2016). A number of active targets have been monitored through
long-term Doppler mapping campaigns, although due to sparse
temporal sampling these time series have rarely led to actual but-
terfly diagrams (e.g. Hackman et al. 2011, for II Peg). However,
Doppler mapping or long baseline interferometric imaging can
only detect very large stellar spots, and are therefore limited to
the most active stars, quite far from the Sun in terms of mag-
netic properties. We propose here an original method that uses
Kepler time series to measure the latitudes of the active regions
of stars and construct a stellar butterfly diagram. We apply it to
the sun-like star HD 173701 (KIC 8006161).

2. Method

Our approach uses Kepler photometric time series (Jenkins et al.
2010) and is divided into two stages. First we wanted to obtain
information on the large-scale rotational flow in the stellar
interior, in particular in the convective envelope below the sur-
face, using the information contained in the oscillation fre-
quencies of the global acoustic pulsation modes (p modes) of
the star (Sect. 2.1). To that end, we used the recent results of
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Benomar et al. (2018). Second, we tried to measure the rota-
tion rates of active regions, carried by the surface rotational
flow (Sect. 2.2). Third, we constructed the butterfly diagram of
HD 173701 over the duration of the Kepler mission by inverting
the rotation-rate measurements thanks to the asteroseismically
derived rotation profile (Sect. 2.3).

We note that these measurements are uncorrelated in Sun-
like stars since the observed pulsation modes of the stars are only
affected by large-scale flows. In the frequency space, these two
contributions are well separated, the modes having characteristic
frequencies of the order of a few thousand yHz, while the rota-
tion rates inferred from the starspots are of the order of a few
hundred nHz.

2.1. Asteroseismic rotation profile

Our starting point is the derivation of a rotational profile of a
Sun-like star. It is well established that the solar radiative inte-
rior rotates as a solid body, while the rotation rate of its outer
convective envelope varies with latitude (Thompson et al. 2003).
For the Sun, the equator rotates faster (~476 nHz) than the pole
(~320nHz). This differential rotation is most probably the result
of an interplay between rotation and convection in the solar enve-
lope (Riidiger 1974; Gilman & Glatzmaier 1981).

Rotation affects stellar pulsations. The classical framework
to describe stellar oscillations is built on the perturbed equations
for the static stellar structure (Aerts et al. 2010). It can be shown
that superimposing a small-amplitude rotational velocity field
on the hydrostatic stellar structure will lift a degeneracy of the
eigenfrequencies of the p modes, an effect usually termed “rota-
tional splitting” (Lynden-Bell & Ostriker 1967). The degenerate
frequency then becomes a multiplet whose distribution depends
on the solid-body component of rotation rate of the star and on
the magnitude of the differential rotation in the convective zone.
If one defines a theoretical model Q = Q(6) for the latitudinal
differential rotation, with 8 being the co-latitude, it is possible to
relate it to the frequency splitting. This means that one can infer
a differential-rotation profile if there are precise enough mea-
surements of the frequency splitting.

In a recent work, Benomar et al. (2018) measured contribu-
tions from latitudinal differential rotation to the above-mentioned
rotational splitting for a set of Sun-like stars. It includes the solar
analogue HD 173701, which has a mass M = 0.95 M, with M
the solar mass, and an age 7, = 4.49 Gyr (Silva Aguirre et al.
2017). This star rotates on average 1.33 times faster than the
Sun, with a measured bulk rotation rate of 566nHz. It has
been observed for approximately four years by Kepler. Detailed
modelling of its acoustic power spectrum led to a significant
detection of non-zero latitudinal differential rotation. In the fol-
lowing we explain how to extend such results with rotation-rate
measurements in order to construct the butterfly diagram of the
HD 173701. For the sake of completeness we review the work of
Benomar et al. (2018) in more detail in Appendix A.

At this point we have to make a further assumption relative to
Benomar et al. (2018). It has been shown by Kiefer et al. (2017),
Santos et al. (2018), and Salabert et al. (2018) that the oscilla-
tion frequencies of HD 173701 shift with the activity cycle. We
therefore need to take these shifts to be constant over frequency
ranges of the order of a rotational splitting.

2.2. Photometric characterization of active regions

Once obtained, a relation () can be used to infer the co-
latitude, 6,, of a stellar active region such as a group of spots
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Fig. 1. Upper panel: time series for the relative flux HD 173701 dur-
ing Q3. The black dots mark the measurements and associated errors.
The red line shows the inferred mean value of the posterior predictive
density conditional on the inferred MAP of the parameters (Gelman
2004). Middle panel: corresponding power spectrum computed using
the Lomb-Scargle periodogram (Scargle 1982). The black line repre-
sents the observed power spectrum. The red line is the power spectrum
of the mean value of the conditional posterior predictive density. Lower
panel: marginalized 1D and 2D PDFs for the parameters of the corre-
lation function of the Gaussian process used to model the time series.

provided its rotation rate, Q, = €(6,), can be determined. The
method for rotation rate measurements is inspired by solar obser-
vations and uses photometry. The total solar irradiance varies
during the activity cycle due to bright regions (plages) and dark
regions (spots) moving across the solar disk (Frohlich & Lean
2004). A similar behaviour is observed for other stars using pho-
tometric measurements. During its lifetime, an active region will
produce a quasi-periodic signal in the photometric time series.
The long-cadence Kepler time series allow us to measure such
modulations for HD 173701.

To measure the period of this modulation, we model the
time series using Gaussian processes. Owing to the intermittent
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Fig. 2. Probability density for the latitude of an active region at median time of Q3. Left panel: theoretical density for the couple (L., 6,). Central
panel: prior density for the couple (Q,, 6,); it is Gaussian for Q, and uniform for 8,. Upper right panel: posterior density for the parameters. Lower

right panel: marginal density for 6,, obtained after integration over €,.

influence of the plages and spots, and to the stellar limb darken-
ing, this signal departs significantly from pure harmonic oscil-
lations. In addition, the noise impacting the photometric times
series has a frequency-dependent part mainly caused by surface
granulation. The time series model depends on several param-
eters which are estimated using an MCMC algorithm. These
parameters are the amplitude of the modulation induced by the
active region A (in ppm), the lifetime of the active regions 74
(in days), the rotation rate 2, (in nHz), and an additional noise
component o (in ppm), describing residuals not captured by the
other component of the Gaussian process (see Appendix B for
details).

We model independently the time series for each Kepler
quarter which span from QO to Q17. The fit obtained for Q3,
representative of our results, is shown in Fig. 1; it reproduces
well the time series and its frequency spectrum. Our analysis
is restricted to a region in the frequency spectrum surrounding
the low-frequency activity peak (Fig. 1, middle panel). In fact,
we observe multiple peaks potentially corresponding to several
active regions. We consider that each of these peaks corresponds
to a spot or a group of spots that rotates at the same latitude.
We treat them as a single active region and consider the rotation
rate of its barycentre. This is motivated by the fact that, when
counting sunspots, a larger weight is given to groups (Hathaway
2010). The independent modelling, quarter by quarter, allows
us to measure the evolution of the rotation rate with time.
We note that quarters QO, Q1, and Q17 were left out because
the corresponding time series are too short to obtain robust
results.

The Gaussian processes reproduce the temporal variation of
the intensity curve very well as can be seen in the upper panel
of Fig. 1. Using the marginal density of the rotation rate Q,, we
can estimate its maximum a posteriori (MAP). Such a density is
seen for Q3 in the lower panel Fig. 1, corresponding to a MAP
of 704 nHz. The MAP estimates of the rotation rates for all quar-
ters are in the range 330-985 nHz, which already indicates that
the spots are migrating along the stellar surface. In general the
amplitudes of the signal and the lifetimes of the active regions
are poorly constrained. Since they are strongly correlated, a wide
range of values for the lifetime and the amplitude can lead to

good models. Consequently, their estimated values cover several
orders of magnitude. This does not impact the final result since
these parameters are not correlated with the others.

2.3. Inversion for the latitude of the active regions

Our goal is now to invert for the latitude of the active region
at each for each quarter we selected. Since the latitudinal rota-
tion profile has been derived using the entire Kepler time series,
it is necessary to assume that the properties of differential rota-
tion do not vary on timescales comparable to the activity cycle.
In the solar case, this is verified to a very good approximation
(Thompson et al. 2003).

In order to invert for the latitude of the active regions, we
need to take into account all the errors that may affect our final
estimate of 6,(¢). These are of two kinds. The first is the error on
the measurement of the rotation rate, the second is the uncer-
tainty in the theoretical model for the rotation rate, €(6), as
obtained by (Benomar et al. 2018, see also Appendix A).

A generic framework to solve an inverse problem that takes
into account these two sources of error is given by the concept of
conjunction of states of information (Tarantola & Valette 1982,
see Appendix C). In the following we use the more compact
notation Q,(z;) = Q; and 6(¢;) = 6;, withi = 1,...,N and N
the number of rotation rate measurements. The posterior density
for (€;, 6;), which represents the state of information (or state of
knowledge, see Appendix C) we have once all the errors have
been considered, can be written

0i(€2,6)0(Q;, 6;)
ﬂ(Qi’ el)

The theoretical density ®(L;, ;) describes the error on the
model. It is basically the relation Q; = €;(6;) with an associ-
ated error bar. The prior density p;(€2;,6;) is the combination
of the information obtained from the observation on ; (see
Fig. 1, lower panel) and the prior information on the parame-
ter 6; (which has been chosen uniform over the range 0°-90°).
The posterior density o;(€);, 6;) results from the conjunction of
these two pieces of information. In Fig. 2 we show these three

oi(Q,6;) = (1
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Fig. 3. Asteroseismic butterfly diagram of HD 173701, giving the latitude of the active region as a function of the median time of each quarter
(labelled on the upper axis). The grey shades show the posterior densities obtained for each of the selected quarters and normalized to the global
maximum; greyscale from O (white) to 1 (black). Red dots mark the maximum a posteriori estimates of the latitude. The vertical bars give the
limits of the corresponding 68.3% credible intervals. The green squares show the maximum of the density of the 1024 estimates obtained from
artificial time series. Lower panel: variation in amplitude of the signal, S o, normalized to its maximum.

densities for quarter Q3, respectively in the left, central, and right
panel. The marginal posterior on 6; is shown in the lower right
panel, and is obtained from the integration over all possible rota-
tion rates of the joint posterior. The meaning of the homogeneous
density u(€;, 6;) is given in Appendix C.

3. Result

We use the marginal posteriors of 6,(¢) to derive the butterfly
diagram pictured in Fig. 3 for all selected quarters. The latitude
of the active region is restricted to the range [0°—90°] since we
do not resolve the stellar disk and thus do not know on which
hemisphere the spot is located.

The credible intervals were computed as the smallest inter-
vals that encompass the MAP and over which the probability
mass is 0.683. There is a clear variation in the data. Half the
active regions are found at the equator. Among the other half,
five clearly exclude the 0° latitude at a 68.3% level. The active
regions seen in Q6 and Q14 exclude it at a 99.7% level. It is thus
ruled out that the signal seen could be due to equatorial active
regions, with the high-latitude regions being outliers driven by
intrinsic stochastic variability.

The estimated co-latitude (red dots in Fig. 3) rely on the
parameters of the Gaussian process, which were estimated from
the time series. This means that different data sets of the same
star in the same activity configuration would lead to differ-
ent inferred latitudes. In order to investigate the variability
of the angle estimation procedure (and hence check for the
robustness of these results), we made Monte Carlo simulations.

L9, page 4 of 8

We simulated 1024 time series using the MAP estimates of
the parameters of the Gaussian processes for each quarter!. We
applied the latitude-estimation process to each artificial time
series, resulting in a sample of 1024 MAP estimates for each
such latitude of the active region. The distribution of this MAP
obtained from artificial time series can be compared to the MAP
obtained directly from the actual data. The location of the max-
ima for these distributions are shown in Fig. 3 as green squares.
The MAP locations are essentially not impacted by the noise
realization, which supports the fact that the co-latitude extracted
from the Kepler data for this star must be close to the values
shown in Fig. 3. Slightly larger deviations are seen when the
uncertainty on 6, is large, which is to be expected.

Over the four years of measurement, the active regions
remain located at latitudes below 50°. The butterfly diagram
clearly shows an alternance between equatorial and high-latitude
active regions.

In the lower panel of Fig. 3 we plotted S o, which we define
as the standard deviation of the light curve evaluated over quarter
Q. We used this quantity as a proxy for the activity index S,
rather than the definition given in Garcia et al. (2014) for two
reasons. First it involves an evaluation over a period that is five
times the rotation rate, which becomes hard to interpret when we
take into account the variability of the rotation rate. Second, if we
retain the average rotation rate of KIC 8006161, then a quarter
is approximately 4.5 times larger, which is commensurate with

! To generate samples we used the predictive probability density

(Rasmussen & Williams 2005, Sect 2.1.1).
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the definition of S, and preserves the statistical independence
of the points in our time series.

We first see that low-amplitude modulations are observed
for active regions at high latitude and near the equator. Let
us assume that the amplitude of the signal follows the varia-
tions of the fraction of the stellar surface covered by the active
regions. Then this observation in qualitative agreement with
what is already known for the Sun (Hathaway 2010, Fig. 28)
where small spots are observed at all latitudes (within the band
in which they are confined). The two highest-amplitude modu-
lations are seen for the regions with the highest latitudes, dur-
ing Q6 and Q14. If our assumption that the amplitude relates to
the surface covered by the active regions, then this departs from
what is seen in the solar case. There the largest spots are seen at
mid-latitudes.

Extracting a periodicity for the activity cycle from these
measurements remains a difficult task. The periodogram of the
signal does not show any significant peaks at low frequencies.
Time series with longer spans would be needed to obtain such
an estimate. It is interesting to note that the two highest-latitude
spots also correspond to the longest estimated lifetimes (in the
sense of the MAP), with 74 > 1 yr. This is of course an overesti-
mation, since the signal lasts less than this characteristic time
(see Appendix B). It should be noted that the lifetime of the
active region and its rotation rate are uncorrelated, we can there-
fore safely assume that these biases do not impact the estimates
of the latitude for these epochs (as can be checked in Fig. 1 for
Q3). Such values nevertheless indicate that active regions are
producing a coherent signal over a large fraction of Q6 and Q14.
This could correspond to one or several long-lived large spots.
Again this seems to depart from what is known in the Sun, for
which spot lifetimes are much smaller.

Other activity measurements have been obtained for
HD 173701. Karoff et al. (2018) have obtained Ca II H and K
line measurements that can track the activity cycle. Kiefer et al.
(2017), Santos et al. (2018), and Salabert et al. (2018) have all
measured consistent values for the activity-induced frequency
shifts over the last eleven quarters of the of the Kepler mission.
The Salabert et al. measurements correlate well with S ,. Fur-
ther work and larger data sets are needed to understand precisely
how the butterfly diagram correlates with these other indicators.

4. Conclusion

In this letter we presented the first stellar butterfly diagram
derived obtained by combining information inferred from astero-
seismic and photometric analyses. Provided an approximate stel-
lar model is known, the only data required to perform the inver-
sion is a photometric times series (collected from Kepler in this
study). This approach identifies a powerful link between astero-
seismology and other branches of stellar physics studying stel-
lar magnetism, for instance Zeeman-Doppler Imaging (Semel
1989). Stellar butterfly diagrams, out of reach of Zeeman-
Doppler mapping when it is applied to solar analogues, nicely
complement the long-term monitoring of large-scale magnetic
geometries still accessible for low activity stars. Both proxies
of stellar cycles offer complementary views to understand the
underlying dynamo processes. The technique itself requires only

moderate computational time and can be envisaged as a system-
atic processing for surveys of starspots in the perspective of the
forthcoming space mission PLATO.
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Appendix A: Inference of the differential rotation
profile

In this section we describe briefly the principles of asteroseismic
inversion that allow us to estimate the parameters of our model
for the stellar rotation rate Q(6). In generic form it can be written
as an expansion over a basis of functions W(6) depending on
even powers of cos(6) (Brown et al. 1989)

Smax

Q(r,0) = > Q)W (0). (A.1)
s=0

The functions Q(r) are often chosen as piecewise continuous
functions in order to account for the change in rotational regime
between the radiative interior and the convective envelope. In the
case of HD 173701, the Q (r) are chosen constants, and these are
the parameters we estimate.

The rotational splitting can also be expressed as a basis
expansion of the form (Brown et al. 1989)

Jmax

nim = ) o (n, DI (m),

Jj=0

(A2)

where the (;.Z)(m) form an orthogonal basis obeying

S g§’>(m)§j”(m) = 0if i # j. Finally, the a; and Q are
related through the integral equation

T R,
OValm = f f Ko 1m(r, )Q(r, 6)rdédr, (A3)

0 Jo

where K, ;,(r,0) is a kernel that depends on the equilibrium
stellar structure and the eigenfunction of the corresponding p
modes (Hansen et al. 1977). To obtain these kernels we numeri-
cally solved the equations for the stellar structure and pulsations,
using, respectively, ASTEC (Christensen-Dalsgaard 2008a) and
adipls (Christensen-Dalsgaard 2008b).

A judicious choice of the basis functions §;l) will ensure that
there is a one-to-one relation between the coeflicients apg; of
the splitting expansion and the € of the rotation rate expan-
sion (Ritzwoller & Lavely 1991; Schou et al. 1994). The resulting
orthogonality condition on the W allows us to derive their func-
tional form (Pijpers 1997), which is WS(G)zPés +1(cos 6)/ siné,
with P'(cos ) being the associated Legendre polynomial of
degree [ and order m. Using this expression and setting spax=1 in
Eq. (A.1), we obtain the formula used for the rotation rate in this
study:

Q) = Qy — 1.50Q,(5c0s% 6 — 1) (A.4)

We note that the condition on sy, is justified by the above-
mentioned one-to-one relation and the fact that the current seis-
mic data only allow us to observe a; and a3 (tests to detect as
splitting coefficients in the data considered in this study were
inconclusive). The goal is to obtain estimates of )y and €; in
order to derive the theoretical density of the couple (€2;, ;).

In practice, the coefficients a; and a3 were estimated using
a parametric model for the power spectrum (Gizon & Solanki
2003), namely a sum of Lorentzian components and some noise.
The locations of the Lorentzians are the mode eigenfrequencies.
Their distribution is given by the relation

Valm = Vnlo + 6Vn,l,m +,8(V)~ (AS)

Here 6v,;,, describes the rotational effects and is given by
Eq. (A.2). The additional term S(v) has been introduced to
account for the effects of departures from strict sphericity of
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Fig. A.1. Top panel: power spectrum of the short-cadence Kepler data in
the region of the eigenfrequency multiplet centred around the frequency
Vn=241=2m=0- The black and red lines show respectively the data and the
best-fit model of the power spectrum. The vertical red ticks mark the
frequencies of the eigenmodes of the multiplet, for -2 < m < 2. Bot-
tom panel: splitting diagram for the multiplet. The first two terms of
the splitting sequence correspond to the rotational effects, while B(v) is
an additional term that describes aspherical contributions to the eigen-
frequencies. The red horizontal ticks correspond to those seen in the
bottom panel.

the star (centrifugal force, magnetic fields, tidal distortion, etc.)
and is a linear function of the central frequency of the multiplet
(Gough & Thompson 1990). To estimate a3, the mode of degree
[ =2 was used.

The existence of a one-to-one relation between (a;, a3) and
(Qg, Q1) was then used to estimate the latter. The measured rota-
tional splitting in the observed acoustic spectrum was modelled


https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201834251&pdf_id=4

M. Bazot et al.: Butterfly diagram of a Sun-like star observed using asteroseismology

(Benomar et al. 2018) using Eq. (A.2) with jiyax = Smax = 1. The
splitting coefficients were considered as free parameters to be
estimated. The inferred values are a; = 563 + 69nHz and a3 =
28.61 +12.41 nHz. An example of the modelled power spectrum
is given in Fig. A.1, alongside the measured splittings. A model
for the rotation rate of the convective zone of the form (A.4)
was used together with kernels computed from stellar models
(Christensen-Dalsgaard 2008a,b; Lund et al. 2014) to invert this
model. Estimates for the rotation coefficients Qy = 566 + 69 nHz
and Q; = —104 + 45 nHz were inferred.

Finally, we expand slightly on the assumption made concern-
ing the influence of the activity-induced frequency shifts on the
estimated value for as. The assumption we have to make is that
the entire multiplet caused by rotational splitting is shifted as
a block and thus the frequency splitting remains the same. This
allows the activity-induced frequency shifts to depend on the fre-
quency itself, but this variation has to remain negligible at scales
of the order of ~3 uHz, which is characteristic of a rotational
splitting in KIC 8006161. If this holds, then we may expect a3 to
be relatively constant with time. We note that this is related to but
subtly different from the assumption of non-varying differential
rotation magnitude with time made at the beginning of Sect. 2.3,
which says that the magnitude of differential rotation does not
change over time. The new assumption says that the measure-
ment of this constant quantity as is not biased by time-varying
effects affecting the frequencies.

Appendix B: Measuring rotation from active regions

One element needed to infer the latitude of an active region
is a measurement of its rotation rate. It is critical to obtain an
estimate of the associated uncertainties in order to compute the
conjunction of information states described in Sect. 2 (see also
Appendix C).

The idea retained here is to fit the low-frequency compo-
nents of the time series using a Gaussian process. This method
has been applied recently to Kepler data with some success
(Angus et al. 2018). The critical point that allowed the use of
Gaussian processes to model long time series was the develop-
ment of methods for the fast inversion of covariance matrices’
(Foreman-Mackey et al. 2017).

The idea of fitting a Gaussian process to a time series with
N points is to consider it as the realization of a random vec-
tor of dimension N. In principle one would then have to esti-
mate the mean and the covariance matrix of the parent distri-
bution, i.e. N(N + 3)/2 parameters. However, the assumption
is made that the process is stationary and thus that any given
term of the covariance matrix can be determined from a cor-
relation function, k, that only depends on the time difference,
k(t;,tj) = k(zi;), with 7;; = |t; — t;|. Adopting models developed
by Foreman-Mackey et al. (2017), we chose a function of the
form
) = Lol 2

(T,‘j) = Ee 4 [COS(ZT[QaTij) +1]+0 6ij' (B.1)
The cosine term on the right-hand side models the rotation rate.
The second term including o is sometimes dubbed “jitter” and
may capture potential model errors or compensate for underesti-
mated observational errors (Angus et al. 2018).

The parameters of the covariance model are A =
(A, 714,€,,0). We used a Bayesian statistical model to describe

2 We used the celerite package for python. https://github.com/
dfm/celerite

each time series. The posterior density of A was estimated using
an MCMC algorithm (Foreman-Mackey et al. 2013). An exam-
ple of the resulting sampling is shown in Fig. 1. The likelihood
is given by the density of the Gaussian process. The components
of A were assumed independent and the prior could be written
as a product of uniform univariate densities. After several tests
we found that we could efficiently sample the posterior density
if we fit A and 74 in logarithmic space and Q, and o in linear
space. We chose uniform priors for Q, and ¢ and log-uniform
priors for A and 74. The adopted boundaries on InA and In7y
are respectively [—oo, +00] and [-10, 12]. For Q, and o they
are [150, 1600], [150,4500]. We note that the prior on Q, was
set so that our results do not get contaminated by very low- or
very high-frequency signals that are not properly reproduced by
our model (hence relating to filtering practices that can be found
in other studies; Angus et al. 2018). These boundaries were set
after several tests and trials.

The prior on the lifetime also demands some caution. It
should be noted that its upper boundary is far greater than
the duration of any time series we are using in this study.
And indeed, some estimates of 74 from the MCMC simula-
tion happen to be greater than a quarter duration. This can be
viewed in several ways. First, it should be remembered that
we are fitting a stochastic process to the time series. Obtain-
ing long lifetimes out of the estimation process just means that
high values of 74 are compatible with the degree of correla-
tion between the different timescales probed by the time series
and that this degree always remains high. From another per-
spective, the stationarity assumption under which we are work-
ing breaks down if we try to only model one active region
over long series. Consequently, when we encounter large esti-
mates for the lifetimes of the active regions, the precise value
of the estimate should be seen as meaningless, or at least
severely biased. What is important in these cases is that 7g4
is larger than the duration of the time series, indicating an
active region that is stable over the duration of the entire
subsample.

Appendix C: Conjunction of information states

The method of inversion is based on the framework described
by Tarantola & Valette (1982). In this section we just summarize
the main points of the approach and refer to the original paper for
further details. The basic postulate is that any state of knowledge
on the values of a set of parameters can be described using a
density function®**. The approach of the conjunction of states of
information consists in expressing the posterior information on a
couple (d, m), with d and m being the data and model-parameter
vectors, using density functions

_ pld, m)©(d, m)
o=

where the densities o, p, ®, and u represent states of infor-
mation. They are not necessarily probability densities, which

would require that they be normalizable. The density o repre-
sents the conjunction of the two states of information described

(C.1)

3 By “state of knowledge” we mean knowledge of the quantitative
characteristics of a system. Therefore, the existing information we have
on this characteristic can be cast into a density function. This method
is not fit to deal with the qualitative knowledge one might have on a
system.

4 This density is a probability density only if it can be normalized to
one.
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by p and ©. The density u(d, m) is sometimes called a homoge-
neous probability density and represents the state of null infor-
mation (Tarantola 2004). This means that y is the density that
is the least informative® on the values of the couple (d, m). It is
present in Eq. (C.1) so that the conjunction of any state of infor-
mation by the null state results in no loss of information. The
functions p and ® are, respectively, the prior probability density
and the probability density of the theoretical model on (d, m).
The function p contains the information on the system (param-
eter and data) before the inference process. This can be either
the observational data or the prior information on the parameters
of the model. The density ® represents the uncertainties on the
theoretical model.

We now switch back to the notations of Sect. 2 using the
relations d = {Q;} and m = {6;}. The data and the parameters are
independent, hence we can write u(Q;, 6;) = uq,(Qi)ue,(6;). In
this work we choose g, and ug, as uniform densities (Tarantola
2004). Using the same argument of independence, we can write
the prior probability density as a product of probability densi-
ties p(Q,0) = pq,(Qi)pe,(6;), where pq, is obtained from the
Gaussian-process modelling and p,, is uniform on the latitude

5 As explained below, we are able to choose y constant. However, the
precise choice of the homogeneous density is a delicate problem that
has been discussed for instance by Jaynes (1968).
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interval [0,90°] since we have no prior information on the
latitude of the active region. The range chosen is the conse-
quence of our lack of spatial resolution between the two stel-
lar hemispheres (see Sect. 3). Finally we write ©(Q;,6,) =
1o, (Qil6:)pe, (6;) with ng,(.|6;) the probability density on €; con-
ditional on 6 = 6;, i.e. the probability density of the theoretical
rotation rate taken at 6; (see the central panel of Fig. 2 for an
illustration). These choices ensure that o is normalizable and
can be treated as a probability density.

The final step, once o7(2;, 6;) has been estimated, is to obtain
the posterior probability density on 6; only instead on (€, 6;).
This is achieved by marginalizing the rotation rate, i.e. perform-
ing the integral

0,(0;) = fO'(Qi, 0:)d<;, (C2)
over the relevant range of rotation rates. The density o7, is called
the marginal probability density for 6;. The oy, are the objects
represented in Fig. 3 as a function of time ¢ and 6; and is what
we call the butterfly diagram.
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