Completeness of inertial modes of an incompressible inviscid fluid in a corotating ellipsoid - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Physical Review E Année : 2017

Completeness of inertial modes of an incompressible inviscid fluid in a corotating ellipsoid

George Backus
  • Fonction : Auteur

Résumé

Inertial modes are the eigenmodes of contained rotating fluids restored by the Coriolis force. When the fluid is incompressible, inviscid, and contained in a rigid container, these modes satisfy Poincaré's equation that has the peculiarity of being hyperbolic with boundary conditions. Inertial modes are, therefore, solutions of an ill-posed boundary-value problem. In this paper, we investigate the mathematical side of this problem. We first show that the Poincaré problem can be formulated in the Hilbert space of square-integrable functions, with no hypothesis on the continuity or the differentiability of velocity fields. We observe that with this formulation, the Poincaré operator is bounded and self-adjoint, and as such, its spectrum is the union of the point spectrum (the set of eigenvalues) and the continuous spectrum only. When the fluid volume is an ellipsoid, we show that the inertial modes form a complete base of polynomial velocity fields for the square-integrable velocity fields defined over the ellipsoid and meeting the boundary conditions. If the ellipsoid is axisymmetric, then the base can be identified with the set of Poincaré modes, first obtained by Bryan [Philos. Trans. R. Soc. London 180, 187 (1889), 10.1098/rsta.1889.0006], and completed with the geostrophic modes.
Fichier principal
Vignette du fichier
backus2017.pdf (375.83 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-03676993 , version 1 (25-05-2022)

Identifiants

Citer

George Backus, Michel Rieutord. Completeness of inertial modes of an incompressible inviscid fluid in a corotating ellipsoid. Physical Review E , 2017, 95, ⟨10.1103/PhysRevE.95.053116⟩. ⟨insu-03676993⟩
11 Consultations
13 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More