Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Space Weather Année : 2017

Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory

T. L. Zhang
  • Fonction : Auteur
T. Nieves-Chinchilla
  • Fonction : Auteur
P. Gallagher
  • Fonction : Auteur
L. Rodriguez
  • Fonction : Auteur
L. C. Philpott
  • Fonction : Auteur
B. J. Anderson
  • Fonction : Auteur
R. M. Winslow
  • Fonction : Auteur
T. Amerstorfer
  • Fonction : Auteur
M. A. Reiss
  • Fonction : Auteur
V. Bothmer
  • Fonction : Auteur
R. J. Forsyth
  • Fonction : Auteur
S. W. Good
  • Fonction : Auteur
J. P. Eastwood
  • Fonction : Auteur
V. Krupar
D. Barnes
  • Fonction : Auteur
R. A. Harrison
  • Fonction : Auteur
J. A. Davies
  • Fonction : Auteur
E. K. J. Kilpua
  • Fonction : Auteur
P. D. Boakes
  • Fonction : Auteur
A. Isavnin
  • Fonction : Auteur
C. Möstl
  • Fonction : Auteur

Résumé

We present an advance toward accurately predicting the arrivals of coronal mass ejections (CMEs) at the terrestrial planets, including Earth. For the first time, we are able to assess a CME prediction model using data over two thirds of a solar cycle of observations with the Heliophysics System Observatory. We validate modeling results of 1337 CMEs observed with the Solar Terrestrial Relations Observatory (STEREO) heliospheric imagers (HI) (science data) from 8 years of observations by five in situ observing spacecraft. We use the self-similar expansion model for CME fronts assuming 60° longitudinal width, constant speed, and constant propagation direction. With these assumptions we find that 23%-35% of all CMEs that were predicted to hit a certain spacecraft lead to clear in situ signatures, so that for one correct prediction, two to three false alarms would have been issued. In addition, we find that the prediction accuracy does not degrade with the HI longitudinal separation from Earth. Predicted arrival times are on average within 2.6 ± 16.6 h difference of the in situ arrival time, similar to analytical and numerical modeling, and a true skill statistic of 0.21. We also discuss various factors that may improve the accuracy of space weather forecasting using wide-angle heliospheric imager observations. These results form a first-order approximated baseline of the prediction accuracy that is possible with HI and other methods used for data by an operational space weather mission at the Sun-Earth L5 point.
Fichier principal
Vignette du fichier
Space Weather - 2017 - M stl - Modeling observations of solar coronal mass ejections with heliospheric imagers verified.pdf (18.54 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-03676965 , version 1 (24-05-2022)

Licence

Paternité

Identifiants

Citer

T. L. Zhang, T. Nieves-Chinchilla, P. Gallagher, A. P. Rouillard, L. Rodriguez, et al.. Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory. Space Weather, 2017, 15, pp.955-970. ⟨10.1002/2017SW001614⟩. ⟨insu-03676965⟩
4 Consultations
7 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More