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The planetary exospheres are poorly known in their outer parts, since the neutral densities are low com-
pared with the instruments detection capabilities. The exospheric models are thus often the main source
of information at such high altitudes. We present a new way to take into account analytically the addi-
tional effect of the radiation pressure on planetary exospheres. In a series of papers, we present with an
Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and
escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain (1989). In
this second part of our work, we present here the density profiles of atomic Hydrogen in planetary exo-
spheres subject to the radiation pressure. We first provide the altitude profiles of ballistic particles (the
dominant exospheric population in most cases), which exhibit strong asymmetries that explain the
known geotail phenomenon at Earth. The radiation pressure strongly enhances the densities compared
with the pure gravity case (i.e. the Chamberlain profiles), in particular at noon and midnight. We finally
show the existence of an exopause that appears naturally as the external limit for bounded particles,
above which all particles are escaping.

� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The exosphere is the upper layer of any planetary atmosphere:
it is a quasi-collisionless medium where the particle trajectories
are more dominated by gravity than by collisions. Above the exo-
base, the lower limit of the exosphere, the Knudsen number
(Ferziger and Kaper, 1972) becomes large, collisions become
scarce, the distribution function cannot be considered as Maxwel-
lian any more and, gradually, the trajectories of particles are essen-
tially determined by the gravitation and radiation pressure by the
Sun. The trajectories of particles, subject to the gravitational force,
are completely solved with the equations of motion, but it is not
the case with the radiation pressure (Bishop and Chamberlain,
1989).

To describe correctly the exospheric population, we distinguish
three types of particles: escaping, ballistic and satellite
(Chamberlain, 1963; Banks and Kockarts, 1973).
� The escaping particles come from the exobase and have a posi-
tive mechanical energy: they can escape from the gravitational
influence of the planet with a velocity larger than the escape
velocity. These particles are responsible for the Jeans’ escape
(Jeans, 1916).

� The ballistic particles also come from the exobase but with a
negative mechanical energy, they are gravitationally bound to
the planet. They reach a maximum altitude and fall down on
the exobase if they do not undergo collisions.

� The satellite particles never cross the exobase. They also have a
negative mechanical energy but their periapsis is above the exo-
base: they orbit along an entire ellipse around the planet with-
out crossing the exobase. The satellite particles result from
ballistic particles undergoing few collisions mainly near the
exobase. Thus, they do not exist in a collisionless model of the
exosphere.

By definition, their trajectories are conics in the pure gravity
case. Chamberlain (1963) proposed an analytical approach to esti-
mate the density of each population via Liouville’s theorem which
states that the distribution function remains constant along a
dynamical trajectory. A Maxwellian distribution function is
assumed at the exobase and propagated to the upper layers via

http://crossmark.crossref.org/dialog/?doi=10.1016/j.icarus.2015.08.023&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.icarus.2015.08.023
http://creativecommons.org/licenses/by/4.0/
mailto:arnaud.beth@gmail.com
mailto:pgarnier@irap.omp.eu
http://dx.doi.org/10.1016/j.icarus.2015.08.023
http://www.sciencedirect.com/science/journal/00191035
http://www.journals.elsevier.com/icarus


424 A. Beth et al. / Icarus 266 (2016) 423–432
Liouville’s theorem. The density for each population is then derived
as the product between the barometric law and a partition func-
tion f.

nðrÞ ¼ nbarfðkÞ ¼ nðrexoÞek�kexo ðfbal þ fescÞ ð1Þ

where k is the ratio between the gravitational and thermal energies.

kðrÞ ¼ GMm
kBTexor

¼ vescðrÞ2
U2 ð2Þ

with r the distance from the center of the body, vescðrÞ the escaping
velocity, U the most probable velocity for the Maxwellian distribu-
tion, G the gravitational constant, M the mass of the planet or the
satellite and Texo the temperature at the exobase considered con-
stant in the exosphere.

The radiation pressure disturbs the ellipses or hyperbolas
described by these particles. The resonant scattering of solar pho-
tons leads to a total momentum transfer from the photon to the
atom or molecule. In the non-relativistic case, assuming an isotro-
pic reemission of the solar photon, this one is absorbed in the Sun
direction and scattered with the same probability in all directions.
For a sufficient flux of photons in the absorption wavelength range,
the reemission in average does not induce any momentum transfer
from the atom/molecule to the photon. The differential of momen-
tum between before and after the scattering each second imparts a
force, the radiation pressure. Bishop and Chamberlain (1989) pro-
posed to take into account this effect on the structure of planetary
exospheres. In particular, they highlighted analytically the ‘‘tail”
phenomenon: the density for atomic Hydrogen is higher in the
nightside direction than in the dayside direction, as observed for
the first time by OGO-5 (Thomas and Bohlin, 1972; Bertaux and
Blamont, 1973).

This problem is similar to so-called Stark effect (Stark, 1914):
the effect of a constant electric field on the atomic Hydrogen’s elec-
tron. Its study shows it can be transposed to celestial mechanics in
order to describe the orbits of artificial and natural satellites in the
perturbed two-body problem. A first but incomplete work was per-
formed by Bishop and Chamberlain (1989). They focused on the
density profiles along the Sun-planet axis: in the velocity phase
space, the problem is thus only 2D (one component of the angular
momentum is null, p/, and thus the problem takes place on a
hyperplane in the 3D-velocity phase space). They determined the
density profiles for bounded trajectories (only ballistic particles,
neither escaping nor satellite particles) for atomic Hydrogen along
the Sun-planet axis, on the dayside and the nightside, for Earth,
Venus, Mars or for sodium at Mercury.

In this work, we generalize the formalism developed by Bishop
and Chamberlain (1989) to the whole exosphere (3D case) and
highlight several phenomena. Our study is based on Beth et al.
(2016), where we detailed the dynamical aspects induced by the
radiation pressure on the trajectories of exospheric particles. We
now present the implications on exospheric density profiles, local
time asymmetries as well as a specific study of the particles with
satellite orbits. We will briefly describe the formalism used in
Section 2, before we derive the neutrals density in Section 3, and
present the results in Section 4 and conclude in Section 5.
2. Model

For this work, we decide to study the effect of the radiation
pressure on atomic Hydrogen in particular. We model the radiation
pressure by a constant acceleration a coming from the Sun. As pre-
viously defined by Bishop (1991), this acceleration depends on the
line center solar Lyman-a flux f 0, in 1011 photons cm�2 s�1 Å�1:
a ¼ 0:1774 f 0 ðcm s�2Þ ð3Þ
This problem is similar to the classical Stark effect (Stark, 1914):

a constant electric field (here the radiation pressure) applied on an
electron (here an Hydrogen atom) attached to a proton (here the
planet). Both systems are equivalent because the force applied by
the proton (the planet) on the electron (the Hydrogen atom), the
electrostatic force, varies in r�2 as the gravitational force from
the planet on the Hydrogen atom. Thus, we adopt the same formal-
ism as Sommerfeld (1934) adopting the parabolic coordinates. We
use the transformation:

u ¼ r þ x ¼ rð1þ cos hÞ
w ¼ r � x ¼ rð1� cos hÞ ð4Þ

where x is the sunward coordinate and h the angle with respect to
the Sun-planet axis. Along the Sun-planet axis, w is null in the sun-
ward direction whereas u is null in the nightside direction. Conse-
quently, the Hamiltonian becomes:

Hðu;w;pu;pw;p/Þ ¼
2up2

u þ 2wp2
w

mðuþwÞ þ p2
/

2muw
� 2GMm

uþw
þma

u�w
2

ð5Þ
independent of t, the time and /, the azimuth about the planet-Sun
axis. pu; pw and p/ are the conjugate momenta, GM the standard
gravitational parameter of the planet andm the mass of the species.

According to canonical relations, we have:

pu ¼ mðuþwÞ
4u

du
dt

pw ¼ mðuþwÞ
4w

dw
dt

p/ ¼ muw
d/
dt

ð6Þ

We do not assume p/ ¼ 0 as Bishop and Chamberlain (1989)
did: their study is restricted to the Sun-planet axis where either
u ¼ 0 or w ¼ 0.

As shown by Bishop and Chamberlain (1989), the problem has
three constants of the motion: E the mechanical energy, p/ and A
defined as

E ¼ H ð7Þ
because the forces are conservative,

A ¼ 2muE� 4up2
u �

p2
/

u
�m2au2 þ 2GMm2

¼ �2mwEþ 4wp2
w þ p2

/

w
�m2aw2 � 2GMm2 ð8Þ

a separation constant (Bishop and Chamberlain, 1989) which is sim-
ilar to the norm of the Laplace–Runge–Lenz vector and p/ because

dp/

dt
¼ � @H

@ _/
¼ 0 ð9Þ

As function of these three constants, we can rewrite the conju-
gate momenta:

pu ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P3ðuÞ
4u2

r

pw ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3ðwÞ
4w2

r ð10Þ

with

P3ðuÞ ¼ mau3 � 2mEu2 � ð2GMm2 � AÞuþ p2
/

Q3ðwÞ ¼ maw3 þ 2mEw2 þ ð2GMm2 þ AÞw� p2
/

ð11Þ



Table 1
Conditions on the roots of the polynomials and on the exobase location to define the ballistic, satellite and escaping trajectories.

Type of trajectory Ballistic Satellite Escaping

Positive real roots of P3 2 2 2
Positive real roots of Q3 3 3 1 3
Condition on rexo

Rpressure
> U�þW�

2 < U�þW�
2 > U�þW0

2

Necessary and sufficient conditions? Yes Yes No, need for tracking
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We can remark here that for p/ ¼ 0;0 is a simple root of P3 and
Q3.

Based on the formalism detailed in Beth et al. (2016), we use
dimensionless quantities and the same annotations:

E ¼ 2UP2
U þ 2WP2

W

U þW
þ P2

/

2UW
� 2ka
U þW

þ ka
2
ðU �WÞ ð12Þ

A ¼ 2EU � 4UP2
U � P2

/

U
þ 2ka � kaU

2

¼ �2EW þ 4WP2
W þ P2

/

W
� 2ka � kaW

2 ð13Þ

P3ðUÞ ¼ kaU
3 � 2EU2 þ ðA� 2kaÞU þ P2

/

¼ kaðU � U0ÞðU � U�ÞðU � UþÞ
Q3ðWÞ ¼ kaW

3 þ 2EW2 þ ðAþ 2kaÞW � P2
/

¼ kaðW �W�ÞðW �WþÞðW �W0Þ

ð14Þ

with U0; U�; Uþ and W0 real roots such as U0 < 0 < U� < Uþ;W�
and Wþ can be real (then W� < Wþ < W0) or complex conjugates.
For each polynomial, one root can be 0 if P/ ¼ 0. We define ka as:

ka ¼
ffiffiffiffiffiffiffiffiffiffi
GMa

p
m

kBT
¼ GMm

kBTRpressure
¼ kðRpressureÞ ð15Þ

the Jeans parameter at the distance Rpressure ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=a

p
.

3. Calculation of exospheric densities

The density in a gas is given from the distribution function
f by:

nð~rÞ ¼
Z

f ð~r;~vÞd3~v ð16Þ

The bounds of integration depend on the type of particle. As for
the so-called Chamberlain (1963) model, we distinguish three
types of particles: ballistic, satellite and escaping particles. As
detailed in the next section (and summarized in Table 1), the tra-
jectory of these particles are not conics at all but they keep a part
of their definition in this problem: the ballistic particles cross the
exobase twice, the satellite particles do not cross the exobase
and do not escape, and the escaping particles cross the exobase
once before they escape. As shown by Beth et al. (2016), each type
of particles must respect conditions about the roots of P3 and Q3,
summarized in Table 1.

3.1. Reminder about the previous analytical work by Bishop and
Chamberlain (1989)

Before performing the density profile calculation, we specify
here the main differences with the initial work by Bishop and
Chamberlain (1989).

Bishop and Chamberlain (1989) performed 1D calculations
along the Sun-planet axis only, implying some assumptions on
the trajectories of the particles (described below). We explain
here rigorously why their study and ours are different and
complementary.

So that a particle crosses the Sun-planet axis, U orWwill be null
once and thus P/ too (cf. Eq. (6)) because it is independent of the
time. Thus, P3 and Q3 have 0 as common root. For bounded trajec-
tories, W�;Wþ and W0 are real positive and 0 < W� < Wþ < W0

thus W� ¼ 0. The question now is: which root of P3 is null? As
explained further, U0 þ Uþ þ U� ¼ �Wþ �W0 < 0 and Uþ is
strictly positive. Then, between U� and U0, one is negative, the
other one is null thus U0 < 0 and U� ¼ 0.

The ðU;WÞ-motion of a particle crossing the Sun planet axis is
ðU;WÞ 2 ½0;Uþ� � ½0;Wþ�. According to the Poincaré recurrence
theorem (Poincaré, 1890) as used by Beth et al. (2016), these
particles will necessarily pass as close as we want to the ð0;0Þ
position. Consequently, as explained by Bishop and Chamberlain
(1989) for the planar motion (P/ ¼ 0), all bounded trajectories
cross the exobase. These authors considered the particles orbiting
several times around the planet as satellite particles with a
finite lifetime. We will show in the following sections for our
3D-case, that pure satellite particles exist which never cross the
exobase (see Section 4.3). Finally, our integrals here will be
calculated in another way compared with Bishop and
Chamberlain (1989) since P/ can vary. Although our model cannot
take into account the singularity P/ ¼ 0, this is not a problem for
the integration (for the numerical evaluation, we just avoid this
value).
3.2. Densities of ballistic particles

We will first focus on the densities of ballistic particles. These
particles are trapped by the potential that includes both the gravity
and the radiation pressure. Consequently, the parabolic coordinates
U andWmust have finite values and belong to a closed interval from
Rþ. On thefirsthand, there isno further constraint forU-values, since
theU-motion is always limitedby twoparaboloidsdefinedbyU� and
Uþ (see Section 2.4 in Beth et al., 2016). On the other side, the
W-motionmust respect the following condition to allow for ballistic
particles: the roots W� and Wþ must be real positive (otherwise,
they can be complex or real negative). This implies a condition on
the energy E according to Eq. (14):

kaðW0 þW� þWþÞ ¼ �2E > 0 ð17Þ
As explained by Beth et al. (2016), the U-motion does not have

the same period as the W-motion or the /-motion. In the ðU;WÞ-
plane, the trajectory fills the whole square ½U�;Uþ� � ½W�;Wþ�
(see Beth et al., 2016, Fig. 1). If a particle belongs to this square,
after a certain time, the particle will pass as close as we want to
any position chosen in this square (except for specific periodic
cases, cf. Biscani and Izzo (2014), occurring only if we are looking
for them). Thus, if a part of the exobase surface belongs to
this square, the particle in this square will necessarily cross
several times the exobase (at the distance rexo). We will
thus be able to call it a ballistic particle. By definition
uþw ¼ ðU þWÞRpressure ¼ 2r, and the nearest distance from the
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Fig. 1. Representations of areas where ballistic (blue) and satellite (green) particles evolve in the usual coordinate system (left panel) and in the ðU;WÞ plane. To pass from
the left grid to the right one, we apply the transformation ðx; yÞ ! u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
þ x; w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� x

� �
. (For interpretation of the references to color in this figure legend,
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center of the planet where the particle can pass is
r� ¼ ðU� þW�ÞRpressure=2. If W� is real positive, then r� allow us
to define the type of this particle: if r� < rexo the particle is ballistic,
if r� > rexo the particle is satellite.

In summary, the bounds of integration needed to calculate the
density of ballistic particles from Eq. (16) is the part of the velocity
space where W� and Wþ are real positive and r� < rexo.

A last parameter must be determined: what is the distribution
function to be used? The calculation of the ballistic density
(detailed below) is based on the Liouville theorem, which uses
the conservation of the distribution function along a dynamical
trajectory. Since the ballistic particles cross the exobase, i.e. the
external limit of the collisional atmosphere, one can reasonably
assume (as in Chamberlain, 1963) that the distribution function
is Maxwellian at the exobase.
3.3. Description of the algorithm for ballistic particles

First step. We choose a specific location in the exosphere and
we thus fix the values of U and W.

Second step. Then, we scan all possibilities for the velocity vec-
tor. For each 3-tuple (three components of the velocity vector), we
calculate the corresponding three constants of the motion
(E;A; P/).

Third step. For each tuple (E;A; P/), we calculate the three roots
of P3 and Q3.

Fourth step. We test if the three roots of Q3 are real and
positive.

Fifth step. We calculate U�=2þW�=2. If this value is below
rexo=Rpressure then this is a bounded trajectory crossing the exobase,
that corresponds to ballistic particles. Thus, the Liouville theorem
can be applied.

Sixth step. We integrate the velocity distribution function and
derive the density of ballistic particles.

In order to calculate the ballistic density nbal, we propose to
define a partition function fbalðr; hÞ that is the generalization, when
the radiation pressure effect is included, of the 1D partition func-
tion defined by Chamberlain (1963):

nbalðr; hÞ ¼ nexo expðkðrÞ � kcÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
barometric law

exp �ka
r � rexo
Rpressure

cos h
� �

fbalðr; hÞ

ð18Þ
with nexo the exobase density, h the angle with the respect to the
Sun-planet axis and r the distance from the planet. By definition,
for a Maxwellian distribution,

fbalðr; hÞ ¼
R
bal exp � p2

2mkBT

� �
d3~pR

exp � p2

2mkBT

� �
d3~p

ð19Þ

We choose to work with dimensionless quantities and the
ðU;WÞ coordinates. Operating some transformations and with the
correct Jacobian, we obtain:

fbalðU;WÞ¼ 1

ð2pÞ3=2
4

UþW

Z
bal

exp �2UP2
U þ2WP2

W

UþW
� P2

/

2UW

 !
dPUdPW dP/

ð20Þ

The formula (20) is only available for U – 0 or W – 0. Indeed, if
U ¼ 0 or W ¼ 0, then P/ ¼ 0 and this integral cannot be performed.
Thus, our formulation is only available for the whole exosphere
except along the Sun-planet axis, already studied by Bishop and
Chamberlain (1989).

As previously mentioned, E is negative. It represents the contri-
bution of the potential energy and the kinetic energy. Thus, we
have the inequality from the Eq. (12):

2ka
U þW

� ka
2
ðU �WÞ > 2UP2

U þ 2WP2
W

U þW
þ P2

/

2UW
> 0 ð21Þ

The modulus inside the exponential takes finite values. In this case,
we choose the following change of coordinates:



A. Beth et al. / Icarus 266 (2016) 423–432 427
X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U

U þW

r
PU ¼ R sinH cosU

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W

U þW

r
PW ¼ R sinH sinU

Z ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2UW

p P/ ¼ R cosH

ð22Þ

ftypeðU;WÞ ¼ 1
p3=2

Z
bal

expð�X2 � Y2 � Z2ÞdXdY dZ

¼ 1
p3=2

Z
bal

R2 expð�R2ÞdRdHdU
ð23Þ

To estimate this integral (23), we use the Gauss–Legendre
quadrature as:

fbalðU;WÞ ¼ 1
p3=2

Z
1balðR;H;UÞR2 expð�R2ÞdRdHdU

� 1
p3=2

XN
i¼1

XN
j¼1

XN
k¼1

1balðRi;Hj;UkÞR2
i expð�R2

i Þwiwjwk

ð24Þ

N is the number of points used for the integration and 1bal is a func-
tion taking the value 1 if the particle is bounded and crosses the
exobase with these initial conditions or 0 otherwise, as a rejection
sampling (cf. Fig. 2).

The Gauss–Legendre method is particularly efficient in this case
because all bounds of integration are finite: R is finite (see Eq. (21)),
H belongs to ½0;p� and U to ½0;2p�.

3.4. The escaping and the satellite particles

Our approach unfortunately cannot be applied so easily to cal-
culate the densities of particles with escaping or satellite
trajectories.

For escaping particles, the coordinates in the full position-
velocity phase space do not guarantee that the particles come from
the exobase or not. Indeed, for escaping particles, the volume is
opened (no restriction on E). The Poincaré recurrence theorem
(Poincaré, 1890) thus cannot be applied and a particle can have
the conditions to be escaping without crossing the exobase (the
particle is just passing by the planet): it is necessary to follow
the particle along the time as long as it is inside the exopause. If
a particle reaches the exopause without crossing the exobase, this
is not a escaping particle. We tried to track the particles to know if
they cross or not the exobase but we have some time and precision
issues: compared with the ballistic particles, we shall compute the
trajectory of each particle (problem of time) and integrate the
energies until the infinite (problem of precision). Several attempts
were performed without convincing results. However, as will be
discussed in a future paper, it is possible to calculate the analytical
escape flux at the exobase.

The satellite particles cannot exist in our model because this is a
collisionless model. We have previously proposed a formalism to
estimate their density (Beth et al., 2014); the trajectories are not
closed here (no periodic motions for all bounded cases) and the
formalism of this paper cannot be adjusted in this way. However,
we will show below (Section 4.3) that satellite particles can exist
in the presence of a radiation pressure force, and where these par-
ticles are.
4. Results

Bishop and Chamberlain (1989) provided only the ballistic den-
sity along the Sun-planet axis, along the dayside and nightside
directions. Here, we generalize this approach with a 2D model
(3D if an axisymmetric symmetry is considered) and provide the
ballistic density (main component in the lower part of the exo-
sphere) in every direction from the planet. We present here the
results for different planetary exospheres such as for Earth, Titan
and Mars, but the main features derived (comparison with pure
gravity case, asymmetries, exopause) are general results that
may be applied to any planet hosting a dense atmosphere influ-
enced by a radiation pressure force.
4.1. Asymmetries and comparison with Chamberlain profiles

First of all, as shown on Fig. 3 (lower panels), close to the planet,
our densities (which include the radiation pressure effect) over-
come the ballistic densities from the Chamberlain (1963) model.
In the nightside direction at Earth, the densities are up to
100:6 � 6 times higher than predicted by Chamberlain (1963).
However, in the dayside direction at Earth (see Fig. 8), the densities
are less high, with an enhancement factor of about 100:4 � 2:5
times. This is also the case at Titan and Mars (see Fig. 8). We will
also later see (Fig. 7) that, even for relative small radiation pres-
sures (i.e. rexo < 10� 20 Rpressure), our density overcomes the one
obtained through the Chamberlain (1963) formalism. A physical
explanation will be brought in Section 4.3.

In Fig. 3 that shows the 2D maps of ballistic particles densities
at Earth, we see clearly the asymmetries induced by the radiation
pressure. As expected and previously mentioned, the ballistic den-
sity is clearly more significant in the nightside direction than in the
dayside direction. Most of the particles are preferentially blown
behind the planet. This observation is in agreement with the work
by Bishop and Chamberlain (1989), who also found such an asym-
metry corresponding to the well known geotail phenomenon of
enhanced nightside densities observed (Thomas and Bohlin,
1972; Bertaux and Blamont, 1973; Zoennchen et al., 2011; Bailey,
2012). Nevertheless, the densities in the dayside direction are not
so low: the density profile in the dayside direction remains signif-
icant compared with the transverse direction, the Dusk/Dawn/
North Pole/South Pole plane. For example, at 10 Earth radii the
densities in the dayside direction are about 25% larger than in
the perpendicular plane (and 50–100% larger in the nightside
direction). The exosphere seems to have a prolate shape oriented
along the Sun-planet axis.

The exospheric density asymmetries were recently observed
thanks to the TWINS mission and published by Zoennchen et al.
(2011, 2013) and Bailey (2012). In Fig. 4, we compare at constant
distance (8 RE) the variability of the Earth exospheric density from
our model and from the observations as a function of the solar
zenith angle. As Zoennchen et al. (2011, 2013) and Bailey (2012)
fit their observations with a limit number of spherical harmonics,
we do the same here for a clear comparison. Zoennchen et al.
(2013) observed a decrease of 45% in the dusk and dawn directions
in the equatorial plane and an enhancement by up to 45% in the
nighside direction compared with the dayside. In Fig. 4, the
decrease for our model is about 36% and the increase about 25%.
The lower difference in the nightside direction can be explained
by the lack of escaping particles in our model, which would cer-
tainly increase the density in the nightside direction.

Our model thus reproduces quite well the local time variation in
the equatorial plane although we do not know the precise condi-
tions in the exosphere during the observations by Zoennchen
et al. (2013), i.e. the exact exospheric temperature and radiation
pressure acceleration (which is known to have a strong variability
(Vidal-Madjar, 1975)). Nevertheless, we have significant discrep-
ancies (compared with Zoennchen et al., 2013) in the meridional
plane in particular during the equinox. One explanation can be
the satellite particles as will be discussed in Section 4.3.



Fig. 2. Algorithm to determine the value, 0 or 1, of the function 1ballistic according to the initial conditions. Once this value is known, we use Eq. (24).
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4.2. The exopause

We also plotted the ballistic density profiles at Earth as a func-
tion of the distance for different h (angle with the Sun-planet axis)
in Fig. 5. Beyond the clear local time asymmetries and enhanced
densities compared with the Chamberlain (pure gravity) profiles,
we observe a cut-off of the ballistic density at 36 Earth radii. This
limit corresponds to an exopause located at Rpressure ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=a

p ¼ 36 RE, which was not introduced artificially as was pre-
viously done by the previous works (e.g. Bishop, 1991). Unfortu-
nately, we could not demonstrate this property analytically but
the modeling proves that the bounded trajectories occur only
inside the sphere of radius Rpressure. With the Chamberlain (1963)
approach, the limit for bounded trajectories is infinity. Physically,
a first limit is however imposed by the presence of the Sun (or
by nearby planets for satellites): the Hill’s sphere, that defines
the limit of the gravitational influence of the central body. But here,
the radiation pressure induces another limit (below the Hill sphere
radius) located at Rpressure, i.e. where the accelerations due to the
gravity and radiation pressure forces are equal. Beyond this limit,
all particles are escaping. In future works, we will show its impli-
cation on the evolution of planetary atmospheres.

The sharp density drop (shown for ballistic populations) at the
distance Rpressure should still be seen after adding the satellite and
escaping populations, and lead to a sharp drop in the total density
profiles. The densities of satellite and escaping populations are
indeed decreasing with distance: the escaping component should
approximately decrease in r�2, whereas the satellite component
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Fig. 3. Maps of ballistic particles densities at Earth, Mars and Titan (normalized by the exobase density) with an exospheric temperature of respectively Texo ¼ 800 K, 200 K
and 152 K (from the left to the right). The upper panels represent the output of our model. The middle panels represent with the same colors the ballistic density map
provided by the Chamberlain (1963) model. The lower panels represent the ratio between the two models in log-scale: red areas show where our density exceeds the
Chamberlain’s one, the blue areas represent where the Chamberlain’s model overestimates the density (except for Titan, our densities overwhelm in any part of the
exosphere). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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will also disappear at Rpressure since no bound motion can exist
beyond this limit (see also Beth et al., 2014). Thus, no strong
increase for these two populations will be able to counter the sharp
drop of the ballistic component, which should be seen in the total
density measured (unless an external source of neutrals, e.g. the
neutral part of the solar wind, adds a significant density that hides
the sharp drop).

As far as we know, the only relevant neutral density measure-
ment allowing to investigate this topic is the study by Brandt
et al. (2012). These authors provided energetic neutral atom
(ENA) images of the Titan environment, and showed that ENA
fluxes may be observed up to 50,000 km, i.e. the Hill sphere radius
determined by the gravitational influence of Saturn. The ENAs are
produced by charge exchange reactions between the magneto-
spheric ions and the exospheric neutrals, so that the ENA flux pro-
files provide information about the neutral density profiles. At
Titan, the location of the exopause, where a sharp density drop is
expected, is due to the gravitational influence of Saturn rather than
to the radiation pressure that leads to an Rpressure distance much fur-
ther. The observation of ENA fluxes up to the exopause is thus in
agreement with a sharp neutral density drop at the exopause dis-
tance expected by our model.
4.3. The satellite particles

Fig. 5 also provides a comparison between our modeled ballistic
profiles and the ballistic and ballistic + satellite densities from
Chamberlain (1963). Near the planet, our ballistic density profile
remains for any direction between these last two profiles. Why?

The radiation pressure disturbs the trajectories of particles that
are initially conics. As shown by Bishop and Chamberlain (1989),
the particles crossing the Sun-planet axis (P/ ¼ 0) cannot be satel-
lite particles: the bounded trajectories see their periapsis decrease
with time and they necessarily cross the exobase if P/ ¼ 0. The
radiation pressure separates the areas where ballistic and satellite
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particles can exist: the ballistic particles are preferentially near the
Sun-planet axis whereas the satellite particles are mostly located
far from this axis in the perpendicular plane (see below). The radi-
ation pressure will convert satellite trajectories into ballistic trajec-
tories and these last ones into escaping particles. This is why we
have our density between ballistic and ballistic plus satellite parti-
cles densities from Chamberlain (1963): a part of our ballistic par-
ticles were probably initially satellite particles converted into
ballistic ones by the radiation pressure. Moreover, such a conver-
sion of trajectories is stronger near the axis than in the perpendic-
ular plane. To support this explanation, we cannot calculate the
satellite particles density since the Liouville theorem cannot be
applied to particles which do not cross the exobase. Nevertheless,
we can estimate the phase space volume dedicated to the satellite
particles, and look where it is maximum. The phase space volume
is given by:
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V ¼
Z
R3

1type d
3~p

The bounds of integration (or the value of 1type) depend on the
type of particles considered (type = ballistic or satellite; for escap-
ing particles, V is infinite). This volume has no physical meaning
but provides the available volume. However, one can extract a use-
ful information if we compare the phase space volumes for satellite
and ballistic particles (given in Fig. 6). The satellite particles are
thus preferentially located far from the Sun-planet axis and in
the perpendicular plane.

The existence and production/loss of satellite particles is how-
ever not well-known. A recent work by Beth et al. (2014) showed
that the satellite particles are produced by scarce collisions just
above the exosphere. In the Earth case, they showed the satellites
particles do not contribute significantly to exospheric densities.
Nevertheless, we mentioned above a discrepancy between our
model and the observations by Zoennchen et al. (2013) in the per-
pendicular plane during equinox, that could be related to the pres-
ence of satellite particles. During this period, the polar cusps are in
the perpendicular plane. The production of satellite particles might
be in the polar cusps where the densities are large and where the
satellite trajectories are more stable.

A last evidence for the conversion between ballistic and satellite
particles is given by Fig. 7, where the Earth ballistic density profile
at 8 RE (as in Fig. 4) is given using a fictitious radiation pressure
value divided by 1000. We would expect a density profile similar
to the pure gravity case, i.e. the Chamberlain profile of ballistic par-
ticles. This is however not the case. The radiation pressure force
disturbs the trajectories regardless of the value considered: the
particles that are quasi-satellite see their periapsis altitude
decreases more slowly if the radiation pressure is smaller, so that
they can turn around the planet during a longer time without
crossing the exobase than with a larger radiation pressure, but they
will anyway cross it after some time. In this work, there is no dis-
tinction between these quasi-satellite particles and ballistic parti-
cles since no simple physical parameter allows to distinguish them.

According to the densities profiles, given in Figs. 5 and 7, we can
reasonably assume that for small distances compared with Rpressure

(generally some planetary radii except for Hot Jupiters for where
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the exopause may be located below the exobase), the densities are
between nbal and nbal þ nsat from the Chamberlain formalism. Even
if the collisions are not included in the model (which are the source
for satellite particles), assuming Chamberlain density profiles with
and without the satellite particles contribution can give a range for
exospheric densities at a given distance for the disturbed case by
the radiation pressure.

4.4. Comparative planetary science

With our studies of different cases, Earth, Mars and Titan, corre-
sponding to different conditions (i.e. exospheric temperatures and
radiation pressures), we are able to explore a wide range of config-
urations and to derive general conclusions.

All our case studies showed, with an exopause (always located
at Rpressure) above the exobase, an enhancement of the ballistic den-
sities compared with those provided by the Chamberlain (1963)
model. As shown by Figs. 3 and 8, the radiation pressure indeed
strongly affects the density profiles. Fig. 8 reveals a ratio between
the disturbed and non disturbed densities that is very similar for
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Earth and Mars (up to 3), but larger at Titan (up to 7), with a peak
at the same normalized distance. The variability of the induced dis-
turbance between the various planets may be explained as follows.
The first effect of the radiation pressure is to break the spherical
symmetry: the physical consequence is the conversion of satellite
particles into ballistic ones as shown by Fig. 7. The secondary con-
sequence depends on the intensity of the radiation pressure: the
stronger it is (i.e. the closer to the Sun the planet is), the more bal-
listic particles become escaping ones. We should thus expect less
ballistic particles at Earth than at Mars. However, the equations
driving the density profiles mostly depend on the parameters rexo
and Rpressure (i.e. kc and ka), in particular on the ratio rexo=Rpressure.
Earth and Mars actually have similar ratios rexo=Rpressure (i.e. about
35) and thus have a similar enhancement as a function of
r=Rpressure (cf. Fig. 8). For the Titan case, the radiation is hundred
times weaker, which would suggest a weak density enhancement,
but the ratio rexo=Rpressure is completely different: Rpressure is 100
times larger than rexo. Nevertheless, we should take precautions
the Titan case because another external force could strongly affect
the dynamic of atmospheric species: the gravitational attraction by
Saturn.
5. Conclusions

In this paper, we generalize the initial work by Bishop and
Chamberlain (1989) by developing a 2D model (3D if we do not
assume the axisymmetry) for the density profiles of ballistic exo-
spheric neutral particles, in order to study the impact of the radia-
tion pressure on the structure of planetary exospheres such as at
Earth, Mars or any planet with a dense atmosphere.

We reproduce quite well with our simulations the different exo-
spheric asymmetries observed at Earth:

� the ‘‘tail phenomenon”: the Earth exosphere has higher densi-
ties for atomic Hydrogen in the nightside direction than in the
dayside direction. This is already known (Thomas and Bohlin,
1972; Bertaux and Blamont, 1973) and directly attributed to
the radiation pressure.

� dusk/dawn/North Pole/South Pole asymmetries (Bailey and
Gruntman, 2011; Zoennchen et al., 2011, 2013): the radiation
pressure induces a depletion of particles in the perpendicular
plane, observed in the equatorial plane.

Moreover, the radiation pressure entails an increase of ballistic
particles densities which are in the lower corona (up to several
planetary radii), the main exospheric component compared with
satellite and escaping particles. Compared with the Chamberlain
(1963) model (i.e. without the radiation pressure), the densities
are several times higher (up to 2.5 in the dayside direction and 4
in the nightside one at Earth). Only the ballistic (i.e. not the escap-
ing) particle density calculation is performed for numerical reasons
(time and precision issues).

We highlight also the appearance of a characteristic distance of
the exosphere: the ‘‘exopause”. This concept was introduced by
Bishop (1991), who included it artificially in their model: this
boundary is the limit where the intensity of the radiation pressure
is equal to the gravitational attraction. As shown in this paper, this
limit appears naturally in our simulations with a break in our den-
sity profiles. Physically, the exopause divides the exosphere into
two regions: below the exopause, we can find bounded (satellite
and ballistic particles) and unbounded (escaping) trajectories;
above the exopause, we find only unbounded trajectories. The exo-
pause will lead to a local sharp drop for the total density (including
ballistic, satellite and escaping populations), that is in agreement
with the observation of energetic neutral atom fluxes at Titan up
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the Hill sphere radius only (i.e. the exopause for Titan) by Brandt
et al. (2012). Our model provides only density profiles for a plane-
tary exosphere where the exopause is located above the exobase (a
future paper will investigate the extreme case of Hot Jupiters
where the strong radiation pressure pushes the exopause down
to the exobase). The exopause boundary also induces a constraint
for modeling the exospheres: the size of the simulations box must
be large enough to contain the exopause in order to take into
account all the asymmetries induced by this force.

Moreover, in our study, we have also shown the influence of the
radiation pressure on the repartition of ballistic and satellite pop-
ulations. On the one hand, near the Sun-planet axis, the periapsis of
the bounded particles decreases slowly because of the radiation
pressure until it crosses the exobase. Thus, we find essentially bal-
listic particles (called also satellite particles with finite lifetime)
near the Sun-planet axis. On the other hand, the available regions
to find bounded trajectories which do not cross the exobase (i.e.
satellite particles) are essentially in the dusk/dawn/North Pole/
South Pole plane. Thus, the radiation pressure separates clearly
the ballistic and satellite particles regions even if these particles
are both bounded.

Finally, the radiation pressure induces an important effect on
the velocity phase space: the radiation pressure converts a part
of the satellite particles into ballistic particles and these ones into
escaping particles. This explains the enhancement of ballistic den-
sities compared with the Chamberlain (1963) model: the radiation
pressure converts efficiently the satellite particles of his model
(without radiation pressure) into ballistic ones for ours (with radi-
ation pressure). This explanation is supported by Figs. 5 and 7: near
the planet or for small radiation pressure accelerations, the densi-
ties remain between the ballistic and ballistic plus satellites ones
provided by the Chamberlain (1963) formalism. Consequently,
including or not the Chamberlain (1963) satellite particles parti-
tion function provides an appropriate range of densities to include
the radiation pressure effect on exospheric density profiles, even in
the absence of collisions that are the source of satellite particles.

In future works, we will study the photogravitationnal Circular
Three-Body Problem and the implication on the stability of plane-
tary exospheres, in particular for Hot Jupiters. Moreover, the escap-
ing particles density could not be calculated here because of
numerical issues but the escaping flux will be investigated in
details in a future work.
Acknowledgment

This work was supported by the Centre National d’Études Spa-
tiales (CNES).

References

Bailey, J.J., 2012. Three-Dimensional Exospheric Hydrogen Atom Distributions
Obtained From Observations of the Geocorona in Lyman-a, Ph.D. thesis.
University of Southern California.

Bailey, J., Gruntman, M., 2011. Experimental study of exospheric hydrogen atom
distributions by Lyman-a detectors on the TWINS mission. J. Geophys. Res.:
Space Phys. 116, 9302.

Banks, P.M., Kockarts, G., 1973. Aeronomy. Academic Press, New York.
Bertaux, J.L., Blamont, J.E., 1973. Interpretation of OGO-5 Lyman-ameasurements in

the upper geocorona. J. Geophys. Res. 78, 80–91.
Beth, A. et al., 2014. Modeling the satellite particle population in the planetary

exospheres: Application to Earth, Titan and Mars. Icarus 227, 21–36.
Beth et al., 2016. Theory for planetary exospheres: I. Radiation pressure effect on

dynamical trajectories. Icarus 266, 410–422.
Biscani, F., Izzo, D., 2014. The stark problem in the Weierstrassian formalism.

Month. Not. Roy. Astron. Soc. 439, 810–822.
Bishop, J., 1991. Analytic exosphere models for geocoronal applications. Planet.

Space Sci. 39, 885–893.
Bishop, J., Chamberlain, J.W., 1989. Radiation pressure dynamics in planetary

exospheres: a ‘‘natural” framework. Icarus 81, 145–163.
Brandt, P.C. et al., 2012. The distribution of Titan’s high-altitude (out to

�50,000 km) exosphere from energetic neutral atom (ENA) measurements by
Cassini/INCA. Planet. Space Sci. 60, 107–114.

Chamberlain, J.W., 1963. Planetary coronae and atmospheric evaporation. Planet.
Space Sci. 11, 901–960.

Ferziger, J., Kaper, H., 1972. Mathematical Theory of Transport Processes in Gases.
North-Holland Publ..

Jeans, J.H., 1916. The Dynamical Theory of Gases, forth ed. Cambridge University
Press (1925).

Poincaré, H., 1890. Théorie des invariants intégraux. Acta Math. 13, 46–88.
Sommerfeld, A., 1934, . Atomic Structure and Spectral Lines, third ed., vol. 1.

Methuen & Co..
Stark, J., 1914. Beobachtungen ber den effekt des elektrischen feldes auf

spektrallinien. i. quereffekt. Ann. Phys. 348, 965–982.
Thomas, G.E., Bohlin, R.C., 1972. Lyman-ameasurements of neutral hydrogen in the

outer geocorona and in interplanetary space. J. Geophys. Res. 77, 2752–2761.
Vidal-Madjar, A., 1975. Evolution of the solar Lyman-a flux during four consecutive

years. Sol. Phys. 40, 69–86.
Zoennchen, J.H. et al., 2011. The TWINS exospheric neutral H-density distribution

under solar minimum conditions. Ann. Geophys. 29, 2211–2217.
Zoennchen, J.H., Nass, U., Fahr, H.J., 2013. Exospheric hydrogen density distributions

for equinox and summer solstice observed with TWINS1/2 during solar
minimum. Ann. Geophys. 31, 513–527.

http://refhub.elsevier.com/S0019-1035(15)00367-X/h0010
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0010
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0010
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0015
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0020
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0020
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0025
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0025
http://refhub.elsevier.com/S0019-1035(15)00367-X/h9000
http://refhub.elsevier.com/S0019-1035(15)00367-X/h9000
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0030
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0030
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0035
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0035
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0040
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0040
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0040
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0045
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0045
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0045
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0045
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0050
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0050
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0055
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0055
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0060
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0060
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0065
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0070
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0070
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0075
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0075
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0080
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0080
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0085
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0085
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0090
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0090
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0095
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0095
http://refhub.elsevier.com/S0019-1035(15)00367-X/h0095

	Theory for planetary exospheres: II. Radiation pressure effect on exospheric density profiles
	1 Introduction
	2 Model
	3 Calculation of exospheric densities
	3.1 Reminder about the previous analytical work by Bishop and Chamberlain \(1989\)
	3.2 Densities of ballistic particles
	3.3 Description of the algorithm for ballistic particles
	3.4 The escaping and the satellite particles

	4 Results
	4.1 Asymmetries and comparison with Chamberlain profiles
	4.2 The exopause
	4.3 The satellite particles
	4.4 Comparative planetary science

	5 Conclusions
	Acknowledgment
	References


