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1.  Introduction and Motivation
This paper addresses the central problem of global positioning system (GPS) time series analysis: the sep-
aration of what is considered signal, that is, the systematic variations, from what is considered to be noise, 
that is, the random variations of usually unknown origin. A functional model is commonly fit to a GPS 
position time series to represent the signal, consisting of a linear trend, periodic variations, and irregularly 
timed position offsets as needed. It was realized in the 1990s that weighted least squares fitting for the func-
tional model with formal error propagation yields highly optimistic uncertainties for geodetic parameters 
if time-correlation is not accounted for (Johnson & Agnew, 1995). Then the discovery that the GPS-based 
errors are correlated both spatially (Wdowinski et al., 1997) and temporally (Zhang et al., 1997) led to more 
robust methods to assess and quantify the levels and types of noise in time series of GPS station positions 
(Mao et al., 1999). The main goal was to obtain more reliable uncertainties for GPS-based velocities, which 
are needed for many geodynamical studies such as measuring intra-plate tectonic stability and correct-
ing vertical land motion from tide gauge records. A general consensus quickly emerged that GPS time 
series errors combine mostly white noise (WN) at shorter periods, typically less than a month, with flicker 
noise (FN) or similar power-law noise (PL) over longer spans, from monthly up to decadal periods (Mao 
et al., 1999; Zhang et al., 1997), although some level of background random walk (RW) error cannot be ex-
cluded. Consequently, velocity uncertainties can be under-estimated by as much as an order of magnitude 
if WN alone is assumed (Mao et al., 1999).

Development quickly followed of several mathematical tools to enable users to evaluate models of alterna-
tive noise types and amplitudes in observed GPS time series (Amiri-Simkooei et al., 2007; Bos et al., 2013; 
Langbein, 2004, 2017; Williams, 2008), which have been widely adopted for published noise analyses. One 
of the most common mathematical approaches found in the literature is the maximum likelihood estima-
tor (MLE), which is well adapted to fit any noise model or combination of noise models to univariate time 
series. In order to discriminate the best-fitting noise model, the estimated log-likelihood differences (dML) 
are often used after accounting for the different degrees of freedom of each noise model. Very recently, this 
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approach has been extended to analyze spatial common-mode noise models from regional GPS networks 
(Dmitrieva et al., 2015).

In this study, we analyze the impact the functional model, particularly position offsets, has on the appar-
ent color of the noise model fitted to the position time series. Two very recent papers have raised ques-
tions about the orthodox interpretation of the long time series that are increasingly available nowadays. 
He et al. (2019) conclude that GPS noise does not flatten at low frequencies while assuming that the noise 
properties are stable over time, which we will reiterate below is not justified, in part due to the effect of oc-
casional position offsets. Meanwhile, Wang and Herring (2019), using synthetic and real GPS series from a 
regional solution, attempt to show that the impact of position offsets is less serious than previously thought. 
These authors base their conclusions on serious misrepresentations. It is the objective of this contribution 
to clarify these points and to offer new perspectives on the information obtained from the colored noise in 
GPS position time series.

2.  Background
2.1.  Basics of Time Series Computation

Most studies of GPS noise start with some particular set of time series with little or no regard for the pro-
cess that was used to generate them or how alternative results might compare. It is, however, instructive 
to first consider the processing steps that produce observed GPS time series as this affects their noise con-
tent. “GPS” in the following can increasingly be regarded generically as “global navigation satellite system 
(GNSS),” but in actual fact, for the long time series considered here, GPS observations have been used 
exclusively.

Three types of GPS data processing can be distinguished that produce time series of station positions: (1) full 
global network solutions free of any a priori over-constraints; (2) precise point positioning (PPP) of several 
sorts; and (3) regional network solutions. The International GNSS Service (IGS) and its Analysis Centers 
(ACs) are the prime examples of global network providers. Their occasional IGS reprocessing campaigns 
generate the GNSS inputs for the International Terrestrial Reference Frame (ITRF; Altamimi et al., 2016) 
and for many PPP solutions. PPP allows a single GNSS station to be positioned by assuming a priori satellite 
orbits and clocks from some given global solution provider (Zumberge et al., 1997). This is an efficient and 
autonomous method to densify a global solution that is usually limited in size by CPU constraints. The qual-
ity of PPP solutions is poorer when integer phase ambiguities are not fixed, but improves notably, especially 
in the east component, when double-differenced or one-way ambiguities are resolved, which is the usual 
case today. Regional networks are processed for many local or national applications requiring dense cover-
age, and can yield highly precise differential positions due to the natural rejection of common-mode errors.

The assignment of absolute geocentric coordinates to estimated station positions depends on the type of 
processing used. The IGS global network positions are realized, after combining independent AC solutions, 
by aligning each unconstrained daily frame via no-net-rotation (NNR) to the current linear ITRF coordi-
nates using a “core” subset of well-distributed and reliable reference stations, typically numbering between 
about 40 and 80 (Rebischung et al., 2016b). This alignment process unavoidably redistributes non-linear dis-
placements, both genuinely physical as well as technique artifacts, among the reference stations to all other 
network members (Collilieux et al., 2012). By including as many reference stations as possible, as uniformly 
spaced as possible, the net alignment-induced scatter should be much less than if only a few fiducials were 
used. Ray et al. (2017) showed that the long-term weighted root-mean-square (WRMS) of this rotational 
scatter is about 25–30 µas, equivalent to about 0.8–0.9 mm of equatorial motion, which corresponds to the 
estimated accuracy of daily IGS polar motion measurements. This same level of scatter also matches the ob-
served WRMS error floor for daily IGS horizontal GPS positions after removing periodic variations, actually, 
about 0.9 and 0.8 mm for North and East components, respectively. Individual stations often display scatter 
that is considerably larger than these floors due to a variety of local effects. Ray et al. (2017) also found a 
WRMS error floor for non-periodic GPS station heights of 3.0 mm, which is commensurate with the usual 
ratio of GPS vertical to horizontal errors. The spectral qualities of the net frame alignment scatter were not 
studied by Ray et al. (2017) except to describe them as broadband and with more power at longer periods, 
that is, reddish noise.
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At a minimum, time series of PPP estimates inherit the net noise properties of their reference global net-
work solution, and its ITRF alignment, that have been fixed in the processing. In fact, contrary to assertions 
by Zumberge et al. (1997), the actual performance of a PPP solution must always be degraded somewhat 
by loss of the full solution covariance information and by any potential deviation from identical modeling 
applied in the global network versus the PPP data reductions (See further points in Section 4.1).

Regional network solutions are particularly effective in estimating very precise horizontal positions and 
velocities by innately suppressing spatially coherent errors and by being generally less sensitive to large-
scale effects, for example, orbit errors. But they do not provide reliable absolute geocentric heights for the 
same reason and long-term alignments of regional frames to ITRF are subject to significant biases (Legrand 
et al., 2010).

2.2.  Analysis Effects in GPS Noise

Noise in GPS position time series is commonly described by one of two generic stochastic processes: the 
power-law and the Gauss-Markov. See Williams  (2003a) and Langbein  (2004) for further details on the 
derivation of the power spectrum of these stochastic processes. A key parameter of the power spectrum 
is the spectral index (k), which provides the dependence of power on frequency and is represented by the 
slope of the power spectrum in log-log units. Four particular stochastic noise models are derived from the 
power-law process depending on the value of k: WN for k = 0, FN for k = −1, RW for k = −2 and PL for any 
other non-integer value of k.

There have been few quantitative comparisons between the GPS noise characteristics from different IGS 
ACs or from different types of computation strategy (global, PPP, regional). Using the AC-specific station 
residuals from continuously updated operational IGS combined products might be instructive to some ex-
tent, but the interpretation is confused by comparison to the weighted AC mean. To address this concern, 
Rebischung et al. (2016a) formed individual long-term solutions for each AC in the second IGS reprocessing 
campaign (i.e., Repro2) and examined the station residuals. There was a large variation among ACs in the 
number of stations processed, but the quality of solutions was generally rather similar. The background 
non-periodic power is well described, except for JPL, as high-frequency WN plus a PL with spectral index 
near −1 for North and East and near −0.8 for up. The JPL behavior differs in having less WN, which is 
undetectable for heights, and having smaller PL spectral indices of −0.72 to −0.74 for North and East and 
−0.52 for up.

On the surface this result seems to imply that WN is largely a product of data analysis and not derived from 
GPS observational noise. But that conclusion could be undermined by the facts that the JPL Kalman filter 
processor might simply absorb WN into its parameter estimates or that the JPL use of data arcs that overlap 
by 3 h with adjoining days before and after could exert a strong smoothing effect. EMR/NRCan is the only 
other IGS AC using the JPL Kalman filter but they fit strict 24-h arcs and have noise properties similar to the 
other non-JPL ACs, which supports the second possibility of implicit smoothing.

The attenuation of WN is at least partly produced by the implicit smoothing effect of including 3 h overlaps 
from the previous and the following daily observations. This is the case in the JPL processing, but it is less 
clear how any difference of the JPL analysis scheme can reduce their spectral indices by ∼0.3. After all, the 
geophysical processes that affect GPS data and positions, such as surface pressure loading, contribute effects 
that have distinctly red spectral variations, at least up to periods of a year or longer. One guess is that the 
critical element might involve JPL's estimation of satellite solar radiation pressure (SRP) variations as 3D 
stochastic offsets rather than as harmonic parameters, as the most ACs do, but EMR also uses 3D stochastic 
SRP estimation.

Concerning position offsets, Williams (2003b) showed that the presence of undetected and unmodeled po-
sition offsets in GPS time series contributes a RW noise component. He also evaluated the impact of adding 
offset parameters to the functional model, for various background noise types. Griffiths and Ray  (2016) 
quantified the magnitude of the RW-like noise due to adding position offsets in an ITRF-type global net-
work solution. Under these circumstances and because some station hardware changes cause discontinu-
ities while others do not, different ACs are expected to introduce varying amounts of RW noise when they 
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use incomplete metadata for the station equipment changes. This effect is probably not dominant among 
AC noise differences, however.

2.3.  Assumptions of Noise Analysis and the Evolution of Colored Noise

In constructing analytical methods to evaluate GPS positional noise, a number of assumptions must be 
made, some of them by implication only. Basic is the natural notion that the total observed GPS noise is 
a superposition of different physical processes each with its own spectral characteristics. Some processes 
might be so slight, compared to others, that their noise effects cannot be detected directly or the data span 
that would be needed is very long, for example, RW. Under these circumstances, it is not generally possible 
to invert a GPS spectrum to infer its constituent noise components. Instead, forward modeling of a range of 
possible noise types and amplitudes is usually performed and tested by best-fitting against the observations, 
which is of course non-unique and prone to subjectivity.

Another key assumption almost always made is that the mix of noise characteristics for any given time se-
ries is constant over time, despite observations of Williams et al. (2004) and Santamaría-Gómez et al. (2011) 
to the contrary. Time series, especially long ones, often display non-stationary noise properties that are 
evident to the eye. For some examples, please consider the residual JPL PPP series for these long-running 
stations (Figures S5–S7): ALIC, CAS1, CHUM, COCO, DAV1, GENO, KIR0, KIRU, MAS1, MATE, MEDI, 
NRC1, ONSA, PIN1, RAMO, SFER, TOW2, UCLU, and ZIMM. There has been an overall trend toward im-
proved GPS tracking hardware and more robust ground networks on the one hand, but degradations and 
gradual failures at individual stations can happen at any time. This is why visual inspection of the series, as 
done in this study, is of uttermost importance to support the conclusions of a given analysis. The JPL plots 
also illustrate the pervasiveness of position offsets in any GPS solution, which average about 0.9 per station 
per decade in the IGS Repro2 global analysis (Rebischung et al., 2016b), the data set used by Griffiths and 
Ray (2016).

2.4.  Comments on Wang and Herring (2019)

Partly to address objections raised by an anonymous reviewer #1 (AnR1), we review here results from Wang 
and Herring (2019) (WH19). This is done reluctantly for fear of appearing to limit the scope of this contri-
bution to a mere rebuttal, which is not our intent. This does give us a chance, however, to introduce several 
important themes that recur later in our own results.

Amidst the numerous noise models considered by WH19, one could easily overlook the simple fact that 
any connection between their simulations and real-world GNSS analysis is not obvious. Each of their 22 
different noise models, mostly quite unrealistic, is simulated with known covariances and then the impact 
of position offset parameters on formal velocity uncertainties is assessed by least squares solutions using the 
same known covariances. Such a circumstance never arises with real data where the contributing errors are 
unknown in type and magnitude. As mentioned in the previous section, a range of error models is normally 
tested while estimating the deterministic parameters and their uncertainties, in search of a maximally likely 
outcome.

Meanwhile, adding offset parameters to the functional model itself, while commonly assuming WN series, 
changes the noise color of the residual series by removing progressively more low-frequency power, as we 
show in Section 4.2. So the true power spectrum becomes more obscured and distorted as the number of off-
sets per unit time increases, putting the ideal world simulated by WH19 ever farther out of reach as offsets 
accumulate. Nonetheless, AnR1 asserts that this, our core finding, “is not anything new” even though this 
phenomenon is never mentioned by WH19 and it rules out any practical utilization of the WH19 approach 
using real data with offsets. We found only one prior study of the noise “whitening” effect of adding position 
offset parameters, the simulation by Chen et al. (2018). Position offsets were one of several analysis options 
they examined, obtaining median impacts consistent with ours but with more limited insight into the un-
derlying dynamics of the problem, which is our prime interest here.

WH19 take pains to aggressively dismiss the earlier study by Griffiths and Ray (2016) (GR16) of the effects 
of position offset parameters, while repeatedly misstating their analysis, such as by equating “adding one 
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additional offset parameter” to the doubling of offsets per unit time discussed by the latter authors. GR16 
never considered the estimated velocity uncertainties whatsoever, contrary to multiple WH19 assertions, 
but instead they examined the increase in dispersion of actual rate estimates, not simulated data series, as 
offset parameters were added artificially to a long-term global reference frame solution. WH19 and AnR1 
both claim that the rate error scatters obtained by GR16 were biased by not having included full temporal 
noise correlations. The impact of a given process noise on velocity estimates has been simulated by WH19 
(their Figure 7). However, they assumed an unrealistic RW process noise for the actual GPS data. If one 
instead considers realistic PL noises with spectral indices close to FN, then the scatter of velocity estimates 
is negligibly impacted, consistent with GR16. These points are reiterated in more detail in Section 5.2.

Most offensive of all is the cavalier repudiation by WH19 of pleas by Williams (2003b) and GR16, which 
we also support in this contribution, for station operators to maintain the strictest possible configuration 
control of GNSS reference stations to minimize the occurrence of position offsets and to maximize the geo-
dynamical value of long GNSS time series.

3.  Data and Methods
In this study, we used residual daily GPS position time series from the JPL online service (https://sideshow.
jpl.nasa.gov/post/series.html; accessed in May 2019). These series are estimated using the PPP technique 
with phase ambiguity resolution and JPL final orbits and clocks products. The daily PPP frames were NNR-
aligned to the IGS14 realization of ITRF2014 (Rebischung et al., 2016b) using transformation parameters 
estimated at the same time as the orbit/clock products in a full global network solution. JPL data reduction 
models and procedures were updated following Repro2 (IGS Mail 7637, June 5, 2018) and applied in the net-
work solution and in the PPP processing, including antenna calibrations consistent with the IGS14 frame. 
This latest JPL PPP reprocessing ensures the temporal coherence of the historic series with their current 
operational products.

The residual series were obtained by JPL after removing linear trends, seasonal variations, position offsets, 
and outliers. JPL uses an automatic offset detector that Gazeaux et al.  (2013) ranked as the second-best 
automatic solution in their study.

From the initial set of 2,567 stations available, we retained 137 stations having at least 20 years of data since 
1999, less than 10% of missing points, and gaps not longer than 5 months. These 137 stations were screened 
for quality using SARI (Santamaría-Gómez,  2019) in which we removed several outliers most probably 
caused by snow/ice on the antennas. In addition, we added position offsets for eight stations that were vis-
ually identified and judged to be significant against the colored noise content in the series. After this check, 
we rejected 10 more stations having unusual residual distributions or strong changes in their variability, 
leaving 127 long, high-quality stations for this study (see all the information in the supplemental material). 
We observed a very irregular temporal sampling for some of these stations with, occasionally, multiple 
points estimated on the same day separated by only a few hours. This might be caused by JPL merging their 
global network and PPP estimates for the same station. To avoid this, we removed the daily estimates with 
epochs before 6 h UTC or after 18 h UTC. We also note there are more than three offsets per station per 
decade on average among the selected 127 stations, which is particularly large compared to the value for the 
IGS Repro2 series, though the considered stations sets are very different with our selected series being an 
order of magnitude less numerous.

We acknowledge the JPL PPP series have distinct noise characteristics compared to other GPS position 
series, especially if the latter are derived from a filtered regional solution. However, the JPL series provide 
the longest homogeneously reprocessed residual series to date, before the next IGS reprocessing campaign, 
and for an extensive number of global stations. Judging from IGS combination reports (see weekly orbit 
and frame combination summaries at https://lists.igs.org/pipermail/igsreport/), the JPL analysis quality is 
outstanding also. This data set is therefore the best available for addressing several points concerning the 
noise content and the impact of position offsets in global GPS solutions.

In the following, we used the Lomb-Scargle periodogram (Scargle, 1982) to represent the error power spec-
tra and the Create and Analyze Time Series (CATS) software (Williams, 2008), which implements MLE, for 
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the estimation of the power spectrum of a noise model. Here, we define, 
on one hand, the noise power spectrum as the power spectrum that is 
obtained by fitting a pre-defined noise model that is conveniently used 
to assess the formal errors of a functional model, especially linear trends. 
On the other hand, we define the error power spectrum as the power 
spectrum that is actually observed in residual GPS series. In other words, 
the error spectrum represents the spectral distribution of the variance 
that is not explained by the reduction of the raw GPS observations nor 
by the fitted model to the series, and it includes random and systemat-
ic variations, both physical and spurious. Generally speaking, the noise 
spectrum is obtained by fitting the error spectrum with a particular sto-
chastic process or mix of processes. Ideally, the noise spectrum and the 
error spectrum should be very similar, but we show in the next section 
that this is not always the case and that a distinction between them needs 
to be recognized.

JPL obtained their position residual series by assuming WN series, as 
is common practice. Therefore, in order to avoid biasing the estimates 
of the noise spectrum toward WN, we fitted the residual series together 
with their corresponding functional model in CATS, that is, exactly the 
same functional model already removed by the JPL. This provides the 
same noise parameters as if the original series were used, that is, before 

removing the functional model, while allowing us to use exactly the same input residual series to compute 
a consistent error power spectrum with the periodogram. In addition, we also included up to the tenth har-
monic of the 1.04 cycles-per-year (cpy) draconitic oscillation (Ray et al., 2008) that was not removed by JPL.

4.  Results
4.1.  Noise Types in the JPL PPP Series

Before testing the validity of candidate noise models for the 127 residual JPL series, we shall evaluate first 
the GPS error power spectra, which are shown in Figure 1. Overall, the error spectra have a crowbar shape 
that could be described by a power-law process up to periods of ∼5 years. The slope of the power-law is 
clearly lower than FN, especially in the vertical component. Beyond 5 years, the power spectra flatten first 
and then decay significantly in all the components. The loss of power at long periods is further examined in 
Section 4.2. At the shortest periods, we observe that WN is not visible in any coordinate component. The PL 
clearly dominates the stacked spectra even at high frequencies of at least 100 cpy or more. To quantify an 
upper bound of the WN amplitude, we assume the PL is actually dominated by FN, which is likely for the 
horizontal components, but not so much for the vertical component as we discuss later on. Considering a 
typical FN amplitude for the daily JPL series of 4 mm yr−0.25 for the horizontal and 11 mm yr−0.25 for the ver-
tical component (values estimated with CATS), and a cross-over period from FN to WN of less than 4 days, 
we bound the maximum white noise level to be 0.4 and 1.1 mm for the horizontal and vertical components, 
respectively. This is much lower than the WN reported for the other AC solutions of the last IGS Repro2 
(Rebischung et al., 2016a) and reflects the smoothing inherent in the JPL global processing used for their 
PPP series. In addition, Ray et al. (2013) and Amiri-Simkooei et al. (2017) have found spurious ∼5 d signals 
in the preceding JPL PPP time series that are not present in their corresponding global solutions, the source 
of which was unknown. The ∼5-day signals reported in those past studies are not visible in this latest JPL 
solution, but nevertheless we still note a bump around 5.5 days (∼65 cpy) common to all the components 
and of unknown origin, but possibly related to the overlapped 3 + 24 +3 h data arcs used by JPL. The power 
spectrum decays faster for periods shorter than 5.5 days in the vertical component only.

Figure S1 shows the distribution of the 127 stations used in this study. Most of the stations are concen-
trated in Europe, Australasia and, especially, Western USA. To explore to what extent the stacked error 
spectra of Figure 1 could be biased by the geographic distribution of the 127 sites, we computed two ad-
ditional smoothed stacked spectra corresponding to the stations located in Western USA (62) and Europe 

SANTAMARÍA-GÓMEZ AND RAY

10.1029/2020JB019541

6 of 21

Figure 1.  Stacked error spectra of the 127 selected JPL series for the three 
coordinate components. The spectra are shifted for the sake of visibility. 
The thick solid black lines represent the smoothed spectra. The thin dotted 
black line represents a pure flicker noise process.
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(36). Figure S2 shows that, while the spectra from the regional subsets 
are more variable due to the smaller number of sites, their general shapes 
are consistent.

Because white noise obviously does not play a part in the background 
error spectrum and we are interested mostly in the long periods, in the 
following noise analysis we average the daily series into weekly series in 
order to speed up the processing. We recognize that by reducing the sam-
pling of the series a small bias could be introduced in the estimated noise 
parameters. For instance, we observed an increase of the FN amplitude 
of about 14% from the weekly series with respect to the expected value 
scaled from the daily estimates, which were assumed to be correct. Users 
of our estimated noise amplitudes below should note this possible bias.

Using CATS, we estimated the type and amplitude of the colored noise 
that best describes the error spectra of the individual series. To assess the 

impact of offsets in the noise analysis, we assume the background noise content of the series is constant 
over time and can be described by a unique noise model. We will demonstrate later that this hypothesis, 
commonly applied in most noise analyses, is not valid. At least we can assess how well a single model de-
scribes the background noise because all our series are available for the same period of time. Four noise 
models were tested: FN, PL, flicker plus random walk noise (FNRW) and a generalized Gauss-Markov noise 
model (GM), which includes a PL process at high frequency that flattens at low frequency (Langbein, 2004).

In order to discriminate the goodness of fit for each model, we used the differences of the estimated max-
imum likelihood (dML) plus an empirical threshold that accounts for the different degrees of freedom of 
each noise model with respect to FN, which is selected as the null hypothesis for the noise model. Using 
1,000, 20-year-long synthetic weekly FN series, the empirical dML thresholds were set as the 95% percentile 
of the dML values between FN and the other three model candidates. Together with the noise model, the 
synthetic series were fitted by a model including a linear trend, annual and semi-annual variations plus dra-
conitic harmonics up to the tenth. In addition, several dML thresholds were estimated for each candidate 
noise model corresponding to six different sets of estimated offsets, from 0 (no offsets) up to nine equally 
spaced offsets, as suggested by John Langbein (personal communication). Figure S4 shows the dML values 
obtained for each noise model. Based on the dML values obtained for different numbers of offsets, an em-
pirical model was fitted and presented in Table 1 as a function of the offset rate (r), that is, the number of 
offsets per year. For the PL and the GM models, the dML values increase following an exponential function 
with the addition of position offsets, with a larger increase for GM than PL. Conversely, the dML values for 
the FNRW model are significantly smaller than that of PL and GM and, importantly, they are insensitive 
to the rate of offsets in the series. We also note that, as the number of offsets increases in the series, the 
number of synthetic series for which a false positive RW was found by chance decreases significantly; from 
around 10% in case of no offsets down to 0.5% in case of one offset every 2 years (Figure S4). The reduction 
in the number of RW false positives with the number of offsets indicates that offsets have a negative impact 
on our ability to detect RW in the series. We further develop this issue in Section 4.3. Since the dML values 
have a long-tail distribution, in order to have enough dML values to compute a reliable 95% threshold, we 
increased the number of synthetic series to 10,000 for the FNRW model only. The dML thresholds at the 99% 
percentile are also provided in Table 1. The extreme 99% dML value could be used for instance to account 
for an extremely irregular distribution of offsets in the series.

Taking into account the 95% dML thresholds of Table 1, the distribution of the best fitted noise model per 
component (labeled “Full series”), the noise model parameters and its degrees of freedom are given in 
Table 2. The FN model is selected for most of the series in both horizontal components with amplitudes of 
around 2 mm yr−0.25, followed by the GM model. In the vertical component PL dominates over GM and FN. 
The PL model, being selected two times more often in the vertical than in the horizontal, exhibits values of 
the spectral index significantly whiter than FN, consistent with the qualitative assessment from the stacked 
periodogram (Figure 1), as well as the IGS Repro2 experience. The FNRW noise model (2 degrees of free-
dom) is not included in Table 2 because it was not selected as the preferred noise model in any of the series. 
We observe that the spectral index of the GM process is much closer to FN than RW, which is also consistent 
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95% 99%

PL 4.0 e0.9r 5.8 e1.0r

GM 5.8 e1.5r 8.2 e1.1r

FNRW 2.0 3.0

GM versus PL 3.3 e1.8r 5.0 e1.5r

The last line represents the dML of GM with respect to PL. The expressions 
correspond to the model fitted to different dML values (Figure S4), at the 
95% or 99% percentile, as a function of the offset rate (r) in the series.

Table 1 
Empirical Maximum Likelihood Differences (dML) of the Power-Law (PL), 
General Gauss-Markov (GM), and Flicker Plus Random Walk (FNRW) 
Noise Models with Respect to a Flicker Noise Null Hypothesis
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with the error spectra shown in Figure 1, and indicates that the first-order GM (FOGM) noise process used 
by WH19, which combines a Gaussian process at long periods with RW at shorter periods, may not be the 
best model to describe the noise in most of the series. We note however that WH19 used the series issued 
from a regional solution (Herring et al., 2016), which are certainly different from the JPL series and proba-
bly even less consistent with a FOGM model. A similar observation was recently made by Langbein (2020). 
The selected noise model for each series and coordinate component are included in Table S1. Together with 
the selected noise model, we provide the dML value obtained with respect to the FN null hypothesis. The 
selected GM series have dML values typically between 9 and 54, well above the thresholds given in Table 1 
(see Figure S4). The selected PL series have dML values typically between 5 and 34. For completeness, many 
of the obtained dML values were close to the threshold values at 95%. If we use the dML thresholds at 99% 
from Table 1, the percentage of selected FN series in Table 2 increases by an average of 10% for the three 
components, with the biggest increase in the North component and the smallest in the East.

4.2.  Loss of Low-Frequency Power

Table 2 also shows in parenthesis the distribution of the selected noise models that would result if the im-
pact of offsets were not taken into account in the estimation of the dML thresholds, that is, r = 0 in Table 1. 
In that case, the apparent noise type that clearly dominates is a GM, especially in the North and Up compo-
nents. The effect of including the offsets in the dML thresholds effectively transfers the selected noise model 
from GM to FN, with a reduction/increase of the GM/FN ratios by a factor ∼2 in average, respectively. This 
would be consistent with the estimated error spectra in Figure 1, that is, among the tested noise models 
and in the absence of additional constraints, GM would be the one that better approximates the observed 
crowbar shape of the power spectrum. However, the GM noise power spectrum at long periods is given by a 
frequency-independent process, which does not explain the sharp loss of low-frequency power observed in 
the error spectra of Figure 1. It is known that the trend estimation absorbs part of the colored noise at the 
longest periods and that the estimated colored noise from the residual series is biased low for short series 
(Langbein & Johnson, 1997). Here we argue that when the functional model is fitted assuming WN series, 
which is standard practice, a major amount of the low-frequency power spectrum is also absorbed by the 
estimated position offsets.
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East North Up

FN (1) Full series 63% (45%)
σ = 1.9/2.2/3.0

55% (28%)
σ = 1.9/2.5/3.4

21% (6%)
σ = 6.3/7.2/9.4

Segments 41%
σ = 1.7/2.0/2.8

43%
σ = 1.7/2.1/2.8

11%
σ = 5.8/7.1/13.2

PL (2) Full series 17% (24%)
σ = 1.9/2.0/4.0
k = −0.56/−0.71/−1.37

18% (16%)
σ = 1.8/2.4/4.6
k = −0.54/−0.67/−0.77

51% (40%)
σ = 4.7/6.0/7.7
k = −0.56/−0.66/−0.78

Segments 46%
σ = 1.2/1.5/2.1
k = −0.43/−0.66/−0.77

44%
σ = 1.2/1.7/2.5
k = −0.42/−0.66/−0.74

79%
σ = 3.8/4.9/6.8
k = −0.44/−0.63/−0.75

GM (3) Full series 20% (31%)
k = −0.95/−1.25/-2.57
β = 0.2/0.5/1.6

27% (56%)
k = −1.12/−1.17/-2.60
β = 0.2/0.6/1.2

28% (54%)
k = −0.81/−1.01/-1.96
β = 0.3/0.6/1.4

Segments 13%
k = −0.90/−1.58/-3.63
β = 0.1/0.3/0.8

13%
k = −0.86/−1.25/-3.64
β = 0.1/0.7/1.5

10%
k = −0.70/−1.03/-3.59
β = 0.1/0.3/2.3

The percentage in parenthesis corresponds to the use of dML thresholds without considering the impact of offsets 
(r = 0). The numbers in parenthesis after the noise model name in the first column provide the degrees of freedom. 
The values for relevant noise model parameters for the selected fits (σ for variance in mm, k for spectral index and β 
for cross-over period in years) are provided at the 5%/50%/95% percentiles. Note that the amplitude corresponds to 
weekly sampled series.

Table 2 
Percentage of the Best Fitted Noise Model Per Component
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To demonstrate this, we first reran the noise analysis, but using this time 
the continuous segments of the series between each pair of estimated 
offsets. From our initial 127 series of 20 years, we extracted 162 segments 
longer than 5 years with a median length of almost 9 years. We used the 
dML thresholds in Table 1 with r = 0 and the results are shown in Ta-
ble 2 (labeled “Segments”). Compared to the results from the full series 
with r = 0, the GM is not the dominant selected noise model anymore; in 
the vertical component PL clearly dominates now, and in both horizon-
tal components GM has been replaced by FN and PL with very similar 
scores. We note however that it is difficult to reach firm conclusions about 
the general noise model that best describes the error spectrum when the 
series do not have the same length nor cover the same period of time. For 
instance, by comparing the ratio of the selected GM models between the 
“Full series” (with r = 0) and the “Segments” runs in Table 2, one would 
be tempted to state that the effect of offsets is to triple or quadruple the 
chances to select a GM model, while we already show this factor is actual-
ly closer to 2. This difference could be attributed to the popular approach 
of comparing the noise content between series having different lengths, 
or with similar lengths but not covering the same period. This exercise at 
least confirms that the GM model is apparently promoted by the effect of 
estimated position offsets in long discontinuous series.

A more rigorous approach that could be applied, especially when com-
paring noise levels from different sets of series, is to use continuous seg-

ments of the same length and period, at the expense of reducing the number of exploitable series. Since that 
was not possible in this case, we carried out another test to demonstrate the impact of the offsets in the error 
spectrum by creating synthetic series with the same sampling as our 127 original series and different ampli-
tudes of FN from the ranges in Table 2. These series were then fitted with a linear trend, the same offsets and 
a WN assumption as in the original JPL series. Figure 2 (black curves) shows how the FN power spectrum is 
absorbed at long periods slightly by the trend and mostly by the offsets. The simulated FN power spectrum 
starts flattening around a period of 3 years and the power starts dropping around a period of 7 years, which 
lies close to the median offset separation of the data set of 2.8 years. The decay follows the crowbar shape 
of the real error spectra reasonably well. This indicates that, very likely, the error spectra of the GPS series 
actually would not decay or flatten if the series were continuous, which partly supports the use of the FN as 
the null hypothesis for testing alternative candidate noise models.

We recall here that the residual JPL series were obtained from a functional model that was fitted under the 
common assumption of WN. However, the negative impact of offsets in the power spectrum is independent 
of the stochastic model used to fit the functional model. This is because the unknown offset amplitudes 
introduce considerable freedom in the fitted functional model at the long periods, roughly starting from the 
average offset separation and up to the longest observed period. This extra freedom in the functional model 
will make the residuals from the fit to be also particularly free of adopting the shape of any power spectrum 
at the long periods. In practice, the residuals will adopt the most likely power spectrum and that is precisely 
given by the noise model imposed on the observations during the fit of the functional model. When GPS 
residual series are produced, the preferred noise model to fit the functional model is WN, most likely for 
simplicity and because it is the only one providing a fitted model that is centered on the observations, espe-
cially if the functional model contains offsets and the observations some degree of RW. We insist that with 
independence of the adopted stochastic model, the offsets will render the shape of the true spectral power 
unobservable at periods longer than the average offset separation. In practice this means that the lack of 
independent observations at long periods restrains us to better constraint the null noise hypothesis to be 
used. The noise color in GPS position time series becomes chameleonic due to the offsets.

Using these synthetic FN series, we estimated the sensitivity of estimated noise parameters of FN and PL 
noise models to the addition of the JPL offsets. We observe a small whitening of the estimated PL spectral 
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Figure 2.  Comparison of simulated (in black color) and real (in colors) 
smoothed error power spectra. The real spectra for East, North and Up 
are the same as in Figure 1. The simulated spectra include flicker noise 
(dashed), flicker noise with trend estimation (dotted) and flicker noise 
with trend and offsets estimation (solid).
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index of about 5% in average. The estimated FN amplitude also reduces 
marginally with the offsets by around 0.1 mm yr−0.25.

4.3.  Detectability of RW Noise

The loss of power at long periods caused by estimating offsets hinders 
the analysis of the error sources, or genuine Earth deformation, that may 
contribute in that part of the spectrum, for instance, the RW noise. In 
addition to a RW contribution due to remaining offsets in the series (Wil-
liams, 2003b), it has been suggested that the instability of the antenna 
monument introduces some level of RW process noise in all series (John-
son & Agnew, 1995). For the best geodetic-class monuments, the ampli-
tude of RW is expected to be several times smaller than the amplitude of 
FN in global GPS solutions and, therefore, it can only be detected in very 
long series or when the spatially correlated FN is reduced, for instance in 
regional solutions and in short-baseline solutions (Dmitrieva et al., 2015; 
Hill et al., 2009; King & Williams, 2009; Langbein & Svarc, 2019). In our 
data set of 127 stations of 20 years length we did not detect RW being 
significantly present in any of the series. Recent studies using network or 
PPP global solutions also report that RW does not play a significant role 
in the error spectrum (e.g., He et al., 2019).

The low proportion of detected RW in global solutions has been attrib-
uted to the dominance of FN and the series not being long enough (Wil-
liams et al.,  2004). For instance, in order to detect the RW component 

over WN in the series, Langbein and Johnson (1997) determined that a series should be at least 5 times 
longer than the RW/WN cross-over period. The cross-over period between two noise processes depends on 
the series sampling and on the relative variance of each process. Following the equation of the PL noise 
power spectrum (Williams, 2003a), the cross-over period for weekly time series having FN amplitude of 
2 mm yr−0.25 and RW amplitude of 0.5 mm yr−0.5 is around 14 years. Using the same equation, we find that 
for a 20-year-long weekly series with 2 mm yr−0.25 FN, the theoretical maximum RW amplitude detectable 
would be around 0.4 mm yr−0.5, which represents a FN/RW amplitude ratio of near 5.

Since the estimated position offsets absorb significant amounts of power in the band of the error spectrum 
where we expect RW to emerge, our chances to detect RW in long series are reduced. A lower probability to 
detect RW implies that the amount of RW potentially being hidden in the series could be quite large relative 
to the amount of FN. To quantify this, we ran a new noise analysis using 1,000 synthetic weekly series of 
20 years having FN + RW in different ratios, from 1 up to 6, and including different offset rates, from none 
up to one every two years. For different combinations of FN/RW ratios and offset rates, we computed the 
percentage of series for which the RW component was detected over the FN (true positives), which was still 
considered as the null hypothesis, using the dML threshold at 95%. The obtained success rates were then 
interpolated to create a continuous representation in Figure 3. The sampled success rates are shown by 
cyan circles in Figure 3. This figure shows that the success rate of detecting RW is strongly affected by the 
amplitude ratio FN/RW, as expected due to the spectral limitation imposed by the series length. The RW 
success rate estimated by MLE is close to zero for FN/RW ratios of 5.5, slightly higher than the FN/RW the-
oretical limit of our synthetic series (cyan line in Figure 3). This upper FN/RW bound decreases toward 4 as 
the offset rate increases. When the FN/RW ratio is very low and approximates 1, the RW would be detected 
most of the time independently of the offset rate. However, when FN dominates over RW with ratios of 2 
or higher, which is typically the case even in spatially filtered regional GPS solutions, then the offsets play a 
significant role in reducing the chances of RW detection. As an example, for a series having an offset rate be-
tween 0.3 and 0.4, which is a common scenario in the JPL series, a weekly series could accommodate a RW 
amplitude equal to 1/3 of the FN amplitude, that is, typically ∼0.7 mm yr−0.5 for the horizontal components 
and more than 2 mm yr−0.5 for the vertical component, and yet, we will have around 20% chance to detect 
this RW component. The success rate would rise up to more than 40% in case r were 0, which represents an 
average probability reduction of around 4% per offset. Lower RW amplitudes than these values have been 
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Figure 3.  Success rate of random walk detection (RW) over flicker 
noise (FN) as a function of the amplitude ratio FN/RW (y-axis) and as a 
function of the rate of offsets per year (x-axis). The cyan line represents 
the maximum theoretical FN/RW ratio detectable in the synthetic series. 
The cyan circles represent the locations at which the RW success rate was 
sampled as described in the text.
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reported in past studies (King & Williams, 2009), which implies even less chances to detect it; for instance, 
less than 5% for a RW amplitude of 0.5 mm yr−0.5 and 0.3 offsets yr−1. Based on these results with synthetic 
series, we determined that the estimated formal uncertainty of the trend would increase by a factor between 
∼2 and ∼3, with r = 0.45 and r = 0, respectively, if a RW amplitude of 0.5 mm yr −0.5 were to be detected 
over a FN amplitude of 2 mm yr−0.25. Finally, we observed that there were up to 15% of the series, mostly 
with a FN/RW ratio between 2 and 4, for which a significant non-zero RW amplitude was estimated. These 
results were however rejected (false negatives) because the penalized dML was not high enough to select 
the FN + RW model over the favored FN null hypothesis. This means that up to 15% of truly detected RW 
could be rejected in standard noise analyses by using a null hypothesis (FN) that does not correspond to the 
tested observations (FN + RW). As we shown in the previous section, the presence of offsets renders the 
error spectra untrustworthy to select the most adequate null hypothesis for the observations.

4.4.  Impact of Frame Alignment on Error Spectra

It is clear that the functional model can severely alter the power spectrum of the residual series. Therefore, 
a natural question arises as to what would be the effect of the frame alignment on the colored noise of the 
series. The frame alignment is part of the functional model in any network solution and is also implicitly 
applied to any PPP solution via the fixed orbit and clock products from the network solution. To answer 
this question, we used 20 years of weekly IGS SINEX files starting in 1999. We modified the SINEX files by 
extracting the IGS14 core stations and replacing their weekly station coordinates by their linearized posi-
tions, extracted from the mean position and velocity of the IGS long-term frame, plus a synthetic FN series 
for each station. The idea is to quantify how much the FN series change after the frame alignment process.

The variance-covariance of the weekly network solutions was left intact in the SINEX files. By doing this, 
we assume the spatial correlation of position errors and its changes through time are independent of the 
temporal correlation of each individual station. This hypothesis was necessary as it is not practically possi-
ble to synthetize a covariance matrix that accounts for FN in both the temporal and spatial domains at the 
same time in a least squares network solution (Benoist et al., 2020). In addition, this assumption is com-
monly applied in most studies when the colored noise content in a given series is estimated with no regard 
for its spatial correlation.

We performed two cumulated solutions using CATREF (Altamimi et al., 2016) on these modified SINEX 
files, with and without the estimation of the transformation parameters of the frame alignment. In addi-
tion, we examined the impact of including/excluding a weekly scale offset and also the impact of the full/
diagonal covariance matrix of the SINEX files, that is, the spatial correlation. Our results indicate that 
neither the frame alignment nor the consideration of the spatial correlation have a significant impact on 
the retrieved FN series. The velocity estimation absorbs a small amount of the FN variance at the longest 
period, as expected, but the estimation of the transformation parameters does not alter significantly the 
background error spectrum of the residual series after the alignment (Figure S3). This result also validates 
the hypothesis that the temporal and spatial correlations can be considered independently when analyzing 
the noise content of individual series. On a series-by-series basis, the FN amplitude changes typically less 
than 0.1 mm yr−0.25 for both horizontal and vertical components, even if the added FN amplitude was ∼3 
times larger in the vertical component. The FN change is marginally larger in the vertical component if the 
scale parameter is estimated. For most of the stations, the FN amplitude increases in the horizontal compo-
nent and decreases in the vertical component.

These results are considerably different to those recently obtained by Chen et al. (2018) who reported PL 
amplitude changes at least two times larger, while still considering they used daily series instead of weekly 
as in our case. They noted a clear spatial dependence of the PL changes, with the largest PL reduction in 
areas of high density of stations and a PL increase elsewhere. Since Chen et al. (2018) used the full IGS 
network to compute the transformation parameters, their result reflects a network effect, that is, the trans-
fer of common-mode PL noise between different areas of the network. Such a strong network effect was 
demonstrated by Ray et al. (2017) for the frame rotations. Our assessment of the alignment impact should 
be considered more robust as we used the well-distributed IGS14 core network instead of the full IGS net-
work specifically for this reason.
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4.5.  Evolution of Noise Types over Time

Concerning changes of the colored noise content with time, Williams et al. (2004) and Santamaría-Gómez 
et al. (2011) showed that the amplitude of the PL noise in the series is generally getting smaller with time. 
Bos et al. (2010) also questioned the hypothesis that noise properties are constant over time. In that case, 
the estimated noise content of a given series will depend on the period of time chosen. This dependency can 
void the conclusions from separate studies about the average noise level in a particular set of series if they 
do not cover the same time period. It could also have a significant impact on comparisons of noise levels 
between different sets of series (Amiri-Simkooei et al., 2017; Langbein & Svarc, 2019).

Here, we revisit this issue by using our selection of 127 series from the latest JPL PPP solution having the 
same length, minimum gaps, homogeneous good-quality data from 1999 onwards, and almost twice as long 
as those in Santamaría-Gómez et al. (2011). We split the original 20-year series into four segments of 5 years 
each and ran separate noise analyses for each segment including the same functional and noise models as 
for the full JPL series. The selection of the noise model was done using the estimated dML thresholds at 95% 
of Table 1. We note that the dML thresholds were computed from 20-yr length series and that they could 
be slightly different if estimated from 5-yr length series. Nevertheless, the objective of this exercise is to 
compare how the selected noise models change between the different 5-yr segments. Therefore, we do not 
expect the dML thresholds used to have an impact in our observations.

We observe a change in the noise color throughout the last 20 years of GPS observations (Figure 4). The 
proportion of selected FN series is progressively falling in favor of a PL with a spectral index considerably 
close to WN (Table 3). While it is difficult to extract a clear trend in the estimated noise parameters between 
the four segments, it is clear that the colored noise, as described by the distribution of selected noise models, 
is whiter in the second half of the total period. Offsets are more frequent in the first half of the series than 
in the second, particularly before 2005. For instance, in 2002 and 2004, around 60% of the stations had at 
least one estimated offset. After 2005, the number of removed offsets stabilizes. If the noise amplitude and 
type were constant, we should expect the noise to get redder if less offsets were removed in the second half 
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Figure 4.  Distribution of the preferred noise model in the JPL series for four periods of 5 years each (x-axis) for the (a) East, (b) North and (c) Vertical 
components, together with the (d) distribution of offsets per year and the median formal uncertainty of velocities from the noise estimates for each period and 
component (solid lines). The 95/5 percentiles of the formal velocity uncertainty for each component are represented by dashed lines.
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of the series, but we observe the contrary. This result confirms earlier 
findings that colored noise is becoming whiter for newer observations, 
but in a more general framework, that is, considering also changes in the 
preferred noise model from FN toward PL. The whitening of the noise 
color can also be seen in the reduction of the median formal velocity un-
certainties obtained exclusively from the parameters of the fitted noise 
models in each segment and component, that is, not considering here the 
contribution of offsets to the uncertainty (Figure 4d). We also note that 
in the segmented series, the GM model is much less present than the FN 
and PL models.

5.  Discussion
5.1.  Impact of Offsets on the Noise Color

It is clear that offsets should be, first, avoided as much as possible and, 
second, removed from the series in order to get the least biased estimate 
of the velocity. The main limitation for reaching the second goal is that 
offsets are usually mixed and hidden by other features in the series, in-
cluding colored noise. Manual offset detection by expert analysts gen-

erally outperforms automatic algorithms which tend to over-fit the series with spurious offsets (Gazeaux 
et  al.,  2013). Despite this finding, with the increasing number of series available and also their length, 
automatic offset detection is being used nowadays by many scientists as a purely practical matter and it is 
very likely that this trend will continue.

It is very likely that the automatic offset detection method applied by the JPL removed a number of spurious 
offsets from the series we used. Leaving aside the question whether the removed offsets are correctly timed 
or not, which is out of the scope of this paper, we demonstrate how the offset estimation impacts most of the 
low-frequency colored noise in the series, depending on the separation between the offsets. This translates 
into a modified shape of the error spectrum and, if the effect is not accounted for, it would bias estimates of 
the colored noise content and hence velocity uncertainty. The impact is most dramatic in the case of a series 
with regularly spaced offsets every N year. In that case, the colored noise content of the series becomes un-
observable beyond a period of approximately N years. For an irregular distribution of offsets, if their impact 
is not taken into account, the fit of a noise model will provide, at best, a biased lower noise amplitude and, at 
worst, it will indicate that the best fitted model is much whiter, for instance a PL model with spectral index 
closer to zero or even a GM model where the spectral index is zero at the longest periods.

These results confirm the more limited observations recently made by Chen et al. (2018). These authors 
considered changes in the estimated PL noise amplitude and spectral index as offsets were added to syn-
thetic series of different length. Our results indicate an increase of the estimated PL spectral index, that is, 
closer to zero, and a reduction of the colored noise amplitude of the same order as theirs. However, they did 
not investigate how the offsets affect the selection of the noise model. We also note that PL is not ranked as 
the best noise model describing our series, especially in the horizontal components, even if the impact of 
offsets in the dML values is not taken into account.

We observed that, even after taking into account the effect of offsets in the dML thresholds, about a quarter 
of the series prefer a GM model (Table 2). This amount moderately reduces if we apply dML thresholds at 
99%. We recognized in Section 2 that noise levels and types may vary among the series, which could partially 
explain the selection of the GM model in some series. However, this result may also be partly due to the lim-
itation of the MLE method itself. Between the FN, PL or FN + RW noise models and a GM noise model, the 
MLE tends to favor the GM model, which is the one that provides the lowest noise power spectrum at long 
periods. A lower noise power spectrum at long periods produces a narrower variety of possible outcomes, 
and therefore, a higher probability of fitting the observed series. This situation is worsened by the presence 
of position offsets, which essentially reduce the longest periods observable in the series, increasingly favor-
ing the GM model. Offsets reduce our ability to determine precisely the goodness-of-fit of competing noise 
models as reflected by the increased dML thresholds with the offset rate in Table 1. An additional limitation 
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East North Up

% Σ k % σ k % σ k

PL 1999–2004 28 1.7 −0.47 17 1.6 −0.45 35 4.6 −0.47

2004–2009 42 1.3 −0.55 44 1.3 −0.53 55 4.3 −0.47

2009–2014 53 1.1 −0.43 53 1.2 −0.50 54 4.0 −0.47

2014–2019 44 1.3 −0.54 56 1.3 −0.54 85 3.9 −0.43

FN 1999–2004 65 2.5 −1 75 2.7 −1 57 7.7 −1

2004–2009 50 2.0 −1 44 2.0 −1 31 6.5 −1

2009–2014 37 2.0 −1 38 2.1 −1 35 6.7 −1

2014–2019 50 1.9 −1 37 2.0 −1 13 7.7 −1

Values in italics are computed from less than 30 series.

Table 3 
Percentage of Selected PL and FN Models, With the Median Noise 
Amplitude in mm (σ) and Spectral Index (k), for the Four Segments of 
5 Year Length as in Figure 4
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of the MLE method concerning the GM model is the unrealistically low velocity uncertainty it provides, 
which is likely caused by unaccounted correlation between the functional and the noise model parameters, 
especially the cross-over period (Langbein, 2020).

In their recent study, He et al. (2019) analyzed 110 series of at least 12 years length to investigate whether 
the power spectrum flattens at the longest periods. They found that for 90% of the series, the noise could 
be described by a GM process. This figure dropped to 5% of the horizontal and 13% of the vertical series 
when excluding the GM fits having a cross-over period between the Gaussian and the Markov-like processes 
shorter than 1 year. From the JPL series in our study, we find that, depending on the coordinate component, 
between 31% and 56% of the series would be better described by a GM process if the impact of offsets in the 
dML thresholds were not accounted for (Table 2). These numbers are reduced to 12% and 17%, respectively, 
if we exclude the GM fits having a cross-over period shorter than 1 year. These results are comparable to 
those that would be obtained with the dML thresholds at 99% including the offset effect (Table 1), which 
would support the arbitrary threshold on the cross-over period applied in past publications (He et al., 2019; 
Santamaría-Gómez et al., 2011). However, the percentage of series preferring a GM noise model is still 2 
to 4 times larger in our results compared to those from He et al. (2019). To choose the best-fit model, He 
et al. (2019) used a modified Bayesian Information Criterion penalty function that was added to the log-
arithm of the maximum likelihood estimate. This penalty function is slightly different than the empirical 
log-likelihood thresholds that we used when the offset impact is not accounted for (r = 0 in Table 1), which 
would not explain these differences.

We may instead explain the difference of our results with those from He et al. (2019) due to a combination of 
the following reasons. First, they considered series of different lengths and only 20 out of their 110 stations 
had the maximum length of 20 years, compared to all 127 in our study. If we consider that the GM model 
was mainly retained in their longest 20 stations, then their GM ratios would rise closer to our results. Sec-
ond, it is very likely that their series had a different set of estimated offsets than those in our series. Since 
almost all of their fitted GM models had a cross-over period shorter than a year, it would indicate that the 
power in many of their error spectra was decaying at shorter periods than our spectra, that is, their series 
may have been fitted by more offsets than ours. Third, they used a different software for the noise content 
analysis that provides slightly lower spectral indices for short series (Bos et al., 2013). It is unknown to us 
if their software would also provide shorter cross-over periods for the GM model. Fourth, they analyzed 
PPP series from an older version of the same GNSS software with, importantly, obsolete orbits and clock 
products consistent with the IGS first reprocessing campaign. Those products may possess higher levels of 
FN (Amiri-Simkooei et al., 2017).

Since offsets can potentially bias the observed noise amplitude and even the noise color, if not accounted for, 
they might negate the conclusions drawn from the comparison of noise levels between different solutions 
(Amiri-Simkooei et al., 2017) or different monument types (Langbein & Svarc, 2019). In order to obtain 
comparable noise levels between different series, we recommend using similar sampling, including the 
series length and gaps, and also, if possible, the same set of offsets. The latter may not be possible if an offset 
is generated by incorrect metadata during the reduction of the GPS observations or if the series belong to 
different instruments with different antenna monuments and tracking histories.

We foresee that, if the current frequency of estimated position offsets does not change or even increases 
in the future, as the series get longer the error power spectrum will continue to drop at long periods as we 
have shown in Figure 2, that is, the longest period available to estimate the noise variance will not follow 
the increasing series length. This will prevent us from obtaining further information on the interannual to 
decadal error band compared to the information we already have today. Like a chameleon, we will never 
see the true noise color of the GPS position errors at such long periods. For instance, the power spectrum 
drop caused by the estimated offsets seriously limits our ability to address relevant scientific questions such 
as the expected periodic Earth deformation at long periods recently modeled by Ding et al. (2020). A signal 
with a period of ∼5.9 years lies very close to the period where the power spectrum is mostly flat and starts 
decaying in the best and longest JPL series available today. We have not been able to find any sign of a sig-
nificant spectral peak emerging out of the noise in this band in any coordinate component (Figure 1), which 
confirms a recent modeling of the mechanism of this signal (Gillet et al., 2020).
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In addition, due to the presence of offsets, the resulting error spectrum is totally dependent on the noise 
model used to fit the functional model. The consequence is that since the error spectrum is not observable 
at the longer periods, the null hypothesis for the background noise cannot be well defined. We lack enough 
offset-free series that would indicate whether the GPS error spectra deviate from a FN process at the longest 
periods: the error spectrum could continue unabated, still following a FN process; it could flatten, indicat-
ing that the process generating the FN ceased being dominant; or it could become steeper, indicating that 
another process noise overcomes the FN, for instance RW noise caused by the monument instability.

A consequence of this is that it will be necessary to use a heuristic null hypothesis for the noise model, 
not entirely supported by the observations, in order to obtain less biased velocity uncertainty estimates. 
Somehow, we are already seeing this scenario today when the impact of offsets is not fully accounted for 
and the best fitting model is a GM process that is arbitrarily rejected because of the unrealistically low for-
mal velocity uncertainty it provides. The estimated position offsets also contribute to hide relatively small 
RW amplitudes in global GPS solutions as shown in Figure 3. To avoid this situation, a more conservative 
approach to estimate the velocity uncertainty, already recommended by Langbein (2012), would be to fix 
the noise model to FN and also adding a relatively small amount of RW, compared to the estimated FN, to 
compensate to some extent for both the unobserved RW noise and also the small reduction of the estimated 
FN amplitude by the offsets.

5.2.  Impact of Offsets on Velocities

Beyond the impact on the estimated noise level and color, the offset. also have a significant impact on the 
estimated velocity. Indeed, for the noise type typically found in GPS series, there exists a threshold on the 
offset size below which correcting the offset may produce a larger velocity error than if the offset was left un-
corrected (Gazeaux et al., 2013; Griffiths & Ray, 2016). Williams (2003b) demonstrated that an offset in the 
middle of the series introduces the largest velocity error compared to a different location in the series. If the 
offset is located near the beginning or end of the series, the velocity error being added becomes negligible 
compared to the velocity error without the offset. A similar scenario results if more than one offset is added 
very close to the beginning or end of the series, provided the length of the series before or after the offsets 
does not change significantly. In other words, the velocity error obtained from the fitted functional model is 
inversely proportional to the length of the continuous series between the offsets and not proportional to the 
number of offsets in the series. Certainly, when the offset is in the middle, the longest continuous segment 
of the series is the shortest of any other offset location possible, and therefore the velocity error is the largest 
possible.

In the case of a series free of offsets for N years, adding a new offset at the end will barely affect the present 
velocity error. However, after adding an offset, as the series length continues to grow, the velocity error will 
decrease much slower than if the offset had not been added. The maximum impact of the added offset on 
the velocity error will occur approximately when the series reaches a length of twice the current length (2N 
years), or slightly earlier in case the series is dominated by FN according to Williams (2003b). The actual ve-
locity error added by the offset will be indirectly proportional to the length N. From the epoch of maximum 
impact around 2N, as the series gets longer, the velocity error will decrease until the impact of the added off-
set vanishes more than 4 or 5 times N years in the future. Therefore, when planning a configuration change 
that would likely introduce a new offset into a series, the station manager should consider the increased 
velocity error that will result in the long-term, especially when the series is approximately twice the current 
length. For series having several offsets, the velocity error will accumulate the effects of the different offsets.

When the offsets are equally spaced in the series, as typically in simulation studies, the observed veloc-
ity errors can be represented as a function of the separation between the offsets, which is equivalent to 
the offset rate, or as a function of the number of offsets. These two representations may however lead to 
confusion. Figure 5 shows these two representations of the same velocity errors from zero-trend synthetic 
FN series having different numbers of estimated offsets. On the panel of Figure 5a, the velocity errors are 
represented as a function of the offset separation, inversely proportional to the offset rate; on the panel of 
Figure 5b, the same velocity errors are represented as a function of the total number of offsets in the series. 
This figure shows that in the case of considering the total number of equally spaced offsets (Figure 5b), the 
velocity error increases linearly. However, in case of considering the separation between equally spaced 
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offsets (Figure 5a) the velocity error increases similarly to a RW process generated exclusively by the func-
tional model being fitted. We note that the same velocity errors from the same set of offsets are shown in 
both panels of Figure 5, only the independent variable in the X axis of the panels is different. The functions 
used to predict the increase of the velocity error with offsets are different depending on the chosen inde-
pendent variable, that is, quadratic for offset separation/rate or linear for number of offsets. This reconciles 
the apparently contradictory results from WH19, who considered the total number of offsets in the series 
(Figure 5b), with those obtained earlier by GR16, who consecutively split the available series in half and 
considered the rate of offset occurrence, that is, the inverse of their separation (Figure 5a).

Another major difference between the findings by GR16 and those by WH19 is that while the former dis-
cussed the impact of offsets on the reference frame realization via a full network inversion assuming WN 
data, the latter discussed the impact of offsets on the formal velocity errors while using different hypotheses 
for the noise model. To explain their different results, WH19 emphasized the importance of considering 
colored noise against WN when estimating the formal velocity error and its change with offsets. They cre-
ated synthetic series with different types of noise processes, some of which, for instance WN or RW series, 
are not reasonable examples of actual GPS series. They concluded that, depending on the noise type of the 
series, the impact of adding a single offset on the formal velocity errors can be quite different. The actual 
velocity errors are dependent on both the number of offsets and the type and amplitude of the colored noise, 
which should be generally consistent with a power-law noise spectrum close to FN. In their study, GR16 
employed actual IGS series, which contain FN, to observe how the estimated velocity changes by increas-
ingly doubling the rate of artificially inserted position offsets. When the number of offsets in the series is 
relatively high the scatter of the velocity estimates depends little on the type and amplitude of the colored 
noise used to estimate the velocity and its formal error, provided the noise type is consistent with FN. This 
is due to the larger contribution to the velocity error by the offsets than by the colored noise. This fact is not 
observed if the noise in the series is consistent with RW, which, we insist, is not a realistic noise model to 
describe real GPS series. In addition, in their analysis with the simulated series, WH19 estimated the impact 
of offsets on the formal velocity errors without re-estimating the apparent change of the noise type and its 
parameter values after adding the offsets; they used the same covariance matrix as the one used for creat-
ing the synthetic series in the first place. Therefore, their estimated formal velocity errors do not account 
for the fact that the error power spectrum at long periods is severely reduced by the added offsets as we 
have demonstrated in this study. For instance, we show in Figure 5 that, while the scatter of the estimated 
velocities assuming WN increases with the number of offsets, the contribution of the colored noise to the 
formal velocity error decreases because the fitted noise model is progressively whiter. This means that the 
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Figure 5.  Velocity errors from 1,000 synthetic series of 20 years having 6 mm yr−0.25 of FN as a function of (a) the separation between offsets of 2, 4, 6, 8, 10, 
and 20 years, and (b) their equivalent number of total offsets in the series, that is, 9, 4, 3, 2, 1, and 0 offsets. Velocity errors are provided from the standard 
deviation of the velocity estimates assuming WN (SD velocities) or from the formal velocity uncertainties from a FN model only (noise) and the FN model plus 
the functional model (noise + offsets). FN, flicker noise; WN, white noise.
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findings by WH19, with respect to the synthetic series, do not describe the complete impact offsets have on 
GPS velocities as we do in our study.

By adding equally spaced artificial offsets into real IGS position series, GR16 found that the velocity error 
due to the actual rate of offsets removed from the series, that is, their average span separation, is at the level 
of 0.09 and 0.34 mm yr−1 for the horizontal and vertical components, respectively. These values correspond 
to the average IGS rate of offset occurrence at that time. In our study, using synthetic FN series that reason-
ably match the JPL PPP series (Figure 2), we find velocity errors at the level of 0.08 and 0.21 mm yr−1 due 
to the offsets that JPL removed from the series. These values were obtained from the scatter of the fitted 
trends with and without the JPL offsets while also fitting the parameters of a FN process. If we consider 
WN instead of FN, as GR16 did, the scatter of velocities changes by less than 0.02 mm yr−1, supporting 
the quantification of velocity errors by GR16. Our numbers are smaller most probably due to the fact that 
colored noise in the JPL series is lower than in the IGS series, and also due to the fact that we considered 
synthetic series with real irregularly distributed offsets, while GR16 considered real series with artificial 
equally spaced offsets, which tends to increase the error. For completeness, the median formal velocity un-
certainty of the real JPL series used in this study, taking into account the offsets and also a FN model, is at 
the level of 0.09 and 0.29 mm yr−1, respectively. These numbers were obtained from the real series instead 
of the synthetic FN series, but very likely, most of the estimated formal error could be explained by the 
above-mentioned contribution of the offsets alone and marginally by the contribution of the noise model, 
contrary to the conclusions by Wang and Herring (2019).

Also importantly for velocity estimates is that, due to the removed trend and offsets, it is very difficult to 
say how much RW truly contributes to the series variance. At most, given the separation between offsets in 
the series, we provided in Figure 3 the probability that the RW does not exceed a given threshold. Inversely, 
by setting a detection threshold, we can assess the maximum amount of RW that could be present in the 
series. An alternative approach was followed by Langbein (2012) who estimated the upper bound of the 
RW variance by sequentially increasing it until the dML value of a FN + RW model with respect to a FN 
model exceeded the value of 2.6. This dML threshold agrees well with our values in Table 1. At the end, the 
estimated formal uncertainty of the velocity becomes a subjective choice, that is, depending on how con-
servative velocity uncertainties one prefers to obtain, a different amount of RW noise could be assumed up 
to a reasonable limit. Despite RW noise having been detected in several regional or very-short baseline solu-
tions, most of the studies using global GPS solutions have chosen to not consider RW noise in the velocity 
uncertainty budget, certainly because it has not been detected as a main contributor of the error spectrum. 
A remarkable exception is Langbein (2012) who proposed using a noise model composed of FN and RW 
noises instead of the typical PL noise model to obtain a more conservative velocity error budget. We argue 
that, with the state-of-the-art GPS series in our study, we cannot rule out the possibility that the RW noise is 
indeed affecting the velocity estimates even if we were not able to detect it. The GPS velocity errors of a glob-
al solution would be much larger if RW noise were to be considered, especially in the vertical component 
where the larger series variability allows for a larger RW noise to pass undetected. The potential geophysi-
cal consequences include, for example, the long-term stability of the terrestrial reference frame (Altamimi 
et al., 2016), assessing recent sea-level changes (Santamaría-Gómez et al., 2017) or our understanding of 
the Earth rheology and the glacial history (Schumacher et al., 2018) rely on accurate GPS velocity errors.

In light of the broad impact that offsets have on the GPS velocities as shown for the first time in this study, 
our recommendation is that if the station manager wants to change an already running GPS antenna, for in-
stance to augment the tracking capabilities of the station, the antenna change should be made immediately 
after an unplanned offset occurred, for example, an earthquake that displaced the antenna. Otherwise, we 
recommend installing a new station nearby to benefit from the already existing infrastructure like access, 
security, power, communications, etc. As a general rule, a functioning antenna must never be touched for 
the interest of science, contrary to the advice of WH19.

Concerning the problem of potentially hidden RW in the GPS series, if the offset rate continues at the pres-
ent level, it would not matter how many years of observations one cumulates as the power spectrum will 
not be observable beyond the average offset separation in the series. This long period limit has been already 
exceeded by the longest GPS series. At the longest periods, the observed power spectrum will mimic that 
of the noise model used to fit the offsets. In order to detect RW in longer GPS series in the future, the best 
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scenario is that the station operators reduce the offset rate to the minimum possible. Even so, there are will 
be unavoidable offsets and therefore the RW detection in longer series would only be possible for a selected 
group of stations with few offsets. Since the offset rate seems very unlikely to reduce in the future, the only 
option left is to detect RW within the well-observed power spectrum, that is, up to periods of a few years. 
The latter option implies reducing the FN/RW amplitude ratio as in short-baseline solutions and improving 
our understanding on the origin of FN in GPS position time series.

5.3.  Origin of Colored Noise

The underlying physical origin of colored GPS noise and its change in time is still an open question. San-
tamaría-Gómez et al. (2011, 2013) investigated the impact of the evolving tracking network, the evolving 
satellite constellation and the evolving rate of fixed phase ambiguities. None of these effects could explain 
the observed decrease in colored noise amplitude with time. Here we have demonstrated that the frame 
alignment process also cannot explain either the observed colored noise or its change with time.

We found that the JPL series exhibit colored noise that is closer to FN in the horizontal components than 
in the vertical component (Table 2). Spectral indices of the horizontal components have also been reported 
to be closer to FN than the vertical component in some other series (Rebischung et al., 2016b; Santama-
ría-Gómez et al., 2011; Williams et al., 2004). It is very likely that offsets have no contribution in making the 
noise of the vertical component whiter than the noise of the horizontal components. Although surface load 
mass variations can introduce significant colored noise into the vertical component (Santamaría-Gómez & 
Mémin, 2015), the fact that flicker noise is visible more clearly in the horizontal component argues against 
the hypothesis of flicker noise being mainly created by surface mass load variations, which are significantly 
more important on the vertical component than in the horizontal. Another concurrent indication is the 
fact that the colored noise content is getting whiter with time even if non-tidal loading corrections are not 
currently included in the conventional corrections applied to the series and their effects are most likely not 
decaying with time.

What causes a spectral index that is whiter than flicker is as intriguing as what causes the FN itself. This 
situation can probably only be explained by a combination of different error sources, that is, we are looking 
for a process that dampens FN in the vertical component while having minimal impact on the horizontal 
components. We demonstrated that the frame alignment process certainly contributes in that direction, 
but its magnitude is rather negligible. Actually, surface mass load variations are a good candidate for such 
a process. Santamaría-Gómez and Mémin (2015) showed that the combination of modeled atmospheric, 
oceanic and hydrologic load variations results in colored noise that can be described by a PL with a spectral 
index varying spatially from WN to RW (see map of Figure S1 in Santamaría-Gómez and Mémin, 2015). The 
median spectral index of the modeled load variations for the vertical component at the 127 JPL series used 
in this study is −0.7, that is, significantly whiter than a flicker process. In addition, the median amplitude of 
the colored noise obtained from the modeled surface loads at the 127 stations and scaled to weekly sampling 
is ∼4 mm. This equals almost two-thirds of the observed PL amplitude of ∼6 mm in the residual weekly 
vertical JPL series, which implies that the surface mass load variations add noise to the series, mostly on the 
vertical component, but the noise added is whiter than FN. One may conclude that the surface mass loads, 
contrary to causing the FN observed in the series, probably contribute to hide it, making the vertical series 
appear whiter than the horizontal components.

6.  Conclusions
Offsets in GPS position time series are one of the biggest limitations concerning the precision of the estimat-
ed GPS velocities. Yet, the best GPS series are populated with offsets, many of which are related to equip-
ment testing and upgrading which are avoidable. The use of algorithms for automatic offset detection may 
even increase the number of spurious offsets that are included in the model fitted to the GPS series. Here, 
we address for the first time the complete impact that estimated position offsets have on the GPS velocities, 
their uncertainty and the colored noise of the residual series.

We have shown how the estimated offsets alter the series variability at periods longer than their average 
spacing. The result is that at interannual to decadal periods, the error power spectra of the GPS position 
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time series changes color mimicking the color of the noise model used to fit the functional model, like a 
chameleon. The observed error spectrum becomes uninterpretable as a quantitative measure of the contrib-
uting noise processes. The more offsets introduced into the series, the less information is obtained from the 
error spectrum. This could severely affect our ability to objectively provide a noise model that fully describes 
the temporal correlation of the GPS series. The unobservability of the noise power spectra at long periods 
caused by the estimated position offsets also has severe consequences for our ability to observe and discover 
long-period Earth deformation signals. A periodic Earth deformation signal with a period of ∼5.9 years has 
been suggested in recent literature. This period is exactly located where the error spectrum is obscured by 
the estimated position offsets in the best and longest JPL series to date used in this study. Despite recent 
claims for the detection of this signal, we were unable to find any sign of a significant signal emerging out 
of the noise in this band in any coordinate component.

We have shown how the offsets effectively increase the degrees of freedom of the noise model fitted to 
the series, resulting in an inflated dML threshold necessary to reject the flicker noise null hypothesis. If 
the correct dML threshold is not used, any colored noise model fitted to GPS series having offsets will be 
biased low, that is, toward WN, and the preferred noise model may even be wrongly selected, for example, 
a Gauss-Markov process instead of a flicker or power-law process. As a result, the estimated formal velocity 
uncertainty will be biased low. If one is interested in obtaining conservative formal velocity uncertainties, it 
is necessary to subjectively choose a noise model that is not clearly supported by the observed error spectra, 
for example a FN model topped with a relatively small amount of RW.

The subjectivity to choose a more accurately representative noise model also concerns the amount of RW 
that the analyst is willing to add to the velocity uncertainty budget. On most past studies using global 
network or PPP solutions, the RW has never been included in the velocity error budget because it has not 
been detected over other noise types. We have shown how the inclusion of offsets in the series renders the 
detection of RW even more difficult in long series that actually contain RW. We conclude that the common 
assumption that RW does not contribute to the velocity error is questionable, especially considering that RW 
has been detected in regional or short-baseline solutions with greater sensitivity due to spatial filtering. The 
addition of a small quantity of RW, even if not observed directly, will significantly raise the GPS velocity un-
certainty and especially in long series with frequent offsets where the amount of RW that could be allocated 
in the error budget is larger.

The origin of colored noise in GPS position time series and its change with time is still an open question. We 
have demonstrated how the frame alignment process, that is inherent to the construction of any GPS series, 
does not play a significant role if it is realized in an optimal way by minimizing the network effect. Surface 
mass loads could at least partly explain why the noise is whiter in the vertical component than in the hori-
zontal, but they cannot explain why the noise color is becoming whiter in the most recent data. In addition, 
the offsets already present in the GPS series prevent us from observing the properties of the colored noise 
at long periods. If offsets continue to appear in the series at the current rate, they will represent a major 
limitation for our understanding of the GPS error spectrum reducing the value of longer series in the future.
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