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Abstract. Accurate assessment of anthropogenic carbon dioxide (CO;) emissions and their redistribution
among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand
the global carbon cycle, support the development of climate policies, and project future climate change. Here we
describe and synthesize datasets and methodology to quantify the five major components of the global carbon
budget and their uncertainties. Fossil CO; emissions (Erogs) are based on energy statistics and cement production
data, while emissions from land-use change (Eryc), mainly deforestation, are based on land use and land-use
change data and bookkeeping models. Atmospheric CO; concentration is measured directly, and its growth rate
(G atm) is computed from the annual changes in concentration. The ocean CO; sink (Socgan) is estimated with
global ocean biogeochemistry models and observation-based data products. The terrestrial CO; sink (SLanD) is
estimated with dynamic global vegetation models. The resulting carbon budget imbalance (Bpy), the difference
between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial bio-
sphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties
are reported as +1o. For the first time, an approach is shown to reconcile the difference in our Epyc estimate
with the one from national greenhouse gas inventories, supporting the assessment of collective countries’ climate
progress.

For the year 2020, Erps declined by 5.4 % relative to 2019, with fossil emissions at 9.5 0.5 GtC yr_l
(9.3+0.5GtC yr_1 when the cement carbonation sink is included), and Epyc was 0.9 +0.7 GtC yr_l, for
a total anthropogenic CO, emission of 10.2 0.8 GtC yr_1 (37.4£2.9GtCO,). Also, for 2020, G arm Wwas
50+£02GtCyr~! (2.4+0.1ppmyr~!), Socean Was 3.0 0.4GtCyr~!, and S anp was 2.9+ 1 GtCyr—!,
with a Bpy of —0.8GtCyr~!'. The global atmospheric CO» concentration averaged over 2020 reached
412.45 £ 0.1 ppm. Preliminary data for 2021 suggest a rebound in Efrpg relative to 2020 of +4.8 % (4.2 % to
5.4 %) globally.

Overall, the mean and trend in the components of the global carbon budget are consistently estimated over
the period 1959-2020, but discrepancies of up to 1 GtCyr~! persist for the representation of annual to semi-
decadal variability in CO; fluxes. Comparison of estimates from multiple approaches and observations shows
(1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between
the different methods on the magnitude of the land CO, flux in the northern extra-tropics, and (3) a discrepancy
between the different methods on the strength of the ocean sink over the last decade. This living data update
documents changes in the methods and datasets used in this new global carbon budget and the progress in
understanding of the global carbon cycle compared with previous publications of this dataset (Friedlingstein et
al., 2020, 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are
available at https://doi.org/10.18160/gcp-2021 (Friedlingstein et al., 2021).
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Executive summary

Global fossil CO, emissions (excluding cement carbona-
tion) in 2021 are returning towards their 2019 levels af-
ter decreasing 5.4 % in 2020. The 2020 decrease was
0.52 GtCyr~! (1.9 GtCO, yr~1), bringing 2020 emissions to
9.5+ 0.5GtCyr~! (34.84 1.8 GtCO, yr~!), comparable to
the emissions level of 2012. Preliminary estimates based
on data available in March 2022 suggest fossil CO, emis-
sions rebounded 4.8 % in 2021 (4.2% to 5.4 %), bring-
ing emissions to 9.9GtCyr~! (36.4 GtCO, yr~!), back to
about the same level as in 2019 (10.040.5GtC yr‘l,
36.74 1.8 GtCO, yr~'). Emissions from coal and gas in
2021 are expected to have rebounded above 2019 levels,
while emissions from oil were still below their 2019 level.
Emissions are expected to have been 5.7 % higher in 2021
than in 2019 in China, reaching 3.0 GtC (11.1 GtCO»), and
also higher in India with a 3.2 % increase in 2021 relative to
2019, reaching 0.74 GtC (2.7 GtCO»). In contrast, projected
2021 emissions in the United States (1.4 GtC, 5.0 GtCO,),
European Union (0.8 GtC, 2.8 GtCO,), and the rest of the
world (4.0 GtC, 14.8 GtCO,, in aggregate) remained respec-
tively 4.5 %, 5.3 %, and 4.0 % below their 2019 levels. These
changes in 2021 emissions reflect the stringency of the
COVID-19 confinement levels in 2020 and the pre-covid
background trends in emissions in these countries.

Fossil CO, emissions significantly decreased in 23 coun-
tries during the decade 2010-2019. Altogether, these 23
countries contribute to about 2.5 GtCyr~! fossil fuel CO,
emissions over the last decade, only about one-quarter of
world CO; fossil emissions.

Global CO; emissions from land use, land-use change,
and forestry (LUC) converge based on revised data of
land-use change and show a small decrease over the past
two decades. Near-constant gross emissions estimated at
3.840.6GtCyr~! in the 2011-2020 decade are only partly
offset by growing carbon removals on managed land of
2.740.4 GtCyr~!, resulting in the net emissions in managed
land of 1.1 £0.7 GtC yr~! (4.1 £2.6 GtCO, yr~!). These net
emissions decreased by 0.2 GtC in 2020 compared to 2019
levels, with large uncertainty. Preliminary estimates for emis-
sions in 2021 suggest a 0.1 GtC decrease for 2021, giving net
emissions of 0.8 GtCyr~! (2.9 GtCO, yr~!). The small de-
crease in net LUC emissions amidst large uncertainty pro-
hibits robust conclusions concerning trend changes of to-
tal anthropogenic emissions. For the first time, we link the
global carbon budget models’ estimates to the official coun-
try reporting of national greenhouse gases inventories. While
the global carbon budget distinguishes anthropogenic from
natural drivers of land carbon fluxes, country reporting is
area-based and attributes part of the natural terrestrial sink
on managed land to the land-use sector. Accounting for this
redistribution, the two approaches are shown to be consistent
with each other.

Earth Syst. Sci. Data, 14, 1917-2005, 2022
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The remaining carbon budget for a 50 % likelihood to limit
global warming to 1.5, 1.7, and 2°C has respectively re-
duced to 120 GtC (420 GtCO,), 210 GtC (770 GtCOy) and
350 GtC (1270 GtCOy) from the beginning of 2022, equiv-
alent to 11, 20, and 32 years, assuming 2021 emissions
levels. Total anthropogenic emissions were 10.4 GtC yr~!
(38.0GtCO, yr~!) in 2020, with a preliminary estimate of
10.7GtCyr~! (39.3GtCO, yr~!) for 2021. The remaining
carbon budget to keep global temperatures below these cli-
mate targets has shrunk by 21 GtC (77 GtCO,) since the re-
lease of the IPCC AR6 Working Group 1 assessment. Reach-
ing zero CO, emissions by 2050 entails cutting total anthro-
pogenic CO; emissions by about 0.4 GtC (1.4 GtCO,) each
year on average, comparable to the decrease during 2020,
highlighting the scale of the action needed.

The concentration of CO; in the atmosphere is set to reach
414.7 ppm in 2021, 50 % above pre-industrial levels. The at-
mospheric CO> growth was 5.1 4+0.02 GtCyr~! during the
decade 2011-2020 (47 % of total CO, emissions) with a pre-
liminary 2021 growth rate estimate of around 5 GtC yr—!.

The ocean CO; sink resumed a more rapid growth in the
past decade after low or no growth during the 1991-2002
period. However, the growth of the ocean CO; sink in the
past decade has an uncertainty of a factor of 3, with esti-
mates based on data products and estimates based on models
showing an ocean sink increase of 0.9 and 0.3 GtC yr~! since
2010, respectively. The discrepancy in the trend originates
from all latitudes but is largest in the Southern Ocean. The
ocean CO, sink was 2.8 0.4 GtCyr~! during the decade
2011-2020 (26 % of total CO, emissions), with a prelimi-
nary 2021 estimate of around 2.9 GtC yr—!.

The land CO» sink continued to increase during the 2011-
2020 period primarily in response to increased atmospheric
COa», albeit with large interannual variability. The land CO;
sink was 3.1+0.6GtCyr~! during the 2011-2020 decade
(29 % of total CO, emissions), 0.5 GtC yr~! larger than dur-
ing the previous decade (2000-2009), with a preliminary
2021 estimate of around 3.3 GtC yr~!. Year-to-year variabil-
ity in the land sink is about 1 GtC yr~!, making small annual
changes in anthropogenic emissions hard to detect in global
atmospheric CO; concentration.

1 Introduction

The concentration of carbon dioxide (CO;) in the atmo-
sphere has increased from approximately 277 parts per mil-
lion (ppm) in 1750 (Joos and Spahni, 2008), the beginning
of the industrial era, to 412.4+£0.1 ppm in 2020 (Dlugo-
kencky and Tans, 2022; Fig. 1). The atmospheric CO, in-
crease above pre-industrial levels was, initially, primarily
caused by the release of carbon to the atmosphere from de-
forestation and other land-use change activities (Canadell et
al., 2022). While emissions from fossil fuels started before
the Industrial Era, they became the dominant source of an-

https://doi.org/10.5194/essd-14-1917-2022
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Figure 1. Surface average atmospheric CO, concentration (ppm).
Since 1980, monthly data are from NOAA/ESRL (Dlugokencky
and Tans, 2022) and are based on an average of direct atmospheric
CO, measurements from multiple stations in the marine boundary
layer (Masarie and Tans, 1995). The 1958-1979 monthly data are
from the Scripps Institution of Oceanography, based on an average
of direct atmospheric CO, measurements from the Mauna Loa and
South Pole stations (Keeling et al., 1976). To account for the differ-
ence of mean CO, and seasonality between the NOAA/ESRL and
the Scripps station networks used here, the Scripps surface average
(from two stations) was de-seasonalized and adjusted to match the
NOAA/ESRL surface average (from multiple stations) by adding
the mean difference of 0.667 ppm, calculated here from overlapping
data during 1980-2012.

thropogenic emissions to the atmosphere from around 1950
and their relative share has continued to increase until the
present. Anthropogenic emissions occur on top of an ac-
tive natural carbon cycle that circulates carbon between the
reservoirs of the atmosphere, ocean, and terrestrial biosphere
on timescales from sub-daily to millennial, while exchanges
with geologic reservoirs occur on longer timescales (Archer
et al., 2009).

The global carbon budget (GCB) presented here refers to
the mean, variations, and trends in the perturbation of CO5 in
the environment, referenced to the beginning of the Industrial
Era (defined here as 1750). This paper describes the compo-
nents of the global carbon cycle over the historical period
with a stronger focus on the recent period (since 1958, onset
of atmospheric CO, measurements), the last decade (2011-
2020), the last year (2020), and the current year (2021). We
quantify the input of CO; to the atmosphere by emissions
from human activities, the growth rate of atmospheric CO,
concentration, and the resulting changes in the storage of car-
bon in the land and ocean reservoirs in response to increasing
atmospheric CO; levels, climate change and variability, and
other anthropogenic and natural changes (Fig. 2). An under-
standing of this perturbation budget over time and the under-
lying variability and trends of the natural carbon cycle is nec-
essary to understand the response of natural sinks to changes
in climate, CO», and land-use change drivers, and to quan-

https://doi.org/10.5194/essd-14-1917-2022
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tify emissions compatible with a given climate stabilization
target.

The components of the CO, budget that are reported an-
nually in this paper include separate and independent es-
timates for the CO; emissions from (1) fossil fuel com-
bustion and oxidation from all energy and industrial pro-
cesses, also including cement production and carbonation
(Eros; GtC yr‘l); (2) the emissions resulting from delib-
erate human activities on land, including those leading to
land-use change (Epyc; GtCyr~'); and their partitioning
among (3) the growth rate of atmospheric CO; concentration
(G atm; GtC yr’l), and the uptake of CO; (the “CO; sinks”)
in (4) the ocean (Socgan; GtC yr’l) and (5) on land (Sp.AND;
GtCyr~!). The CO, sinks as defined here conceptually in-
clude the response of the land (including inland waters and
estuaries) and ocean (including coasts and territorial seas) to
elevated CO, and changes in climate and other environmen-
tal conditions, although in practice not all processes are fully
accounted for (see Sect. 2.7). Global emissions and their par-
titioning among the atmosphere, ocean, and land are in real-
ity in balance. Due to the combination of imperfect spatial
and/or temporal data coverage, errors in each estimate, and
smaller terms not included in our budget estimate (discussed
in Sect. 2.7), the independent estimates (1) to (5) above do
not necessarily add up to zero. We therefore (a) additionally
assess a set of global atmospheric inverse model results that
by design close the global carbon balance (see Sect. 2.6), and
(b) estimate a budget imbalance (Bv), which is a measure of
the mismatch between the estimated emissions and the esti-
mated changes in the atmosphere, land, and ocean, as fol-
lows:

Biv = Eros + ELuc — (G atM + SoCEAN + SLAND)- (D

Garm is usually reported in ppmyr—!, which we con-

vert to units of carbon mass per year, GtCyr~!, using
1ppm=2.124 GtC (Ballantyne et al., 2012; Table 1). All
quantities are presented in units of gigatonnes of carbon
(GtC, 10" gC), which is the same as petagrammes of car-
bon (PgC; Table 1). Units of gigatonnes of CO, (or billion
tonnes of CO») used in policy are equal to 3.664 multiplied
by the value in units of GtC.

We also include a quantification of Erps by country, com-
puted with both territorial and consumption-based account-
ing (see Sect. 2), and discuss missing terms from sources
other than the combustion of fossil fuels (see Sect. 2.7).

The global CO;, budget has been assessed by the Inter-
governmental Panel on Climate Change (IPCC) in all assess-
ment reports (Prentice et al., 2001; Schimel et al., 1995; Wat-
son et al., 1990; Denman et al., 2007; Ciais et al., 2013;
Canadell et al., 2022), and by others (e.g. Ballantyne et
al., 2012). The Global Carbon Project (GCP, https://www.
globalcarbonproject.org, last access: 11 March 2022) has co-
ordinated this cooperative community effort for the annual
publication of global carbon budgets for the year 2005 (Rau-
pach et al., 2007; including fossil emissions only), year 2006

Earth Syst. Sci. Data, 14, 1917-2005, 2022
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Figure 2. Schematic representation of the overall perturbation of the global carbon cycle caused by anthropogenic activities, averaged
globally for the decade 2011-2020. See legends for the corresponding arrows and units. The uncertainty in the atmospheric CO, growth rate
is very small (£0.02 GtC yrfl) and is neglected for the figure. The anthropogenic perturbation occurs on top of an active carbon cycle, with
fluxes and stocks represented in the background and taken from Canadell et al. (2022) for all numbers, except for the carbon stocks in coasts
which is from a literature review of coastal marine sediments (Price and Warren, 2016).

Table 1. Factors used to convert carbon in various units (by convention, Unit 1 = Unit 2x conversion).

Unit 1 Unit 2 Conversion  Source

GtC (gigatonnes of carbon) ppm (parts per million)? 2.1240 Ballantyne et al. (2012)

GtC (gigatonnes of carbon) PgC (petagrammes of carbon) 1 SI unit conversion

GtCO, (gigatonnes of carbon dioxide)  GtC (gigatonnes of carbon) 3.664 44.01/12.011 in mass equivalent
GtC (gigatonnes of carbon) MtC (megatonnes of carbon) 1000  SI unit conversion

4 Measurements of atmospheric CO; concentration have units of dry-air mole fraction; “ppm” is an abbreviation for micromole per mole of dry air. b The use of
a factor of 2.124 assumes that all the atmosphere is well mixed within 1 year. In reality, only the troposphere is well mixed, and the growth rate of CO,
concentration in the less well-mixed stratosphere is not measured by sites from the NOAA network. Using a factor of 2.124 makes the approximation that the
growth rate of CO, concentration in the stratosphere is equal to that of the troposphere on a yearly basis.

(Canadell et al., 2007), year 2007 (GCP, 2007), year 2008 (Le
Quéré et al., 2009), year 2009 (Friedlingstein et al., 2010),
year 2010 (Peters et al., 2012b), year 2012 (Le Quéré et
al., 2013; Peters et al., 2013), year 2013 (Le Quéré et al.,
2014), year 2014 (Le Quéré et al., 2015a; Friedlingstein et
al., 2014), year 2015 (Jackson et al., 2016; Le Quéré et al.,
2015b), year 2016 (Le Quéré et al., 2016), year 2017 (Le
Quéré et al., 2018a; Peters et al., 2017), year 2018 (Le Quéré
et al., 2018b; Jackson et al., 2018), year 2019 (Friedlingstein
et al., 2019; Jackson et al., 2019; Peters et al., 2020), and
more recently the year 2020 (Friedlingstein et al., 2020; Le
Quéré et al., 2021). Each of these papers updated previous
estimates with the latest available information for the entire
time series.
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We adopt a range of £1 standard deviation (o) to report
the uncertainties in our estimates, representing a likelihood
of 68 % that the true value will be within the provided range
if the errors have a Gaussian distribution, and no bias is as-
sumed. This choice reflects the difficulty of characterizing
the uncertainty in the CO, fluxes between the atmosphere
and the ocean and land reservoirs individually, particularly
on an annual basis, as well as the difficulty of updating the
CO; emissions from land-use change. A likelihood of 68 %
provides an indication of our current capability to quantify
each term and its uncertainty given the available informa-
tion. The uncertainties reported here combine statistical anal-
ysis of the underlying data, assessments of uncertainties in
the generation of the datasets, and expert judgement of the
likelihood of results lying outside this range. The limitations
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of current information are discussed in the paper and have
been examined in detail elsewhere (Ballantyne et al., 2015;
Zscheischler et al., 2017). We also use a qualitative assess-
ment of confidence level to characterize the annual estimates
from each term based on the type, amount, quality, and con-
sistency of the evidence as defined by the IPCC (Stocker et
al., 2013).

This paper provides a detailed description of the datasets
and methodology used to compute the global carbon bud-
get estimates for the industrial period, from 1750 to 2020,
and in more detail for the period since 1959. It also pro-
vides decadal averages starting in 1960 including the most
recent decade (2011-2020), results for the year 2020, and
a projection for the year 2021. Finally, it provides cumula-
tive emissions from fossil fuels and land-use change since
the year 1750, the pre-industrial period; and since the year
1850, the reference year for historical simulations in IPCC
ARG (Eyring et al., 2016). This paper is updated every year
using the format of “living data” to keep a record of budget
versions and the changes in new data, revision of data, and
changes in methodology that lead to changes in estimates of
the carbon budget. Additional materials associated with the
release of each new version will be posted at the Global Car-
bon Project (GCP) website (http://www.globalcarbonproject.
org/carbonbudget, last access: 11 March 2022), with fossil
fuel emissions also available through the Global Carbon At-
las (http://www.globalcarbonatlas.org, last access: 11 March
2022). With this approach, we aim to provide the highest
transparency and traceability in the reporting of CO,, the key
driver of climate change.

2 Methods

Multiple organizations and research groups around the world
generated the original measurements and data used to com-
plete the global carbon budget. The effort presented here is
thus mainly one of synthesis, where results from individ-
ual groups are collated, analysed, and evaluated for consis-
tency. We facilitate access to original data with the under-
standing that primary datasets will be referenced in future
work (see Table 2 for how to cite the datasets). Descriptions
of the measurements, models, and methodologies follow be-
low, and detailed descriptions of each component are pro-
vided elsewhere.

This is the 16th version of the global carbon budget and
the 10th revised version in the format of a living data update
in Earth System Science Data. It builds on the latest pub-
lished global carbon budget of Friedlingstein et al. (2020).
The main changes are as follows: the inclusion of (1) data
to year 2020 and a projection for the global carbon budget
for year 2021, (2) a Kaya analysis to identify the driving fac-
tors behind the recent trends in fossil fuel emissions (changes
in population, GDP per person, energy use per GDP, and
CO; emissions per unit energy), (3) an estimate of the ocean
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sink from models and data products combined, (4) an assess-
ment of the relative contributions of increased atmospheric
CO» and climate change in driving the land and ocean sinks,
and (5) an assessment of the current trends in anthropogenic
emissions and implications for the remaining carbon budget
for specific climate targets. The main methodological dif-
ferences between recent annual carbon budgets (2016-2020)
are summarized in Table 3 and previous changes since 2006
are provided in Table A7.

2.1 Fossil CO2 emissions (Egps)
2.1.1 Historical period 1850-2020

The estimates of global and national fossil CO, emissions
(Eros) include the oxidation of fossil fuels through both
combustion (e.g. transport, heating) and chemical oxidation
(e.g. carbon anode decomposition in aluminium refining) ac-
tivities, and the decomposition of carbonates in industrial
processes (e.g. the production of cement). We also include
CO; uptake from the cement carbonation process. Several
emissions sources are not estimated or not fully covered:
coverage of emissions from lime production are not global,
and decomposition of carbonates in glass and ceramic pro-
duction are included only for the “Annex 1" countries of the
United Nations Framework Convention on Climate Change
(UNFCCC) due to a lack of activity data. These omissions
are considered to be minor. Short-cycle carbon emissions —
for example from combustion of biomass — are not included
here but are accounted for in the CO; emissions from land
use (see Sect. 2.2).

Our estimates of fossil CO; emissions are derived using
the standard approach of activity data and emission factors,
relying on data collection by many other parties. Our goal
is to produce the best estimate of this flux, and we therefore
use a prioritization framework to combine data from different
sources that have used different methods, while being care-
ful to avoid double counting and undercounting of emissions
sources. The CDIAC-FF emissions dataset, derived largely
from UN energy data, forms the foundation, and we extend
emissions to year Y-1 using energy growth rates reported by
BP. We then proceed to replace estimates using data from
what we consider to be superior sources, for example Annex
1 countries’ official submissions to the UNFCCC. All data
points are potentially subject to revision, not just the latest
year. For full details see Andrew and Peters (2021).

Other estimates of global fossil CO; emissions exist, and
these are compared by Andrew (2020a). The most com-
mon reason for differences in estimates of global fossil CO,
emissions is a difference in which emissions sources are in-
cluded in the datasets. Datasets such as those published by
BP energy company, the US Energy Information Adminis-
tration, and the International Energy Agency’s “CO; emis-
sions from fuel combustion” are all generally limited to emis-
sions from combustion of fossil fuels. In contrast, datasets
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Table 2. How to cite the individual components of the global carbon budget presented here.

Component

Primary reference

Global fossil CO; emissions (EFOS), total and by fuel type
National territorial fossil CO; emissions (EFOS)

National consumption-based fossil CO, emissions (EFOS) by country (consumption)

Net land-use change flux (Ey yc)
Growth rate in atmospheric CO; concentration (GATM)
Ocean and land CO, sinks (Socgan and Sp.AND)

Andrew and Peters (2021)

Gilfillan and Marland (2021), UNFCCC (2021a)

Peters et al. (2011b) updated as described in this paper
This paper (see Table 4 for individual model references).
Dlugokencky and Tans (2022)

This paper (see Table 4 for individual model references).

such as PRIMAP-hist, CEDS, EDGAR, and GCP’s dataset
aim to include all sources of fossil CO;, emissions. See An-
drew (2020a) for detailed comparisons and discussion.

Cement absorbs CO, from the atmosphere over its life-
time, a process known as “cement carbonation”. We estimate
this CO; sink as the average of two studies in the literature
(Caoetal., 2020; Guo et al., 2021). Both studies use the same
model, developed by Xi et al. (2016), with different param-
eterizations and input data. Since carbonation is a function
of both current and previous cement production, we extend
these estimates by 1 year to 2020 by using the growth rate de-
rived from the smoothed cement emissions (10-year smooth-
ing) fitted to the carbonation data.

We use the Kaya identity for a simple decomposition of
CO; emissions into the key drivers (Raupach et al., 2007).
While there are variations (Peters et al., 2017), we focus
here on a decomposition of CO; emissions into population,
GDP per person, energy use per GDP, and CO, emissions
per energy use. Multiplying these individual components to-
gether returns the CO, emissions. Using the decomposition,
it is possible to attribute the change in CO; emissions to the
change in each of the drivers. This method gives a first-order
understanding of what causes CO, emissions to change each
year.

2.1.2 2021 projection

We provide a projection of global CO; emissions in 2021
by combining separate projections for China, the USA, the
EU, India, and for all other countries combined. The meth-
ods are different for each of these. For China we combine
monthly fossil fuel production data from the National Bureau
of Statistics, import and export data from the Customs Ad-
ministration, and monthly coal consumption estimates from
SX Coal (2021), giving us partial data for the growth rates
to date of natural gas, petroleum, and cement, and of the
consumption itself for raw coal. We then use a regression
model to project full-year emissions based on historical ob-
servations. For the USA our projection is taken directly from
the Energy Information Administration’s (EIA) Short-Term
Energy Outlook (EIA, 2022), combined with the year-to-
date growth rate of cement production. For the EU we use
monthly energy data from Eurostat to derive estimates of
monthly CO, emissions through July, with coal emissions

Earth Syst. Sci. Data, 14, 1917-2005, 2022

extended first through September using a statistical relation-
ship with reported electricity generation from coal and other
factors, then through December assuming normal seasonal
patterns. EU emissions from natural gas — a strongly seasonal
cycle — are extended through December using bias-adjusted
Holt—Winters exponential smoothing (Chatfield, 1978). EU
emissions from oil are derived using the EIA’s projection of
oil consumption for Europe. EU cement emissions are based
on available year-to-date data from two of the largest pro-
ducers, Germany and Poland. India’s projected emissions are
derived from estimates through August (September for coal)
using the methods of Andrew (2020b) and extrapolated as-
suming normal seasonal patterns. Emissions for the rest of
the world are derived using projected growth in economic
production from the IMF (2022) combined with extrapo-
lated changes in emissions intensity of economic production.
More details on the Erps methodology and its 2021 projec-
tion can be found in Appendix C1.

2.2 CO» emissions from land use, land-use change,
and forestry (E|yc)

The net CO, flux from land use, land-use change, and
forestry (ELuc, called land-use change emissions in the rest
of the text) includes CO; fluxes from deforestation, afforesta-
tion, logging and forest degradation (including harvest ac-
tivity), shifting cultivation (cycle of cutting forest for agri-
culture, then abandoning), and regrowth of forests following
wood harvest or abandonment of agriculture. Emissions from
peat burning and drainage are added from external datasets.
Three bookkeeping approaches (updated estimates of
BLUE (Hansis et al., 2015), OSCAR (Gasser et al., 2020),
and H&N2017 (Houghton and Nassikas, 2017)) were used
to quantify gross sources and sinks and the resulting net
Epyc. Uncertainty estimates were derived from the dynamic
global vegetation model (DGVM) ensemble for the time pe-
riod prior to 1960, using for the recent decades an uncertainty
range of £0.7 GtC yr~!, which is a semi-quantitative mea-
sure for annual and decadal emissions and reflects our best
value judgement that there is at least 68 % chance (+10) that
the true land-use change emission lies within the given range,
for the range of processes considered here. This uncertainty
range had been increased from 0.5 GtC yr—! after new book-
keeping models were included that indicated a larger spread
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than assumed before (Le Quéré et al., 2018). Projections for
2021 are based on fire activity from tropical deforestation
and degradation as well as emissions from peat fires and
drainage.

Our Epyc estimates follow the definition of global carbon
cycle models of CO; fluxes related to land use and land man-
agement and differ from IPCC definitions adopted in national
GHG inventories (NGHGIs) for reporting under the UN-
FCCC, which additionally generally include, through adop-
tion of the IPCC so-called managed land proxy approach,
the terrestrial fluxes occurring on land defined by countries
as managed. This partly includes fluxes due to environmen-
tal change (e.g. atmospheric CO» increase), which are part
of SLanp in our definition. This causes the global emission
estimates to be smaller for NGHGIs than for the global car-
bon budget definition (Grassi et al., 2018). The same is the
case for the Food Agriculture Organization (FAO) estimates
of carbon fluxes on forest land, which include, compared to
SLAND, both anthropogenic and natural sources on managed
land (Tubiello et al., 2021). Using the approach outlined in
Grassi et al. (2021), here we map as additional information
the two definitions to each other, to provide a comparison of
the anthropogenic carbon budget to the official country re-
porting to the climate convention. More details on the Epyc
methodology can be found in Appendix C2.

2.3 Growth rate in atmospheric CO» concentration
(Gatm)

2.3.1 Historical period

The rate of growth of the atmospheric CO; concentration is
provided for years 1959-2020 by the US National Oceanic
and Atmospheric Administration Earth System Research
Laboratory (NOAA/ESRL; Dlugokencky and Tans, 2022),
which is updated from Ballantyne et al. (2012) and includes
recent revisions to the calibration scale of atmospheric CO»
measurements (Hall et al., 2021). For the 1959-1979 pe-
riod, the global growth rate is based on measurements of
atmospheric CO;, concentration averaged from the Mauna
Loa and South Pole stations, as observed by the CO, Pro-
gram at Scripps Institution of Oceanography (Keeling et al.,
1976). For the 1980-2020 time period, the global growth rate
is based on the average of multiple stations selected from
the marine boundary layer sites with well-mixed background
air (Ballantyne et al., 2012), after fitting each station with a
smoothed curve as a function of time, and averaging by lati-
tude band (Masarie and Tans, 1995). The annual growth rate
is estimated by Dlugokencky and Tans (2022) from atmo-
spheric CO; concentration by taking the average of the most
recent December—January months corrected for the average
seasonal cycle and subtracting this same average 1 year ear-
lier. The growth rate in units of ppm yr~! is converted to units

of GtC yr~! by multiplying by a factor of 2.124 GtC ppm™~!,

Earth Syst. Sci. Data, 14, 1917-2005, 2022

P. Friedlingstein et al.: Global Carbon Budget 2021

assuming instantaneous mixing of CO; throughout the atmo-
sphere (Ballantyne et al., 2012).

Starting in 2020, NOAA/ESRL now provides estimates
of atmospheric CO, concentrations with respect to a new
calibration scale, referred to as WMO-CO,-X2019, in line
with the recommendation of the World Meteorological Or-
ganization (WMO) Global Atmosphere Watch (GAW) com-
munity (Hall et al., 2021). The WMO-CO;,-X2019 scale im-
proves upon the earlier WMO-CO,-X2007 scale by includ-
ing a broader set of standards, which contain CO; in a wider
range of concentrations that span the range 250-800 ppm
(versus 250-520 ppm for WMO-CO,-X2007). In addition,
NOAA/ESRL made two minor corrections to the analytical
procedure used to quantify CO, concentrations, fixing an er-
ror in the second virial coefficient of CO; and accounting for
loss of a small amount of CO; to materials in the manometer
during the measurement process. The difference in concen-
trations measured using WMO-CO,-X2019 versus WMO-
C0O,-X2007 is ~ 40.18 ppm at 400 ppm and the observa-
tional record of atmospheric CO, concentrations have been
revised accordingly. The revisions have been applied retro-
spectively in all cases where the calibrations were performed
by NOAA/ESRL, thus affecting measurements made by
members of the WMO-GAW programme and other region-
ally coordinated programmes (e.g. Integrated Carbon Ob-
serving System, ICOS). Changes to the CO; concentrations
measured across these networks propagate to the global mean
CO; concentrations. Comparing the estimates of G oty made
by Dlugokencky and Tans (2020), used in the Global Carbon
Budget 2020 (Friedlingstein et al., 2020), with updated es-
timates from Dlugokencky and Tans (2022), used here, we
find that G arm reduced on average by —0.06 GtC yr~! dur-
ing 2010-2019 and by —0.01 GtCyr~! during 1959-2019
due to the new calibration. These changes are well within
the uncertainty ranges reported below. Hence the change in
analytical procedures made by NOAA/ESRL has a negligible
impact on the atmospheric growth rate G arm.

The uncertainty around the atmospheric growth rate is
due to four main factors. First, the long-term reproducibil-
ity of reference gas standards (around 0.03 ppm for 1o from
the 1980s; Dlugokencky and Tans, 2022). Second, small un-
explained systematic analytical errors that may have a du-
ration of several months to 2 years come and go. They
have been simulated by randomizing both the duration and
the magnitude (determined from the existing evidence) in a
Monte Carlo procedure. Third, the network composition of
the marine boundary layer with some sites coming or go-
ing, gaps in the time series at each site, etc. (Dlugokencky
and Tans, 2022). The latter uncertainty was estimated by
NOAA/ESRL with a Monte Carlo method by construct-
ing 100 “alternative” networks (Masarie and Tans, 1995;
NOAA/ESRL, 2019). The second and third uncertainties,
summed in quadrature, add up to 0.085 ppm on average (Dlu-
gokencky and Tans, 2022). Fourth, the uncertainty associ-
ated with using the average CO; concentration from a sur-
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face network to approximate the true atmospheric average
CO» concentration (mass-weighted, in three dimensions) as
needed to assess the total atmospheric CO, burden. In re-
ality, CO», variations measured at the stations will not ex-
actly track changes in total atmospheric burden, with off-
sets in magnitude and phasing due to vertical and horizon-
tal mixing. This effect must be very small on decadal and
longer timescales, when the atmosphere can be considered
well mixed. Preliminary estimates suggest this effect would
increase the annual uncertainty, but a full analysis is not yet
available. We therefore maintain an uncertainty around the
annual growth rate based on the multiple stations’ dataset
ranges between 0.11 and 0.72GtCyr~!, with a mean of
0.61 GtCyr~! for 1959-1979 and 0.17 GtCyr—! for 1980—
2020, when a larger set of stations were available as provided
by Dlugokencky and Tans (2022), but recognize further ex-
ploration of this uncertainty is required. At this time, we es-
timate the uncertainty of the decadal averaged growth rate
after 1980 at 0.02 GtC yr~! based on the calibration and the
annual growth rate uncertainty but stretched over a 10-year
interval. For years prior to 1980, we estimate the decadal
averaged uncertainty to be 0.07 GtC yr~! based on a factor
proportional to the annual uncertainty prior and after 1980
(0.02 x [0.61/0.17] GtC yr~1).

We assign a high confidence to the annual estimates of
G aTMm because they are based on direct measurements from
multiple and consistent instruments and stations distributed
around the world (Ballantyne et al., 2012; Hall et al., 2021).

To estimate the total carbon accumulated in the atmo-
sphere since 1750 or 1850, we use an atmospheric CO;
concentration of 277 £ 3 ppm or 286 & 3 ppm, respectively,
based on a cubic spline fit to ice core data (Joos and Spahni,
2008). For the construction of the cumulative budget shown
in Fig. 3, we use the fitted estimates of CO, concentration
from Joos and Spahni (2008) to estimate the annual atmo-
spheric growth rate using the conversion factors shown in
Table 1. The uncertainty of +3 ppm (converted to £10) is
taken directly from the IPCC’s AR5 assessment (Ciais et
al., 2013). Typical uncertainties in the growth rate in atmo-
spheric CO; concentration from ice core data are equivalent
to +0.1-0.15 GtC yr~! as evaluated from the Law Dome data
(Etheridge et al., 1996) for individual 20-year intervals over
the period from 1850 to 1960 (Bruno and Joos, 1997).

2.3.2 2021 projection

We provide an assessment of Garm for 2021 based on the
monthly calculated global atmospheric CO» concentration
(GLO) through August (Dlugokencky and Tans, 2022), and
bias-adjusted Holt—Winters exponential smoothing with ad-
ditive seasonality (Chatfield, 1978) to project to January
2022. Additional analysis suggests that the first half of the
year (the boreal winter—spring—summer transition) shows
more interannual variability than the second half of the year
(the boreal summer—autumn—winter transition), so that the
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exact projection method applied to the second half of the year
has a relatively smaller impact on the projection of the full
year. Uncertainty is estimated from past variability using the
standard deviation of the last 5 years’ monthly growth rates.

2.4 Ocean COs> sink

The reported estimate of the global ocean anthropogenic CO;
sink Socgan is derived as the average of two estimates. The
first estimate is derived as the mean over an ensemble of
eight global ocean biogeochemistry models (GOBMs, Ta-
bles 4 and A2). The second estimate is obtained as the mean
over an ensemble of seven observation-based data products
(Tables 4 and A3). An eighth product (Watson et al., 2020) is
shown but is not included in the ensemble average as it differs
from the other products by adjusting the flux to a cool, salty
ocean surface skin (see Appendix C3.1 for a discussion of the
Watson product). The GOBMs simulate both the natural and
anthropogenic CO; cycles in the ocean. They constrain the
anthropogenic air—sea CO» flux (the dominant component of
SoceaN) by the transport of carbon into the ocean interior,
which is also the controlling factor of present-day ocean car-
bon uptake in the real world. They cover the full globe and
all seasons and were recently evaluated against surface ocean
carbon observations, suggesting they are suitable to estimate
the annual ocean carbon sink (Hauck et al., 2020). The data
products are tightly linked to observations of fCO; (fugacity
of CO,, which equals pCO» corrected for the non-ideal be-
haviour of the gas; Pfeil et al., 2013), which carry imprints of
temporal and spatial variability but are also sensitive to un-
certainties in gas-exchange parameterizations and data spar-
sity. Their asset is the assessment of interannual and spatial
variability (Hauck et al., 2020). We further use two diagnos-
tic ocean models to estimate Socgan over the industrial era
(1781-1958).

The global fCO;-based flux estimates were adjusted to
remove the pre-industrial ocean source of CO; to the atmo-
sphere of 0.61 GtC yr~! from river input to the ocean (the
average of 0.4540.18 GtCyr—! by Jacobson et al., 2007,
and 0.78 =0.41 GtC yr—! by Resplandy et al., 2018), to sat-
isfy our definition of Socgan (Hauck et al., 2020). The river
flux adjustment was distributed over the latitudinal bands us-
ing the regional distribution of Aumont et al. (2001; north:
0.16 GtC yr—!, tropics: 0.15 GtC yr~!, south: 0.30 GtC yr—1),
acknowledging that the boundaries of Aumont et al. (2001;
namely 20° S and 20° N) are not consistent with the bound-
aries otherwise used in the GCB (30° S and 30° N). A recent
modelling study (Lacroix et al., 2020) suggests that more of
the riverine outgassing is located in the tropics than in the
Southern Ocean, and hence this regional distribution is as-
sociated with a major uncertainty. Anthropogenic perturba-
tions of river carbon and nutrient transport to the ocean are
not considered (see Sect. 2.7).

We derive Socean from GOBMs by using a simulation
(sim A) with historical forcing of climate and atmospheric
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Figure 3. Combined components of the global carbon budget illustrated in Fig. 2 as a function of time, for fossil CO, emissions (EpQs,
including a small sink from cement carbonation; grey) and emissions from land-use change (Ey yc; brown), as well as their partitioning
among the atmosphere (G arm; cyan), ocean (Socgan; blue), and land (S anp; green). Panel (a) shows annual estimates of each flux
and panel (b) the cumulative flux (the sum of all prior annual fluxes) since the year 1850. The partitioning is based on nearly independent
estimates from observations (for G aTy) and from process model ensembles constrained by data (for Socpan and Spanp) and does not
exactly add up to the sum of the emissions, resulting in a budget imbalance (BIyr) which is represented by the difference between the bottom
red line (mirroring total emissions) and the sum of carbon fluxes in the ocean, land, and atmosphere reservoirs. All data are in GtC yr71
(a) and GtC (b). The Eggg estimates are primarily from Gilfillan and Marland (2021), with uncertainty of about +5 % (+10). The Ey yc
estimates are from three bookkeeping models (Table 4) with uncertainties of about 4= 0.7 GtC yr_l. The G aTMm estimates prior to 1959 are
from Joos and Spahni (2008) with uncertainties equivalent to about £0.1-0.15 GtC yr71 and from Dlugokencky and Tans (2022) since 1959
with uncertainties of about £0.07 GtC yr_1 during 1959-1979 and £0.02 GtC yr_1 since 1980. The Socpan estimate is the average from
Khatiwala et al. (2013) and DeVries (2014) with uncertainty of about £30 % prior to 1959, and the average of an ensemble of models and
an ensemble of fCO; data products (Table 4) with uncertainties of about +0.4 GtC yr71 since 1959. The Sp Anp estimate is the average
of an ensemble of models (Table 4) with uncertainties of about +1 GtC yr_l. See the text for more details of each component and their

uncertainties.

CO3,, accounting for model biases and drift from a con-
trol simulation (sim B) with constant atmospheric CO; and
normal-year climate forcing. A third simulation (sim C) with
historical atmospheric CO; increase and normal-year climate
forcing is used to attribute the ocean sink to CO;, (sim C
minus sim B) and climate (sim A minus sim C) effects.
Data products are adjusted to represent the full ocean area
by a simple scaling approach when coverage is below 98 %.
GOBMs and data products fall within the observational con-
straints over the 1990s (2.2 & 0.7 GtC yr_1 , Ciais et al., 2013)
after applying adjustments.

We assign an uncertainty of +0.4 GtCyr~! to the ocean
sink based on a combination of random (ensemble standard
deviation) and systematic uncertainties (GOBMs bias in an-
thropogenic carbon accumulation, previously reported uncer-
tainties in fCO;-based data products; see Sect. C3.3). We as-
sess a medium confidence level to the annual ocean CO; sink
and its uncertainty because it is based on multiple lines of ev-
idence, it is consistent with ocean interior carbon estimates
(Gruber et al., 2019; see Sect. 3.5.5), and the results are con-
sistent in that the interannual variability in the GOBMs and
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data-based estimates are all generally small compared to the
variability in the growth rate of atmospheric CO, concentra-
tion. We refrain from assigning a high confidence because of
the systematic deviation between the GOBM and data prod-
uct trends since around 2002. More details on the Socpan
methodology can be found in Appendix C3.

The ocean CO; sink forecast for the year 2021 is based on
the annual historical and estimated 2021 atmospheric CO;
concentration (Dlugokencky and Tans, 2021), historical and
estimated 2021 annual global fossil fuel emissions from this
year’s carbon budget, and the spring (March, April, May)
oceanic Nifio index (ONI) (NCEP, 2021). Using a non-linear
regression approach, i.e. a feed-forward neural network, at-
mospheric CO»,, the ONI, and the fossil fuel emissions are
used as training data to best match the annual ocean CO,
sink (i.e. combined Socgean estimate from GOBMs and data
products) from 1959 through 2020 from this year’s carbon
budget. Using this relationship, the 2021 Socgan can then
be estimated from the projected 2021 input data using the
non-linear relationship established during the network train-
ing. To avoid overfitting, the neural network was trained with
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Table 4. References for the process models, fCO,-based ocean data products, and atmospheric inversions. All models and products are
updated with new data to the end of year 2020, and the atmospheric forcing for the DGVMs has been updated as described in Sect. C2.2.

Model/data name

Reference

Change from Global Carbon Budget 2020 (Friedlingstein et al.,
2020)

Bookkeeping models for land-use change emissions

BLUE

Updated H&N2017

OSCAR

Hansis et al. (2015)

Houghton and Nassikas (2017)

Gasser et al. (2020)

No change to model, but simulations performed with updated
LUH2 forcing.

Adjustment to treatment of harvested wood products. Update
to FRA2020 and 2021 FAOSTAT for forest cover and land-
use areas. Forest loss in excess of increases in cropland and
pastures represented an increase in shifting cultivation. Extra-
tropical peatland drainage emissions added (based on Qiu et al.,
2021).

Update to OSCAR3.1.2, which provides finer resolution (96
countries and regions). LUH2-GCB2019 input data replaced
by LUH2-GCB2021. FRA2015 (Houghton and Nassikas, 2017)
still used as a second driving dataset, with emissions from
FRA2015 extended to 2020. Constraining based on this year’s
budget data.

Dynamic global vegetation models

CABLE-POP Haverd et al. (2018) Changes in parameterization, minor bug fixes.

CLASSIC Melton et al. (2020)? Non-structural carbohydrates are now explicitly simulated.

CLMS5.0 Lawrence et al. (2019) No change.

DLEM Tian et al. (2015)° Updated algorithms for land-use change processes.

IBIS Yuan et al. (2014)° Several changes in parameterization; dynamic carbon allocation
scheme.

ISAM Meiyappan et al. (201 5)d ISAM now accounting for vertically resolved soil biogeochem-
istry (carbon and nitrogen) module (Shu et al., 2020).

ISBA-CTRIP Delire et al. (2020)¢ Updated spin-up protocol + model name updated (SURFEXv8
in GCB2017) + inclusion of crop harvesting module.

JSBACH Reick et al. (2021)f Wood product pools per plant functional type.

JULES-ES Wiltshire et al. (2021)8 Version 1.1, inclusion of interactive fire; Burton et al. (2019).

LPJ-GUESS Smith et al. (2014)" No code change. Using updated LUH2 and climate forcings.

LPJ Poulter et al. (201 1)i Updated soil data from FAO to HWSD v2.0.

LPX-Bern Lienert and Joos (2018) No change.

OCN Zaehle and Friend (2010)j No change (uses 1294).

ORCHIDEEV3 Vuichard et al. (2019)K Updated growth respiration scheme (revision 7267).

SDGVM Walker et al. (2017)l No changes from version used in Friedlingstein et al. (2019),
except for properly switching from grasslands to pasture in the
blending of the ESA data with LUH2; this change affects mostly
the semi-arid lands.

VISIT Kato et al. (2013)™ Minor bug fix on CHy emissions of last few years.

YIBs Yue and Unger (2015) Inclusion of nutrient limit with down-regulation approach of

Arora et al. (2009).

Global ocean biogeochemistry models

NEMO-PlankTOM 12

MICOM-HAMOCC (NorESM-OCv1.2)

MPIOM-HAMOCC6

NEMO3.6-PISCESv2-gas (CNRM)

FESOM-2.1-REcoM2

MOMG6-COBALT (Princeton)

Wright et al. (2021)"
Schwinger et al. (2016)
Lacroix et al. (2021)
Berthet et al. (2019)°

Hauck et al. (2020)P

Liao et al. (2020)

Updated biochemical model to include 12 functional types.
Change to spin-up, now using a looped 1990.

No change.

Added riverine fluxes; CMIP6 model version including modifi-
cations and bug-fixes in HAMOCC and MPIOM.

small bug fixes; updated model spin-up (new forcings); atm
forcing is now JRAS5-Do including 2020 year and varying
riverine freshwater inputs.

Updated physical model version FESOM2.1, and including sec-
ond zooplankton and second detritus group. Used new atmo-
spheric CO, time series provided by GCB.

Adjustment of the piston velocity prefactor (0.337 to
0.251 cph m~2572). MOMS6 update from GitHub version
b748b1b (2018-10-03) to version 69a096b (2021-02-24). Up-
dated model spin-up and simulation using JRA55-do v1.5. Used
new atmospheric CO; time series provided by GCB.

CESM-ETHZ Doney et al. (2009) No change in the model. Used new atmospheric CO, time series
provided by GCB.
NEMO-PISCES (IPSL) Aumont et al. (2015) No change.
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Table 4. Continued.

P. Friedlingstein et al.: Global Carbon Budget 2021

Model/data name

Reference

Change from Global Carbon Budget 2020 (Friedlingstein et al.,
2020)

Ocean fCO;-based data products

Landschiitzer (MPI-SOMFFN)

Rodenbeck (Jena-MLS)

CMEMS-LSCE-FFNNv2

CSIR-ML6

Watson et al.

NIES-NN
JMA-MLR
OS-ETHZ-GRaCER

Landschiitzer et al. (2016)

Rodenbeck et al. (2014)

Chau et al. (2022)

Gregor et al. (2019)

Watson et al. (2020)

Zeng et al. (2014)
Tida et al. (2021)
Gregor and Gruber (2021)

Update to SOCATv2021 measurements and time period 1982—
2020; the estimate now covers the full open ocean and coastal
domain as well as the Arctic Ocean extension described in
Landschiitzer et al. (2020).

Update to SOCATv2021 measurements, time period extended
to 1957-2020, involvement of a multi-linear regression for ex-
trapolation (combined with an explicitly interannual correc-
tion), use of OCIM (DeVries, 2014) as decadal prior, carbon-
ate chemistry parameterization now time-dependent, grid reso-
lution increased to 2.5 x 2°, adjustable degrees of freedom now
also covering shallow areas and Arctic, some numerical revi-
sions.

Update to SOCATv2021 measurements and time period 1985—
2020. The CMEMS-LSCE-FFENNv2 product now covers both
the open ocean and coastal regions (see in Chau et al., 2022, for
model description and evaluation).

Updated to SOCATv2021. Reconstruction now spans the period
1985-2020 and includes updates using the SeaFlux protocols
(Fay et al., 2021).

Updated to SOCAT v2021. A monthly climatology of the skin
temperature deviation as calculated for years 20032011 is now
used in place of a single global average figure. SOM calculation
updated to treat the Arctic as a separate biome.

New this year.

New this year.

New this year.

Atmospheric inversions

CAMS

CarbonTracker Europe (CTE)

Chevallier et al. (2005)4

van der Laan-Luijkx et al. (2017)

Jena CarboScope Rodenbeck et al. (2018)F

UoE in situ Feng et al. (2016)"
NISMON-CO, Niwa et al. (2017)!
CMS-Flux Liu et al. (2021)

No change.

No change.

No change.

Fossil fuels now from GCP-GridFEDv2021.2.
Some inversion parameters were changed.
New this year.

4 See also Asaadi et al. (2018). b See also Tian et al. (2011). € The dynamic carbon allocation scheme was presented by Xia et al. (2015). d See also Jain et al. (2013). Soil
biogeochemistry is updated based on Shu et al. (2020). © See also Decharme et al. (2019) and Seferian et al. (2019). f Mauritsen et al. (2019). & See also Sellar et al. (2019) and
Burton et al. (2019). JULES-ES is the Earth System configuration of the Joint UK Land Environment Simulator as used in the UK Earth System Model (UKESM). h {0 account
for the differences between the derivation of shortwave radiation from CRU cloudiness and DSWRF from CRUJRA, the photosynthesis scaling parameter a was modified
(=15 %) to yield similar results. i Compared to published version, decreased LPJ wood harvest efficiency so that 50 % of biomass was removed off-site compared to 85 % used
in the 2012 budget. Residue management of managed grasslands increased so that 100 % of harvested grass enters the litter pool. J See also Zaehle et al. (2011). k See also
Zaehle and Friend (2010) and Krinner et al. (2005). I See also Woodward and Lomas (2004). ™ See also Ito and Inatomi (2012). ™ See also Buitenhuis et al. (2013). © See also
Séférian et al. (2019). P See also Schourup-Kristensen et al. (2014). 9 See also Remaud et al. (2018). " See also Rodenbeck et al. (2003). $ See also Feng et al. (2009) and Palmer

etal. (2019). ! See also Niwa et al. (2020).

a variable number of hidden neurons (varying between 2-5),
and 20 % of the randomly selected training data were with-
held for independent internal testing. Based on the best out-
put performance (tested using the 20 % withheld input data),
the best performing number of neurons was selected. In a
second step, we trained the network 10 times using the best
number of neurons identified in step 1 and different sets of
randomly selected training data. The mean of the 10 training
runs is considered our best forecast, whereas the standard de-
viation of the 10 ensembles provides a first-order estimate of
the forecast uncertainty. This uncertainty is then combined
with the Socgan uncertainty (0.4 GtC yr’l) to estimate the
overall uncertainty of the 2021 prediction.
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2.5 Terrestrial CO» sink

The terrestrial land sink (Spanp) is thought to be due to the
combined effects of fertilization by rising atmospheric CO,
and N inputs on plant growth, as well as the effects of cli-
mate change such as the lengthening of the growing season
in northern temperate and boreal areas. S anp does not in-
clude land sinks directly resulting from land use and land-
use change (e.g. regrowth of vegetation) as these are part of
the land-use flux (ELyc), although system boundaries make
it difficult to exactly attribute CO, fluxes on land between
Stanp and Epyc (Erb et al., 2013).

StaND is estimated from the multi-model mean of 17
DGVMs (Table Al). As described in Appendix C4, DGVM
simulations include all climate variability and CO, effects
over land, with 12 DGVMs also including the effect of N
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inputs. The DGVM estimate of Spanp does not include the
export of carbon to aquatic systems or its historical perturba-
tion, which is discussed in Appendix D3. See Appendix C4
for DGVM evaluation and uncertainty assessment for S_AND,
using the International Land Model Benchmarking system
(ILAMB; Collier et al., 2018). More details on the SpanD
methodology can be found in Appendix C4.

Like the ocean forecast, the land CO; sink (Spanp) fore-
cast is based on the annual historical and estimated 2021 at-
mospheric CO; concentration (Dlugokencky and Tans 2021),
historical and estimated 2021 annual global fossil fuel emis-
sions from this year’s carbon budget, and the summer (June,
July, August) ONI (NCEP, 2021). All training data are again
used to best match Sp anp from 1959 through 2020 from this
year’s carbon budget using a feed-forward neural network.
To avoid overfitting, the neural network was trained with a
variable number of hidden neurons (varying between 2—15),
larger than for Socgan prediction due to the stronger land
carbon interannual variability. As done for Socgan, a pre-
training step selects the optimal number of hidden neurons
based on 20 % withheld input data, and in a second step, an
ensemble of 10 forecasts is produced to provide the mean
forecast plus uncertainty. This uncertainty is then combined
with the Spanp uncertainty for 2020 (1.0 GtC yr‘l) to esti-
mate the overall uncertainty of the 2021 prediction.

2.6 The atmospheric perspective

The worldwide network of in situ atmospheric measurements
and satellite-derived atmospheric CO; column (xCO») obser-
vations put a strong constraint on changes in the atmospheric
abundance of CO». This is true globally (hence our large con-
fidence in G aTM), but also regionally in regions with suffi-
cient observational density found mostly in the extra-tropics.
This allows atmospheric inversion methods to constrain the
magnitude and location of the combined total surface CO,
fluxes from all sources, including fossil and land-use change
emissions and land and ocean CO; fluxes. The inversions as-
sume Efros to be well known, and they solve for the spa-
tial and temporal distribution of land and ocean fluxes from
the residual gradients of CO, between stations that are not
explained by fossil fuel emissions. By design, such systems
close the carbon balance (Bpy = 0) and thus provide an addi-
tional perspective on the independent estimates of the ocean
and land fluxes.

This year’s release includes six inversion systems that are
described in Table A4. Each system is rooted in Bayesian in-
version principles but uses slightly different methodologies.
These differences concern the selection of atmospheric CO»
data and the choice of a priori fluxes to refine with these
data. They also differ in spatial and temporal resolution, as-
sumed correlation structures, and mathematical approach of
the models (see references in Table A4 for details). Impor-
tantly, the systems use a variety of transport models, which
was demonstrated to be a driving factor behind differences
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in atmospheric inversion-based flux estimates, and specifi-
cally their distribution across latitudinal bands (Gaubert et
al., 2019; Schuh et al., 2019). Multiple inversion systems
(UoE, CTE, and CAMS) were previously tested with satellite
xCO; retrievals from GOSAT or OCO-2 measurements, but
their results at the larger scales (as discussed in this work)
did not deviate substantially from their in situ counterparts
and are therefore not separately included. One inversion this
year (CMS-Flux) used ACOS-GOSAT v9 retrievals between
July 2009 and December 2014 and OCO-2 b10 retrievals be-
tween January to December 2015, in addition to the in situ
observational CO, mole fraction records.

The original products delivered by the inverse modellers
were modified to facilitate the comparison to the other ele-
ments of the budget, specifically on three accounts: (1) global
total fossil fuel emissions, (2) riverine CO; transport, and
(3) cement carbonation CO, uptake. Details are given below.
We note that with these adjustments the inverse results no
longer represent the net atmosphere—surface exchange over
land—ocean areas as sensed by atmospheric observations. In-
stead, for land, they become the net uptake of CO, by vegeta-
tion and soils that is not exported by fluvial systems, similar
to the DGVM estimates. For oceans, they become the net up-
take of anthropogenic CO,, similar to the GOBMs estimates.

The inversion systems prescribe global fossil fuel emis-
sions based on the GCP’s Gridded Fossil Emissions Dataset
version 2021.2 (GCP-GridFEDv2021.2; Jones et al., 2021b),
which is an update to 2019 of the first version of
GCP-GridFED presented by Jones et al. (2021a). GCP-
GridFEDv2021.2 scales gridded estimates of CO» emissions
from EDGARvV4.3.2 (Janssens-Maenhout et al., 2019) within
national territories to match national emissions estimates
provided by the GCB for the years 1959-2020, which were
compiled following the methodology described in Sect. 2.1
with all datasets available on 14 August 2021 (Robbie An-
drew, personal communication, 2021). Small differences be-
tween the systems due to for instance regridding to the trans-
port model resolution are corrected for in the latitudinal par-
titioning we present, to ensure agreement with the estimate
of Efpops in this budget. We also note that the ocean fluxes
used as prior by five out of six inversions are part of the suite
of the ocean process model or fCO, data products listed in
Sect. 2.4. Although these fluxes are further adjusted by the
atmospheric inversions, it makes the inversion estimates of
the ocean fluxes not completely independent of Socgan as-
sessed here.

To facilitate comparisons to the independent Socgan and
SLAND, We used the same corrections for transport and out-
gassing of carbon transported from land to ocean, as done
for the observation-based estimates of Socpan (see Ap-
pendix C3). Furthermore, the inversions did not include a
cement carbonation sink (see Sect. 2.1), and therefore this
GCB component is implicitly part of their total land sink es-
timate. In the numbers presented in this budget, each year’s
global carbonation sink from cement was subtracted from
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each year’s estimated land sink in each inversion, distributed
proportionally to fossil fuel emissions per region (north, trop-
ics, and south).

The atmospheric inversions are evaluated using vertical
profiles of atmospheric CO; concentrations (Fig. B4). More
than 30 aircraft programmes over the globe, either regular
programmes or repeated surveys over at least 9 months, have
been used to assess model performance (with space—time
observational coverage sparse in the SH and tropics, and
denser in NH mid-latitudes; Table A6). The six models are
compared to the independent aircraft CO, measurements be-
tween 2 and 7 km above sea level between 2001 and 2020.
Results are shown in Fig. B4 and discussed in Sect. 3.7.

With a relatively small ensemble (N = 6) of systems that
moreover share some a priori fluxes used with one another,
or with the process-based models, it is difficult to justify us-
ing their mean and standard deviation as a metric for un-
certainty across the ensemble. We therefore report their full
range (min—-max) without their mean. More details on the
atmospheric inversions methodology can be found in Ap-
pendix C5.

2.7 Processes not included in the global carbon budget

The contribution of anthropogenic CO and CHy4 to the global
carbon budget is not fully accounted for in Eq. (1) and is
described in Appendix D1. The contributions of other car-
bonates to CO, emissions is described in Appendix D2. The
contribution of anthropogenic changes in river fluxes is con-
ceptually included in Eq. (1) in Socgan and in Spanp, but
it is not represented in the process models used to quantify
these fluxes. This effect is discussed in Appendix D3. Simi-
larly, the loss of additional sink capacity from reduced forest
cover is missing in the combination of approaches used here
to estimate both land fluxes (EpLyc and Spanp) and its poten-
tial effect is discussed and quantified in Appendix D4.

3 Results

For each component of the global carbon budget, we present
results for three different time periods: the full historical pe-
riod, from 1850 to 2020; the six decades in which we have
atmospheric concentration records from Mauna Loa (1960-
2020), with a specific focus on last year (2020); and the pro-
jection for the current year (2021). Subsequently, we assess
the combined constraints from the budget components (often
referred to as a bottom-up budget) against the top-down con-
straints from inverse modelling of atmospheric observations.
We do this for the global balance of the last decade, as well
as for a regional breakdown of land and ocean sinks by broad
latitude bands.
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3.1 Fossil COs emissions
3.1.1 Historical period 1850-2020

Cumulative fossil CO; emissions for 1850-2020 were
455 £ 25 GtC, including the cement carbonation sink (Fig. 3,
Table 8).

In this period, 46 % of fossil CO, emissions came from
coal, 35 % from oil, 14 % from natural gas, 3 % from decom-
position of carbonates, and 1 % from flaring.

In 1850, the UK accounted for 62 % of global fossil CO,
emissions. In 1891 the combined cumulative emissions of the
current members of the European Union reached and subse-
quently surpassed the level of the UK. Since 1917 US cumu-
lative emissions have been the largest. Over the entire period
1850-2020, US cumulative emissions amounted to 110 GtC
(25 % of world total), the EU’s to 80 GtC (18 %), and China’s
to 60 GtC (14 %).

There are three additional global datasets that include all
sources of fossil CO, emissions: CDIAC-FF (Gilfillan and
Marland, 2021), CEDS version v_2021_04_21 (Hoesly et
al., 2018; O’Rourke et al., 2021), and PRIMAP-hist version
2.3.1 (Giitschow et al., 2016, 2021), although these datasets
are not independent. CDIAC-FF has the lowest cumulative
emissions over 1750-2018 at 437 GtC, GCP has 443 GtC,
CEDS 445 GtC, PRIMAP-hist TP 453 GtC, and PRIMAP-
hist CR 455 GtC. CDIAC-FF excludes emissions from lime
production, while neither CDIAC-FF nor GCP explicitly
include emissions from international bunker fuels prior to
1950. CEDS has higher emissions from international ship-
ping in recent years, while PRIMAP-hist has higher fugitive
emissions than the other datasets. However, in general these
four datasets are in relative agreement with total historical
global emissions of fossil CO,.

3.1.2 Recent period 1960-2020

Global fossil CO; emissions, Eros (including the cement
carbonation sink), have increased every decade from an av-
erage of 3.0£0.2GtCyr~! for the decade of the 1960s
to an average of 9.5+ 0.5GtC yr—! during 2011-2020 (Ta-
ble 6, Figs. 2, 4 and 5). The growth rate in these emis-
sions decreased between the 1960s and the 1990s, from
43%yr~! in the 1960s (1960-1969), 3.2% yr~! in the
1970s (1970-1979), and 1.6 % yr~! in the 1980s (1980-
1989), t0 0.9 % yr~! in the 1990s (1990-1999). After this pe-
riod, the growth rate began increasing again in the 2000s at an
average growth rate of 3.0 % yr~!, decreasing to 0.6 % yr—!
for the last decade (2011-2020). China’s emissions increased
by +1.0%yr~! on average over the last 10 years, domi-
nating the global trend, followed by India’s emissions in-
crease by +3.9 % yr~—!, while emissions decreased in EU27
by —1.9%yr~!, and in the USA by —1.1 % yr~!. Figure 6
illustrates the spatial distribution of fossil fuel emissions for
the 2011-2020 period.
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Figure 4. Components of the global carbon budget and their uncertainties as a function of time, presented individually for (a) fossil CO,
emissions (Eppg), (b) growth rate in atmospheric CO; concentration (G aTM ), (¢) emissions from land-use change (E7 yc), (d) the land CO,
sink (SLAND), (e) the ocean CO; sink (Socgan), and (f) the budget imbalance that is not accounted for by the other terms. Positive values

of SanD and Socean represent a flux from the atmosphere to land or the ocean. All data are in GtC yr

~1 with the uncertainty bounds

representing +1 standard deviation in shaded colour. Data sources are as in Fig. 3. The red dots indicate our projections for the year 2021

and the red error bars the uncertainty in the projections (see methods).

Eros includes the uptake of CO, by cement via carbon-
ation which has increased with increasing stocks of cement
products, from an average of 20 MtC yr~! (0.02 GtCyr~—!) in
the 1960s to an average of 200 MtC yr~! (0.2 GtC yr~!) dur-
ing 2011-2020 (Fig. 5).

https://doi.org/10.5194/essd-14-1917-2022

3.1.3 Final year 2020

Global fossil CO, emissions were 5.4 % lower in 2020 than
in 2019, because of the COVID-19 pandemic, with a decline
of 0.5GtC to reach 9.5+ 0.5 GtC (9.3 4+ 0.5 GtC when in-
cluding the cement carbonation sink) in 2020 (Fig. 5), dis-
tributed among coal (40 %), oil (32 %), natural gas (21 %),
cement (5 %), and others (2 %). Compared to the previous
year, 2020 emissions from coal, oil, and gas declined by
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Figure 5. Fossil CO; emissions for (a) the globe, including an uncertainty of +5 % (grey shading) and a projection through the year 2021
(red dot and uncertainty range); (b) territorial (solid lines) and consumption (dashed lines) emissions for the top three country emitters (USA,
China, India) and for the European Union (EU27); (¢) global emissions by fuel type, including coal, oil, gas, and cement, and cement minus
cement carbonation (dashed); and (d) per capita emissions the world and for the large emitters as in panel (b). Territorial emissions are
primarily from Gilfillan and Marland (2021) except national data for the USA and EU27 for 1990-2018, which are reported by the countries
to the UNFCCC as detailed in the text; consumption-based emissions are updated from Peters et al. (2011b). See Sect. 2.1 and Appendix C1

for details of the calculations and data sources.

4.4 %, 9.7 %, and 2.3 % respectively, while emissions from
cement increased by 0.8 %. All growth rates presented are
adjusted for the leap year, unless stated otherwise.

In 2020, the largest absolute contributions to global fossil
CO; emissions were from China (31 %), the USA (14 %), the
EU27 (7 %), and India (7 %). These four regions account for
59 % of global CO, emissions, while the rest of the world
contributed 41 %, including international aviation and ma-
rine bunker fuels (2.9 % of the total). Growth rates for these
countries from 2019 to 2020 were +1.4 % (China), —10.6 %
(USA), —10.9 % (EU27), and —7.3 % (India), with —7.0 %
for the rest of the world. The per capita fossil CO; emissions
in 2020 were 1.2tC person™! yr~! for the globe, and were 3.9
(USA), 2.0 (China), 1.6 (EU27) and 0.5 (India) tC per person
per year for the four highest emitting countries (Fig. 5).

The COVID-19-induced decline in emissions of —5.4 % in
2020 is close to the projected decline of —6.7 %, which was
the median of four approaches, published in Friedlingstein
et al. (2020) (Table 7). Of the four approaches, the “GCP”
method was closest at —5.8 %. That method was based on na-
tional emissions projections for China, the USA, the EU27,
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and India using reported monthly activity data when avail-
able and projections of gross domestic product corrected for
trends in fossil fuel intensity (/ros) for the rest of the world.
Of the regions, the projection for the EU27 was the least
accurate, and the reasons for this are discussed by Andrew
(2021).

3.1.4 Year 2021 projection

Globally, we estimate that global fossil CO, emissions
will rebound 4.8 % in 2021 (4.2% to 5.4 %) to 9.9GtC
(36.4 GtCO»), returning to near their 2019 emission levels of
10.0 GtC (36.7 GtCO3). Global increases in 2021 emissions
per fuel types are +6.3 % (range 5.5 % to 7.0 %) for coal,
+4.0 % (range 2.6 % to 5.4 %) for oil, +3.8 % (range 2.8 %
to 4.8 %) for natural gas, and +3.2 % (range 1.7 % to 4.6 %)
for cement.

For China, projected fossil emissions in 2021 are expected
to increase by 4.3 % (range 3.0 % to 5.4 %) compared with
2020 emissions, bringing 2021 emissions for China to around
3.0GtCyr~! (11.1 GtCO, yr~!). Chinese emissions appear

https://doi.org/10.5194/essd-14-1917-2022
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Figure 6. The 2011-2020 decadal mean components of the global carbon budget, presented for (a) fossil CO, emissions (Eggs), (b) land-
use change emissions (Ep yc), (¢) the ocean CO, sink (SocgaN), and (d) the land CO; sink (Sp onp). Positive values for Erpg and Ep yc
represent a flux to the atmosphere, whereas positive values of Socpan and Spanp represent a flux from the atmosphere to the ocean or
the land. In all panels, yellow/red (green/blue) colours represent a flux from (into) the land—ocean to (from) the atmosphere. All units are
in kgC m~2 yrfl. Note the different scales in each panel. Egpg data shown are from GCP-GridFEDv2021.2. Ej yc data shown are only
from BLUE as the updated H&N2017 and OSCAR do not resolve gridded fluxes. Socpan data shown are the average of GOBMs and data
product means, using GOBMs simulation A; no adjustment for bias and drift is applied to the gridded fields (see Sect. 2.4). Sp ANDp data

shown are the average of DGVMs for simulation S2 (see Sect. 2.5).

to have risen in both 2020 and 2021 despite the economic
disruptions of COVID-19. Increases in fuel-specific projec-
tions for China are +4.1 % for coal, +4.4 % for oil, +12.8 %
natural gas, and a decrease of 0.1 % for cement.

For the USA, the Energy Information Administration
(EIA) emissions projection for 2021 combined with cement
clinker data from USGS gives an increase of 6.8 % (range
6.6 % to 7.0 %) compared to 2020, bringing USA 2021 emis-
sions to around 1.4 GtC yr—! (5.0 GtCO, yr~!). This is based
on separate projections for coal of +17.1 %, oil 4+9.0 %, nat-
ural gas —0.8 %, and cement +0.3 %.

For the European Union, our projection for 2021 is for
an increase of 6.3 % (range 4.3 % to 8.3 %) over 2020, with
2021 emissions around 0.8 GtC yr—! (2.8 GtCO; yr~"). This
is based on separate projections for coal of +14.6 %, oil
+3.7 %, natural gas +4.6 %, and cement +0.3 %.

For India, our projection for 2021 is an increase of 11.2 %
(range of 10.7 % to 11.7 %) over 2020, with 2021 emissions
around 0.7 GtC yr~! (2.7 GtCO, yr™!). This is based on sep-
arate projections for coal of +13.9 %, oil +3.4 %, natural gas
+4.8 %, and cement +21.6 %.

https://doi.org/10.5194/essd-14-1917-2022

For the rest of the world, the expected growth rate for 2021
is 3.2 % (range 2.0 % to 4.3 %). This is computed using the
GDP projection for the world (excluding China, the USA,
the EU, and India) of 4.4 % made by the IMF (2022) and a
decrease in Iros of —1.7 % yr‘l, which is the average over
2011-2020. The uncertainty range is based on the standard
deviation of the interannual variability in /rog during 2011-
2020 of 0.6 % yr~' and our estimates of uncertainty in the
IMF’s GDP forecast of 0.6 %. The methodology allows in-
dependent projections for coal, oil, natural gas, cement, and
other components, which add to the total emissions in the rest
of the world. The fuel-specific projected 2021 growth rates
for the rest of the world are: +3.2 % (range 0.7 % to 5.8 %)
for coal, +2.3 % (—0.3 % to +4.9 %) for oil, +4.1 % (2.6 %
to 5.7 %) for natural gas, and +4.8 % (+2.7 % to +6.9 %) for
cement.

Independently, the IEA has published two forecasts of
global fossil energy CO; emissions (i.e. a subset of fossil
CO; emissions), the first in April (4.8 %; IEA, 2021a) which
was then revised in October to 4 % (IEA, 2021b). In March
2022 they also published a new, preliminary estimate of 6 %
growth (IEA, 2021a). Carbon Monitor produces estimates of
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Table 5. Comparison of results from the bookkeeping method and budget residuals with results from the DGVMs and inverse estimates for
different periods, the last decade, and the last year available. All values are in GtC yr_l. The DGVM uncertainties represent 1o of the
decadal or annual (for 2020 only) estimates from the individual DGVMs: for the inverse models the range of available results is given. All
values are rounded to the nearest 0.1 GtC and therefore columns do not necessarily add to zero.

Mean (GtC yr— )

1960s 1970s 1980s 1990s 2000s  2011-2020 2020
Land-use change emissions (ELyc)
Bookkeeping method — net flux (1a) 1.6+£0.7 1.3+£0.7 12+£0.7 1.3+£0.7 12+£0.7 1.1+£0.7 09+0.7
Bookkeeping method — source 34£09 33£0.8 34£0.8 3.6x£0.6 3.7£0.6 3.8£0.6 3.6£0.6
Bookkeeping method — sink -19+04 —-20+£04 —-2.1£03 -234+04 -25+04 27404 —2.8+04
DGVMs — net flux (1b) 1.6+0.5 1.3+£04 14405 14405 14405 1.5+05 1.4+07
Terrestrial sink (Sp AND)
Residual sink from global budget (Epos + ELyc— 1.84+0.8 1.9+0.8 1.6+0.9 25+09 2.7+£0.9 2.8+0.9 2.1+0.9
G AtM — SoCEAN) (22)
DGVMs (2b) 1.2+05 2.0+05 1.8+0.5 234+04 2.6+0.5 3.1+06 29+1.0
Total land fluxes (S_aAND — ELUC)
GCB2021 Budget (2b-1a) —0.4+0.8 0.8+0.8 0.5+0.9 1.0+0.8 1.44+09 1.94+09 20+1.2
Budget constraint (2a-1a) 02+04 0.6+0.5 0.34+0.5 1.24+0.5 1.54+0.6 1.7+0.6 1.3+0.6
DGVMs — net (2b-1b) —04£0.6 0.7+0.4 03+04 0904 12+04 1.6+£0.6 1.5£0.38
Inversions™ - - 05062 09-123) 1.3-1.8(3) 13-2.0(06) —0.1-1.3(6)

* Estimates are adjusted for the pre-industrial influence of river fluxes, for the cement carbonation sink, and adjusted to common Eggg (Sect. 2.6). The ranges given include

varying numbers (in parentheses) of inversions in each decade (Table A4).

global emissions with low temporal lag, and their estimates
suggest that emissions were 5.1 % higher than in 2020 (Car-
bon Monitor, 2022).

3.2 Emissions from land-use changes

3.2.1 Historical period 1850—2020

Cumulative CO, emissions from land-use changes (ELuc)
for 1850-2020 were 200 =£ 65 GtC (Table 8; Figs. 3, 13). The
cumulative emissions from Epyc are particularly uncertain,
with large spread among individual estimates of 140 GtC
(updated H&N2017), 270 GtC (BLUE), and 195 GtC (OS-
CAR) for the three bookkeeping models and a similar wide
estimate of 190 4+ 60 GtC for the DGVMs (all cumulative
numbers are rounded to the nearest 5 GtC). These estimates
are broadly consistent with indirect constraints from vege-
tation biomass observations, giving a cumulative source of
155 + 50 GtC over the 1901-2012 period (Li et al., 2017).
However, given the large spread, a best estimate is difficult
to ascertain.

3.2.2 Recent period 1960-2020

In contrast to growing fossil emissions, CO, emissions from
land use, land-use change, and forestry have remained rela-
tively constant, at around 1.3 £0.7 GtC ylr_1 over the 1970—
1999 period, and even show a slight decrease over the last
20 years, reaching 1.1 £ 0.7 GtC yr~! for the 2011-2020 pe-
riod (Table 6, Fig. 4), but with large spread across estimates
(Table 5, Fig. 7). Emissions have been relatively constant in
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the DGVMs ensemble of models since the 1970s, with sim-
ilar mean values until the 1990s as the bookkeeping mean
and large model spread (Table 5, Fig. 7). The DGVMs aver-
age grows larger than the bookkeeping average in the recent
decades and shows no sign of decreasing emissions, which
is, however, expected as DGVM-based estimates include the
loss of additional sink capacity, which grows with time, while
the bookkeeping estimates do not (Appendix D4).

Eruc is a net term of various gross fluxes, which com-
prise emissions and removals. Gross emissions are on aver-
age 2—4 times larger than the net Epyc emissions, and re-
mained largely constant over the last 60 years, with a mod-
erate increase from an average of 3.4 +0.9 GtC yr~! for the
decade of the 1960s to an average of 3.8 £ 0.6 GtC yr~! dur-
ing 2011-2020 (Fig. 7, Table 5), showing the relevance of
land management such as harvesting or rotational agricul-
ture. Increases in gross removals, from 1.9 + 0.4 GtC ylr_1
for the 1960s to 2.7+ 0.4 GtCyr~—! for 2011-2020, were
larger than the increase in gross emissions. Since the pro-
cesses behind gross removals, foremost forest regrowth and
soil recovery, are all slow, while gross emissions include a
large instantaneous component, short-term changes in land-
use dynamics, such as a temporary decrease in deforesta-
tion, influence gross emissions dynamics more than gross re-
moval dynamics. It is these relative changes to each other
that explain the decrease in net E1 yc emissions over the last
two decades and the last few years. Gross fluxes differ more
across the three bookkeeping estimates than net fluxes, which
is expected due to different process representation; in partic-
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Table 6. Decadal mean in the five components of the anthropogenic CO, budget for different periods, and last year available. All values
are in GtCyr~!, and uncertainties are reported as +1o. Fossil CO emissions include cement carbonation. The table also shows the budget
imbalance (Bpy), which provides a measure of the discrepancies among the nearly independent estimates and has an uncertainty exceeding
+1GtC yr_l. A positive imbalance means the emissions are overestimated and/or the sinks are too small. All values are rounded to the
nearest 0.1 GtC and therefore columns do not necessarily add to zero.

Mean (GtC yr_1 )

1960s 1970s 1980s 1990s 2000s 2011- 2020 2021
2020 (Projection)

Total emissions (Eros + ELuc)
Fossil CO; emissions (Epps)™ 30£02 47+£02 55+03 63+03 7.7+£04 95405 93405 9.9+0.5
Land-use change emissions (Epyc) 1.6+0.7 1.3£0.7 1.24+0.7 1.3+0.7 1.24+0.7 1.1+0.7 0.9+0.7 0.84+0.7
Total emissions 46+07 59+£07 67+£08 7.7+08 9.0+0.8 10.6+0.8 102+0.8 10.7+0.9
Partitioning
Growth rate in atmospheric COp (Gatv) 1.7+£0.07 2.8+0.07 3.4+0.02 3.1+£002 40+£002 51£002 50£02 53+0.1
Ocean sink (SOCEAN) 1.1+0.4 1.3+£04 1.8+04 20+04 22+04 28+04 3.0+04 29+04
Terrestrial sink (S AND) 1.2+05 20+£0.5 1.8+0.5 234+04 26+£05 31+£06 29+£1.0 33+1.0
Budget imbalance
Bmv = Eros + ELuc— 0.6 —-0.2 —-0.2 0.2 0.1 —-0.3 —0.8 -0.7

(G At™M + SOCEAN + SLAND)

* Fossil emissions excluding the cement carbonation sink amount to 3.1 + 0.2 GtC yr_I ,47£02GtCyr~ 155+03GtC yr— 1 6.4+03GtC yro 1,79+04GtC yr_l s
and 9.7+ 0.5 GtC yr*l for the decades 1960s to 2010s respectively and to 9.5 + 0.5 GtC yr*1 for 2020.

ular, treatment of shifting cultivation, which increases both
gross emissions and removals, differs across models.

There is a decrease in net CO, emissions from land-use
change over the last decade (Fig. 7, Table 6), in contrast
to earlier estimates of no clear trend across Epyc estimates
(Friedlingstein et al., 2020; Hong et al., 2021). The trend in
the last decade is now about —4 % yr~!, compared to the
+1.8% yr~! reported by Friedlingstein et al. (2020). This
decrease is principally attributable to changes in Epyc es-
timates from BLUE and OSCAR, which relate to changes in
the underlying land-use forcing, LUH2 (Chini et al., 2021;
Hurtt et al., 2020), based on HYDE3.3 (Klein Goldewijk
et al., 2017a, b): HYDE3.3 now incorporates updated esti-
mates of agricultural areas by the FAO and uses multi-annual
land-cover maps from satellite remote sensing (ESA CCI
Land Cover) to constrain contemporary land-cover patterns
(see Appendix C2.2 for details). These changes lead to lower
global Eyc estimates in the last two decades compared to
earlier versions of the global carbon budget due most no-
tably to lower emissions from cropland expansion, particu-
larly in the tropical regions. Rosan et al. (2021) showed that
for Brazil, the new HYDE3.3 version is closer to indepen-
dent, regional estimates of land-use and land-cover change
(MapBiomas, 2021) with respect to spatial patterns, but it
shows less land-use and land-cover changes than these in-
dependent estimates, while HYDE3.2-based estimates had
shown higher changes and lower emissions. The update in
land-use forcing leads to a decrease in estimated emissions
in Brazil across several models after the documented de-
forestation peak of 2003-2004 that preceded policies and
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monitoring systems decreasing deforestation rates (Rosan et
al., 2021). However, estimated emissions based on the new
land-use forcing do not reflect the rise in Brazilian defor-
estation in the last few years (Silva Junior et al., 2021), and
associated increasing emissions from deforestation would
have been missed here. The update in FAO agricultural ar-
eas in Brazil also implied that substantial interannual vari-
ability reported to earlier FAO assessment and captured by
the HYDE3.2 version since 2000 was removed. Due to the
asymmetry of (fast) decay (like clearing by fire) and (slower)
regrowth, such reduced variability is expected to decrease an-
nual emissions. Also, the approach by Houghton and Nas-
sikas (2017) smooths land-use area changes before calcu-
lating carbon fluxes by a 5-year running mean, hence the
three emission estimates are in better agreement than in pre-
vious GCB estimates. However, differences still exist, which
highlight the need for accurate knowledge of land-use tran-
sitions and their spatial and temporal variability. A further
caveat is that global land-use change data for model input
does not capture forest degradation, which often occurs on
small scales or without forest cover changes easily detectable
from remote sensing and poses a growing threat to forest area
and carbon stocks that may surpass deforestation effects (e.g.
Matricardi et al., 2020; Qin et al., 2021).

Overall, therefore, we assign low confidence to the change
towards a decreasing trend of land-use emissions over the
last two decades as seen compared to the estimate of the
global carbon budget 2020 (Friedlingstein et al., 2020). Our
approach aims at using the most up-to-date data and meth-
ods, such as accounting for revisions of living databases
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Figure 7. CO; exchanges between the atmosphere and the terrestrial biosphere as used in the global carbon budget (black with £1o
uncertainty in grey shading in all panels). (a) CO, emissions from land-use change (£ yc) with estimates from the three bookkeeping
models (yellow lines) and DGVMs (green) shown individually, with DGVM ensemble means (dark green). The dashed line identifies the
pre-satellite period before the inclusion of peatland burning. (b) CO, gross sinks (positive, from regrowth after agricultural abandonment
and wood harvesting) and gross sources (negative, from decaying material left dead on site, products after clearing of natural vegetation for
agricultural purposes, wood harvesting, and for BLUE, degradation from primary to secondary land through usage of natural vegetation as
rangeland, and also from emissions from peat drainage and peat burning) from the three bookkeeping models (yellow lines). The sum of
the gross sinks and sources is Ej yc shown in panel (a). (¢) Land CO; sink (Sp anp) With individual DGVM estimates (green). (d) Total

atmosphere—land CO; fluxes (S; AND — Eruc), With individual DGVMs (green) and their multi-model mean (dark green).

of country-level agricultural statistics from FAO or includ-
ing satellite remote-sensing information for spatial alloca-
tion. While we start from a well-documented methodology
to provide gridded land-use data (Chini et al., 2021), not all
changes in individual components are always documented,
complicating the explanation of changes from one GCB to
the next. The rising number of pan-tropical or global esti-
mates of carbon stock changes based on satellite remote sens-
ing of carbon densities and forest cover changes (Fan et al.,
2019; Qin et al., 2021; Xu et al., 2022; Feng et al., 2022)
may seem a promising path for independent evaluation of the
land-use emissions term. However, comparison of satellite-
derived fluxes to global model estimates is hampered for sev-
eral reasons discussed by Pongratz et al. (2021). Most impor-
tantly, satellite-based estimates usually do not distinguish be-
tween anthropogenic drivers and natural forest cover losses
(e.g. from drought or natural wildfires), which have also in-
creased over time in some regions, including the tropics;
ancillary information would be needed to attribute the ob-
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served signal of vegetation or carbon stock change to differ-
ent drivers. Further, satellite-based estimates often only pro-
vide sub-component fluxes of Eyyc, excluding soil or prod-
uct pool changes. Since forest cover loss is better detectable
from space than regrowth, satellite-based products often limit
their estimates to emissions from forest loss, neglecting car-
bon uptake from regrowth of forests, as may occur following
wood harvesting, abandonment, or natural disturbances; such
products thus provide a subset of the gross emissions term
(Fig. 7b) and cannot be compared to net emissions. Lastly,
satellite-based fluxes typically quantify committed instead of
actual emissions, i.e. legacy CO» fluxes from potentially slow
processes such as slash, soil carbon or product decay, or for-
est regrowth are not captured at the time they actually occur
but are attributed to the time of the land-use change event
(Pongratz et al., 2021). Using data on drivers of forest cover
loss to isolate fluxes from agricultural expansion, and look-
ing into gross emissions instead of the net land-use change
flux, Feng et al. (2022) suggest a stronger increase in global
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gross emissions (though generally a smaller flux) than the
bookkeeping models do (see gross fluxes in Fig. 7b). This
is in line with Rosan et al. (2021) suggesting that the trend
of net emissions in Brazil may be underestimated by the up-
dated land-use data (though patterns have improved). Further
studies are needed to robustly estimate the trend of global
net land-use emissions. Progress is also needed on accurate
quantifications of land-use dynamics, including less well ob-
servable management types such as shifting cultivation and
wood harvesting, and their distinction from natural distur-
bances (Pongratz et al., 2021).

The highest land-use emissions occur in the tropical re-
gions of all three continents, including the Arc of Defor-
estation in the Amazon basin (Fig. 6b). This is related to
massive expansion of cropland, particularly in the last few
decades in Latin America, Southeast Asia, and sub-Saharan
Africa (Hong et al., 2021), to a substantial extent for export
(Pendrill et al., 2019). Emission intensity is high in many
tropical countries, particularly of Southeast Asia, due to high
rates of land conversion in regions of carbon-dense and often
still pristine, undegraded natural forests (Hong et al., 2021).
Emissions are further increased by peat fires in equatorial
Asia (GFED4s, van der Werf et al., 2017). Uptake due to
land-use change occurs, particularly in Europe, partly related
to expanding forest area as a consequence of the forest tran-
sition in the 19th and 20th century and subsequent regrowth
of forest (Fig. 6b) (Mather, 2001; McGrath et al., 2015).

While the mentioned patterns are robust and supported by
independent literature, we acknowledge that model spread is
substantially larger on regional than on global level, as has
been shown for bookkeeping models (Bastos et al., 2021) as
well as DGVMs (Obermeier et al., 2021). A detailed analy-
sis of country-level or regional uncertainties globally is be-
yond the scope of this study. Assessments for individual re-
gions will be performed as part of REgional Carbon Cycle
Assessment and Processes (RECCAP2; Ciais et al., 2022) or
already exist for selected regions (e.g. for Europe Petrescu et
al., 2020, for Brazil Rosan et al., 2021).

National GHG inventory data (NGHGI) under the LU-
LUCEF sector or data submitted by countries to FAOSTAT dif-
fer from the global models’ definition of E1 yc we adopt here
in that in the NGHGI reporting, the natural fluxes (SLAND)
are counted towards E1 yc when they occur on managed land
(Grassi et al., 2018). In order to compare our results to the
NGHGI approach, we perform a re-mapping of our Epyc
estimate by including the S anp over managed forest from
the DGVM simulations (following Grassi et al., 2021) to the
bookkeeping Epyc estimate (see Appendix C2.3). For the
2011-2020 period, we estimate that 1.5 GtC yr~! of SpanD
occurred on managed forests and is then reallocated to E1yc
here, as done in the NGHGI method. Doing so, our mean esti-
mate of Eryc is reduced from a source of 1.1 GtC to a sink of
—0.4 GtC, very similar to the NGHGI estimate of —0.6 GtC
(Table AB).
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Though estimates between GHGI, FAOSTAT, individual
process-based models, and the mapped budget estimates still
differ in value and need further analysis, the approach taken
here provides a possibility to relate the global models’ and
NGHGTI approach to each other routinely and thus link the
anthropogenic carbon budget estimates of land CO, fluxes
directly to the Global Stocktake, as part of the UNFCCC
Paris Agreement.

3.2.3 Final year 2020

The global CO; emissions from land-use change are esti-
mated as 0.9 £0.7 GtC in 2020, 0.2 GtC lower than 2019,
which had featured particularly large peat and tropical defor-
estation and degradation fires. The surge in deforestation fires
in the Amazon, causing about 30 % higher emissions from
deforestation and degradation fires in 2019 over the previ-
ous decade, continued into 2020 (GFED4.1s, van der Werf et
al., 2017). However, the unusually dry conditions for a non-
El Niflo year that occurred in Indonesia in 2019 and led to
fire emissions from peat burning, deforestation, and degrada-
tion in equatorial Asia to be about twice as large as the av-
erage over the previous decade (GFEDA4.1s, van der Werf et
al., 2017) ceased in 2020. However, confidence in the annual
change remains low. While the mentioned fires are clearly
attributable to land-use activity, foremost deforestation and
peat burning, and may have been reinforced by dry weather
conditions, as was the case in Indonesia in 2019, wildfires
also occur naturally. In particular, the extreme fire events in
recent years in Australia, Siberia, and California were unre-
lated to land-use change and are thus not attributed to Epyc,
but to the natural land sink, and are discussed in Sect. 3.6.2.

Land-use change and related emissions may have been af-
fected by the COVID-19 pandemic (e.g. Poulter et al., 2021).
Although emissions from tropical deforestation and degra-
dation fires have been decreasing from 2019 to 2020 on the
global scale, they increased in Latin America (GFED4s; van
der Werf et al., 2017). During the period of the pandemic,
environmental protection policies and their implementation
may have been weakened in Brazil (Vale et al., 2021). In
other countries, too, monitoring capacities and legal enforce-
ment of measures to reduce tropical deforestation have been
reduced due to budget restrictions of environmental agen-
cies or impairments to ground-based monitoring that pre-
vents land grabs and tenure conflicts (Brancalion et al., 2020;
Amador-Jiménez et al., 2020). Effects of the pandemic on
trends in fire activity or forest cover changes are hard to sep-
arate from those of general political developments and envi-
ronmental changes, and the long-term consequences of dis-
ruptions in agricultural and forestry economic activities (e.g.
Gruere and Brooks, 2020; Golar et al., 2020; Beckman and
Countryman, 2021) remain to be seen.
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