Modelling Mediterranean heavy precipitation events at climate scale: an object-oriented evaluation of the CNRM-AROME convection-permitting regional climate model - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Climate Dynamics Année : 2021

Modelling Mediterranean heavy precipitation events at climate scale: an object-oriented evaluation of the CNRM-AROME convection-permitting regional climate model

Résumé

Modelling the rare but high-impact Mediterranean Heavy Precipitation Events (HPEs) at climate scale remains a largely open scientific challenge. The issue is adressed here by running a 38-year-long continuous simulation of the CNRM-AROME Convection-Permitting Regional Climate Model (CP-RCM) at a 2.5 km horizontal resolution and over a large pan-Alpine domain. First, the simulation is evaluated through a basic Eulerian statistical approach via a comparison with selected high spatial and temporal resolution observational datasets. Northwestern Mediterranean fall extreme precipitation is correctly represented by CNRM-AROME at a daily scale and even better at an hourly scale, in terms of location, intensity, frequency and interannual variability, despite an underestimation of daily and hourly highest intensities above 200 mm/day and 40 mm/h, respectively. A comparison of the CP-RCM with its forcing convection-parameterised 12.5 km Regional Climate Model (RCM) demonstrates a clear added value for the CP-RCM, confirming previous studies. Secondly, an object-oriented Lagrangian approach is proposed with the implementation of a precipitating system detection and tracking algorithm, applied to the model and the reference COMEPHORE precipitation dataset for twenty fall seasons. Using French Mediterranean HPEs as objects, CNRM-AROME's ability to represent the main characteristics of fall convective systems and tracks is highlighted in terms of number, intensity, area, duration, velocity and severity. Further, the model is able to simulate long-lasting and severe extreme fall events similar to observations. However, it fails to reproduce the precipitating systems and tracks with the highest intensities (maximum intensities above 40 mm/h) well, and the model's tendency to overestimate the cell size increases with intensity.
Fichier principal
Vignette du fichier
Caillaud2021_Article_ModellingMediterraneanHeavyPre.pdf (9.93 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-03668382 , version 1 (14-05-2022)

Licence

Paternité

Identifiants

Citer

Cécile Caillaud, Samuel Somot, Antoinette Alias, Isabelle Bernard-Bouissières, Quentin Fumière, et al.. Modelling Mediterranean heavy precipitation events at climate scale: an object-oriented evaluation of the CNRM-AROME convection-permitting regional climate model. Climate Dynamics, 2021, 56, pp.1717-1752. ⟨10.1007/s00382-020-05558-y⟩. ⟨insu-03668382⟩
69 Consultations
14 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More