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Abstract

Internal variability, multiple emission scenarios, and di erent model responses to anthropogenic forcing are ultimately
behind a wide range of uncertainties that arise in climate change projections. Model weighting approaches are generally
used to reduce the uncertainty related to the choice of the climate model. This study compares three multi-model combi-
nation approaches: a simple arithmetic mean and two recently developed weighting-based alternatives. One method take:
into account models’ performance only and the other accounts for models’ performance and independence. The e ect of
these three multi-model approaches is assessed for projected changes of mean precipitation and temperature as well as fo
extreme indices over northern Morocco. We analyze di erent widely used high-resolution ensembles issued from statisti-
cal (NEXGDDP) and dynamical (Euro-CORDEX and bias-adjusted Euro-CORDEX) downscaling. For the latter, we also
investigate the potential added value that bias adjustment may have over the raw dynamical simulations. Results show tha

model weighting can signi cantly reduce the spread of the future projections increasing their reliability. Nearly all model

ensembles project a signi cant warming over the studied region (more intense inland than near the coasts), together with
longer and more severe dry periods. In most cases, the di erent weighting methods lead to almost identical spatial patterns
of climate change, indicating that the uncertainty due to the choice of multi-model combination strategy is nearly negligible.

KeywordsModel weighting - Climate models - Climate change - Euro-CORDEX - NEXGDDP - Morocco - Temperature -

Precipitation - Extremes - Projected uncertainty

1 Introduction

warmer and dryer conditions (Donat et al. 2014; Driouech
et al.2013,2020a; Filahi et al., 2015; Sippel et al. 2017;

Morocco is one of the Mediterranean and North AfricanTramblay et al. 2013). Furthermore, most of the state-of-
countries where observed global warming impacts are thie-art models agree in projecting an increase in mean
most noticeable (Lelieveld et al. 2016; Sowers et al. 201temperatures and a decrease in total annual precipitation
Waha et al. 2017). Analysis of trends in precipitation anémounts over the country (Driouech and El Rhaz 2017,
temperature in Morocco have indicated a tendency towardBCC,2013,2018; Polade et al. 2017), consistent with the
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whole Mediterranean region. Future changes in extremes
are also expected, including increased drought and day and
night-time extreme temperature events (Betts e2@l8;
Dosio and Panitz 2016; Giorgi et al. 2014; Molinié et al.
2018). Such changes would result in severe impacts on water
resources, agriculture, and many other socio-economic sec-
tors (Betts et al. 2018; Brouziyne et al. 2018; Ddll et al.
2018; Driouech 2010; Marchane et al. 2017; Niang et al.
2014; Schewe et al. 2014; Tramblay et al. 2016; Wanders
and Wada 2015). Moreover, the negative e ects associated
with climate change have been already witnessed in the past;
i.e., drought leading to a drop in water reserves, agricultural
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productivity, and electricity generation (e.g., Verner et alsuggested a weighting method based on the models’ ability
2018). As a result, several e orts aimed at implementindo represent spatio-temporal characteristics and PDFs-of var
appropriate adaptation actions and strategies have bembles (e.g., the maximum and minimum temperature). More
undertaken. consistent/comprehensive weighting approaches account for

To e ectively plan adaptation to climate change, there i9oth model performance and independence. Models that
a need for detailed and precise information about the climagémulate the real world poorly as well as models duplicating
conditions that are expected for the future. In particular, thether models are down-weighted (e.g., Brunner et al. 2019;
large uncertainty due to the choice of model is frequentliKnutti et al. 2017; Lorenz et al. 2018). Dalelane et al. (2018)
pointed out by the adaptation community to be one of theuggested using a weighting approach for the reduction of
main di culties hindering the use of climate projections the number of ensemble members based on their perfor
(e.g., Maraun et al. 2017; Sultan et al. 2020). Furthermorenance and interdependencies with the objective of preserv
there can be computational restrictions that, for some appiing relevant information on potential future climate states
cations, impede the use of the full ensemble of models (e.@nd maximizing the independent ensemble quality score.
Dalelane et al. 2018). Important e orts and accomplish- Based on three widely used high-resolution datasets of
ments have been done by the scienti c community to deliveclimate projections (Euro-CORDEX, bias-adjusted Euro-
reliable and actionable information on the relevant temporafZORDEX, and NEXGDDP), this study evaluates the e ect
and spatial scales. Our main tools for providing accuratef three di erent multi-model combination strategies (simple
estimates of future changes are global and regional climat&eraging, model weighting based on model performance,
models (GCMs and RCMs, respectively). Yet, uncertainty isnd model weighting based on model performance and inde-
an inherent feature of climate projections due to the chaotfgendence) on the climate changes projected over northern
nature of the climate system and the various assumptions throcco for the end of the twenty- rst century and under
numerical models are subject to (e.g., the choice of emiswo di erent emission scenarios (RCP4.5 and RCP8.5). In
sion scenario)(Blazquez and Nufiez 2013; Hawkins et aparticular, we focus not only on temperature and precipita-
2016). Moreover, when working with ensembles, how tdion, but also on a number of related extreme indices for 22
best handle model inter-dependencies becomes an importéotal stations. Note that, to the authors’ knowledge, this is
guestion to address since the contributing models are-gendére rst attempt to undertake such a comprehensive analysis
ally not designed to be independent of each other. Shared the advantages and limitations of di erent multi-model
observational data for model tuning, common assumptiorombination approaches for this region.
on the climate system as well as replication of code and The paper is structured as follows: in S@¢ctve describe
shared components across di erent models(developed hipe data, the weighting methods, and the climate indices
independent institutions) result in similarities between theised. The results are presented and discussed throughout
outputs (and correlation between the errors) of di erenSects3 and 4 Finally, the main conclusions are delineated
models (Abramowitz et al. 2019; Annan and Hargreavem Sect.5.
2017; Eyring et al. 2019; Knultti et al. 2013; Sanderson et al.
2015a). Moreover, for several models, multiple realizations
with slightly perturbed initial conditions (and therefore2 Data and methods
highly interdependent) are provided.

Model weighting approaches are used with the aim a2.1 Observed data
reducing the unwanted uncertainty in climate model projec-
tions (Giorgi and Mearns 2003; Knutti et al. 2010; MurphyMorocco is located in the Northwest of the African conti-
et al.2004; Tebaldi and Knutti 2007). However, due to dif-nent, extending from 21 to 37°N and bordering the Mediter
ferent model performances when compared to observationsnean Sea in the north and the Atlantic Ocean in the West.
and the lack of independence among models, giving equiloroccan climate is in uenced by the Atlantic Ocean, the
weight to each available model can be suboptimal (Boé et dlediterranean Sea, and the Sahara (Knippertz et al. 2003;
2015; Eyring et al. 2019; Knutti et al. 2010). It is widely Born et al. 2008; Driouech et al. 2009; Tramblay et al. 2012)
assumed that the reliability of a model in the future willleading to a sub-humid to semi-arid climate in the north
come determined by its ability to reproduce the presentnd an arid to desertic climate in the south. Observed daily
day climate (Hausfather et al. 2020). Consequently, som@ecipitation, maximum and minimum temperature time
models would deserve more important weights than otheseries collected at 22 Moroccan meteorological stations are
in the construction of the multi-model ensemble dependingsed in this study (Fidl) to compute the di erent weights
on their performance for a given application (e.g., Baumthat are applied to each model based on its ability to repro-
berger et al. 2017; Eyring et al. 2019; Gleckler et al. 2008]uce the observed historical climate. These data have been
Knutti et al. 20102017). For instance, Cardoso et al. (2019)provided by the Moroccan National Meteorological Service
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(La Direction Générale de la Météorologie) and cover th

period 1971-2005. The days with missing values (less th¢ Y
0.5% of the available data) were omitted from the analysi Coverad periodiyears) Wf“‘ =
The geographic distribution of the 22 stations covers th * 22(1981-2005) sisor e
; ; ; : ® 25(1984-2005) r Khouribaa b
main climate regions excluding the south (Hamly et al. 199¢ o —— e ,...n:.,l“.f',.- FNgrta
Knippertz et al. 2003; Ward et al. 1999). In fact, we limit @ :5015752005) " ..,...,cm:#; §ATchET

the analysis to the northern half of the country due to th /:0"‘)"""
common domain covered by the three ensembles used (¢
Sect.2.2). In particular, the Euro-CORDEX project doesn’t

cover the whole country (see Fij.and some stations were = 4
excluded to avoid undesired border e ects. Nevertheles: (f S
note that our target region corresponds to the wettest pz y S
of the country. WS
2.2 Modeled data P

!' N "\"'; o
To assess the e ect of model weighting on present-da C E / Ss,"
climate and future climate change estimates, we use, f | o

the rst time, data from three state-of-the-art multi-model
ensembles: the NASA Earth Exchange Global Daily DownFig. 1 Geographical distribution of the 22 stations used in this work.
scaled Climate Projections (NEXGDDP), Euro-CORDEX,The size of the circles indicates the length of the available records.
and bias-adjusted Euro-CORDEX ensembles. In particulafhe map at the bottom-right corner shows the Euro-CORDEX
we use daily maximum temperature, minimum temperadomain (light shading)
ture, and precipitation issued from the rst member ( rst
run rlilpl) of each ensemble.
The NEXGDDP dataset consists of 21 General Circula-
tion Model (GCM) from the Coupled Model Intercompari ~ For all the three multi-model ensembles used, we con-
son Project Phase 5 (CMIP5, (Taylor et al. 2012)), whiclgider 1971-2005 as the historical reference period. Future
have been statistically downscaled to a global grid gerthanges are analyzed for the period 2071-2100 (with
erated using the Bias-Correction Spatial Disaggregatiofgspect to 1971-2005). Two Representative Concentration
(BCSD) method (Maraun et al., 2017; Thrasher et al. 201Fathways (RCP) scenarios, RCP4.5 and RCP8.5, were con-
Wood et al. 2004) on a global grid with a spatial resolutiorsidered (Moss et al. 2010; van Vuuren et al. 2011). RCP4.5
of 0.25°. Table S1 in the supplementary material provide@ssumes a radiative forcing increase of 4.5 Wmthe
the list of the 21 models included in the NEX-GDDP dataend of the century, relative to the pre-industrial era, asso-
set. Data access, as well as detailed documentation abé&iated with a peek of global emissions around 2040 and its
NEX-GGDP, are available Mtps:/WWw_nccsnasagovl stabilization until 2100. RCP8.5 assumes that emissions
services/data-collections/land-based-products/nex-gddfise throughout the twenty- rst century leading to a radia
The Euro-CORDEX dataset (Jacob et al. 2014) contairiéve forcing of 8.5 W/nf by the end of the century, relative
daily information at a spatial resolution of 0.11° from-sevto the pre-industrial era (Riahi et 2011).
eral Regional Climate Models (RCMs) which have been
driven by multiple GCMs from CMIP5. In addition, to
assess the potential added value of bias adjustment o8 Model weighting
the raw RCM outputs, we also use the bias-adjusted Euro-
CORDEX dataset. Note that it is widely recognized tha¥We compare three di erent combination approaches to
climate model outputs should not be used directly as inpuf@rm suitable multi-model ensembles, ranging from the
for impact models and some kind of adjustment toward810st straightforward arithmetic average of models to more
the observed C|imat0|ogy is necessary (Manzanas et Qophlstlcated alternatives which take into account the
2019). For consistency, notice that only the 10 GCM-RCMNodels’ performance and interdependence. Each of these
combinations which are simultaneously available in boti§ombination approaches/weighting methods is applied to
the raw and the bias-adjusted Euro-CORDEX datasefoth historical and future climate simulations issued from
were used for this work (see Tables S2 and S3), which cdfe three ensemble datasets (NEXGDDP, Euro-CORDEX

be retrieved from the ESGF portal (https://esgf-node.ipsRnd bias-adjusted Euro-CORDEX). A multi-model ensem-
upmec.fr/projects/esgf-ipsl/). ble average ()ncan be calculated as follows:
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calculated by adding 1 to the correlation value in order to
(1) prevent negative ranks (5).

where are the individual models’ values, the corre-
spondent weight for modebind Nthe number of models in - (2)
the ensemble.
The rst combination approach (MM-AVG in the follew
ing) consists of calculating the multi-model ensemble-aver
age as an arithmetic mean which supposes equal weights for —_— 3)
all contributing models, = . -
The second approach (MM-PERF hereafter) is based on
models’ performance and calculates weights based on met-
rics rankings (Cardoso et &019). Models that agree well -
with the selected set of observations get high weights and - p— - (4)
vice versa (see Se@.3.1 for details). -
The third approach (MM-PERFI hereafter) accounts
for both model performance and independence (Knutti
et al.2017). Models that have poor performance get less

weight and models that largely duplicate existing models - - )
(inter-dependent models) also get less weight (detailed in
Sect.2.3.2).
Weights are calculated over the historical period
(1971-2005) at the annual scale, for each climate variable/ (6)

indicator (see Sec2.4) at each of the 22 stations consider
ing their nearest neighbors in the models’ grids.

(7)

2.3.1 The MM-PERF method

Ranks are then normalized by dividing each value by the
The MM-PERF method focuses on the model's historica3um of all ranks of other models in a way to have the total
run quality. Four validation metrics are computed for eacBUm of the ranks for each metric equal to 1. (6).
climate variable/indicator (precipitation, temperature, and Weightsw(i) are computed by averaging the ranks of the
related extreme indices) by model and station. The medfur metrics. And nally, each weight is normalized so that
bias, the root mean square error (RMSE), the normalizefe sum of the weights () in the ensemble is equal to 1. (7).
standard deviation ratio §, and the Pearson correlation
(r) are calculated between the model and the observations
(Cardoso et al. 2019; Soares et al. 2017). Then, a ranking3.2 The MM-PERE + | method
of models is built based on these metrics by introducing

speci ¢ ranks (Cardoso et al. 2019). A model with higherrhe MM-PERF+ | weighting scheme extends the previous
performance is a model with higher metrics’ ranks and thergnethod by additionally considering model interdependence.
fore gets a higher weight. It takes into account both model quality and uniqueness.
Let's consider n as the number of observed/modelefiodels that agree well with observations for the selected
timestepsN as the number of models in each ensentble, set of diagnostics get high weight and models that show
andp the observation and model values respectively, and yniqueness (do not duplicate existing models) compared to
andp e corresponding means calculated over the historgther models in the ensemble get also high weight (Knutti
cal period. et al.2017; Lorenz et al. 2018; Sanderson et al. 20tpa,
For the rst two metrics (bias and RMSE), ranks are equathe weighting rst requires de ning a distance metric Di of
to the inverse of the absolute value since the best expectgfbdeli to observations, and, the distance metric between
result should be closest to zero (Egand 3. As the opti-  modeli and model,jand a relationship to convert those into
mal value for normalized standard deviation is 1 and sincg weight.
in some cases the deviations are very small, the nermal e use the Euclidean distance as a metric to quantify the
ized standard deviation ratio rank is its inverse in case @fistances between model simulations and between model
values superior to 1 (Ed). The correlation related rank is simulations and observation as in (Sanderson 80aba).
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ForM models in each ensemble, the single model weightomputed with respect to the percentile values obtained for
for modeli is de ned as follows: 1971-2005.

(8) 3 Results

. : 3.1 Assessment of models’ historical runs
The numerator represents model skill by using a Gauss-

ian weighting where the weight decreases exponentially t

further away a model is from observations. t]‘:evaluatmg the quality of climate models over the historical

The denominator is the “e ective repetitionradia of aperiod is key to understanding the reliability of the climate

model” and is intended to account for model interdependghea::r:%?r;%fjloe?cvse?shtancs]itsh;z;ggisr;mzraetsi?}s\;f;smgdthe
ency (Knutti et al. 2017; Sanderson et al. 20294 5b). If a gnting, P g

. ; and weighted models from the three multi-model ensembles
model has no close neighbors, then ali j) are large, the : :
. . ) considered and does not evaluate or compare the di erent
denominator is approximately one and has no e ect. If tw A . -
. . . i ) . CMs/RCMs individually. For each climate indicator (mean
modelsi and jare identical, then is null and the denomi-

. temperature, mean precipitation, and related extreme indi-
nator equals two, so each model gets half the weight. The . . .

. ces), Fig2 shows the mean biases along the 22 stations of
constants and determine how strongly the model per

T . ) interest (for which the nearest model grid box is considered).
formance and similarity are weighted, large values will lea . L
L ) . he results obtained from the individual models are shown
to an approximation of equal weighting while very small

. . = . by blue boxplots. The boxplots assigned to each of the multi-
values will lead to aggressive weighting and pOSSIny_overmodel ensembles’ means are obtained using the three dif-
con dent results (Knutti et aR017 Lorenz et al2018. The g

. . - s : ferent weighting methods respectively (MM-AVG: orange,
distance is also called “radius of similarity” and is used s o
. : . . MM-PERF: green, and MM-PER¥FI: pink). Note therefore
to adjust the (nonlinear) decrease of the exponential functi : .
. . at whereas the blue boxplots contain 22 x N values (N is
to the desired range of distances, we chose here the mean S o
. . ) ! e number of individual models), the remaining boxplots
distance between simulations as in Dalelane et al. (2018). . .
. . L (orange, green, and pink) contain only 22 values (one for
The quantity is an analogto determining how strongly : . : .
each station, as given by the corresponding multi-model

the model’s error is penalized, for which we use here thé . . . i

. . . ) nsemble mean). This allows analyzing the multi-models
mean distance between simulations and observations. The . 2
: : . uncertainty range before and after weighting as well as the
weights are nally normalized so that their sum equals one, L :

€ ect of weighting on the ensemble’s performance.
A new metric ( ) is included to assess whether the

reduction in spread exhibited by the non-blue boxplots is a
consequence of the weighting process or a simple reduction

. N in the sample size. For each individual model (in each blue
In addition to annual mean temperature and precipitation, we - .
w&onplot), we compute the standard deviation,( varying

2.4 Extreme indices

considered a set of four climate extreme indices to assess the .
o . rom 1 to N along the 22 stations. Then, we compute the
e ect of weighting. The daily mean temperatures are calcu-_. o
) - ) ratios between these values and the standard deviation
lated as the sum of the daily minimum and maximum tem-_ .
- - obtained from each of the non-blue boxplots (.
peratures divided by two. The four extreme indices used here For each model ithe standard deviation ratio () is
are de ned in the ETCCDI (Frich et @002 Peterson et al., iven as follows:
2002; Zhang et al. 2011) and are linked to high precipitatioﬁ '
events (R95p), drought (CDD), heat waves (WSDI) and cold
waves (CSDI) (see Tablg. Mean temperature and precipi-
tation as well as climate extreme indices are calculated at
an annual scale for the historical period (1971-2005) and A ratio higher than 1 would indicate that the standard
the future period (2071-2100) under the two RCP scenariéieviation of the particular model is higher than the one
(RCP4.5 and RCP8.5). For WSDI (CSDI), the 90th (10th)ssued from the weighted multi-model mean. Finally, for
percentile is computed independently for each day of theach weighting approach, we compute the percentage of
year (e.g., 18 of June) based on a 5-day running windot@atios exceeding 1. The same procedure is also conducted
surrounding that day during 1971-2005. The latter is alstor future changes’ boxplots (Figdand5) in Sect.3.2.
the baseline period considered to compute the 95th percen-In order to investigate whether the e ect of weighting
tile for the case of the R95p indicator. Note that projectets smoothed by the combination of all stations together,

changes (SecB.2) for any of these three indicators areannual evolution curves comparing observations, individual

— 9)
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Table 1 List of the extreme indices used with their acronyms, full name, de nition, and corresponding units

Abbreviation Name De nition Unit
WSDI Warm spell duration indicator Annual count of days with at least 6 consecutive days when90th percentile days
CSDI Cold spell duration indicator Annual count of days with at least 6 consecutive days whenTiOth percentile days
R95p Very wet days Annual total precipitation from days95" percentile mm

CDD Consecutive Dry Days Maximum length of dry spell: maximum number of consecutive days with RRm  days

models, and weighted multi-model ensembles are also antat have been used as a reference for bias correction in the
lyzed at local stations. These curves (Figs. S2—S6) re ettvo ensembles (Landelius et al. 2016; Maurer and Hidalgo
the same conclusions extracted from the boxplots, indicatir®@008; Thrasher et al. 2012; Wood et al. 2004) and the local
that the three weighting approaches yield similar results everbservations used in this work. Cases of important i er

at a local scale. ences between observational datasets for particular regions
have been in fact highlighted by previous studies (Herrera
3.1.1 Temperature and related extreme events et al.019; Kotlarski et al. 2017; Manzanas et al. 2020). The

weighting e ect is more noticeable in the Euro-CORDEX
The bias values of unweighted models show that the biasnsemble case, with an improvement of the overall perfor
adjusted Euro-CORDEX ensemble performs, as expectethance and a median bias reduced from 1 °C to around
relatively well in reproducing annual mean temperatures0.5 °C. Based on the interquartile range of boxplots, a
at the local scale despite some overestimations with @nsiderable reduction of the spread of local biases for the
median bias of about 0.5 °C (Figp). Residual biases are two dynamically downscaled ensembles is also noticed.
more important in the case of NEXGDDP which tends tdverall, the three weighting methods have almost the same
underestimate the mean temperature. This is probably dirapact for each of the three ensembles (orange, green, and
to di erences between the observational gridded datasefsnk boxplots). Weighting produces the smallest e ect in the

=3 individual models

5
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4 8 100 'PDO 0 100 foo 0 e 257 1 8 100 1000 o 100 1000 0 . 276 2 5 MM-PERF
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Fig. 2 Boxplots for biases of mean temperature (°C) (a), cold (CSDIjndividual models (blue) and weighted models (orange, green, and
(b) and warm (WSDI) (c) spells (days) indices, as well as biases qfink) are obtained per comparison to stations’ observations over the
mean precipitation (mm/day) (d), high precipitation (R95P) (mm/period 1971-2005. The number above each non-blue boxplot is the
day) (e) and drought (CDD) (days) (f) indices. Biases for unweightegercentage of higher than one (see the text for details)
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case of NEXGDDP, for which higher biases (compared t8.1.2 Precipitation and related extreme events

the other ensembles) are found. Note that important biases

exhibited by NEXGDDP when compared to local data havés for temperature related indices, the three weighting meth-
also been found in previous studies (e.g., Chen et al. 202@ds lead in general to similar results for each ensemble for
These biases may be related to inherent limitations of th#oth mean precipitation and precipitation extreme events
bias correction approach used to generate this database(R95p and CDD). In particular, the biases’ mean value and
bias correction techniques may present serious drawbac#ispersion are reduced (FRy, e, f respectively). An excep-
when the gap between the spatial resolution of models aidn comes from Euro-CORDEX, for which MM-AVG and
observations is large (Maraun et al. 2D1To cope with MM-PERF+ | exhibit relatively lower biases in the case of
this issue, the latter study also advocated the developmenean precipitation and the drought index respectively. An
of new methods combining advanced statistical modelingverall improvement of the simulated values is noted in the
with physical understanding (Addor et 2016; Volosciuk case of dynamically downscaled data. Such improvement is
etal.2017). however more noticeable for uncorrected simulations.

The biases for cold and warm spell duration indices We also note a better performance of bias-adjusted Euro-
(WSDI and CSDI) are shown in (Figb, c, respectively). CORDEX simulations for both mean and extreme- pre
All multi-model ensembles tend to overestimate the numberspitation events. This added value is however overtaken
of extreme temperature events, with median biases slightlyy the weighting in the case of extreme events. Although
higher for warm spells. The weighting e ect is obvious inthe improvements resulting from the application of weight-
terms of reducing the spread of the biases but also providesy, Euro-CORDEX multi-model mean, in agreement with
a slight improvement of the overall quality of ensembles. Iprevious studies, underestimates annual mean precipita-
particular, the MM-PERF method leads to relatively smalletion (Vaittinada Ayar et al. 2016; Zittis et al. 2019) and the
median biases compared to the other weighting methods. Aength of the longest annual dry period. The drought index
exception is found for NEXGDDP, which shows a smalleiis also underestimated by the bias-adjusted Euro-CORDEX
and comparable e ect between the weighting methods iensemble and on the contrary overestimated by NEXGDDP.
the case of WSDI. Contrasted biases are given for the high precipitation index.

Fig. 3 Boxplots of future changes for mean temperature (°Cyla, are shown in the top (bottom) row. The number above over each non-
CSDI (days), (be) and WSDI (days) (d) for the period 2071-2100, blue boxplot is the percentage of higher than one (see the text
with respect to 1971-2005. Results for the RCP4.5 (RCP8.5) scenaffar details)
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For both precipitation and temperature indicators and ifuture climate information (e.g., Brunner et al. 2019). This is
the majority of the cases, the percentages of higher also re ected in the mean temperature evolution curves (see
than one are clearly above 50%, which con rms that weight-ig. S5) where the weighted multi-model curves are shifted
ing contributes e ciently to reducing the spread of theup compared to the median curve of the individual models

biases shown by the individual models. at local stations.
Projected changes for CSDI are shown in the boxplots
3.2 Assessment of future changes in Fig. 3b, e. Overall, the projected signals from the three

ensembles are similar, although NEXGDDP tends to project
Projected changes for temperature and precipitation aridgher reductions for both scenarios. Changes vary+$rbm
their related extreme indices (CSDI, WSDI, R95p, ando 7 days for RCP4.5(+1 to 9 days for RCP8.5). Most
CDD) are analyzed in this section under the two emissioof the models don't project any cold spells by the end of
scenarios considered (RCP4.5 and RCP8.5) for 2071-2100¢e century, which might be related to signi cant projected
with respect to the historical period 1971-2005. In particuincreases in yearly mean minimum temperatures.
lar, we analyze the distribution of the changes for both the The di erence between the three weighting methods
unweighted individual models and the weighted multi-modeis clearer for NEXGDDP. Indeed, MM-PERF and MM-
ensemble means obtained from the MM-AVG, MM-PERFPERF | methods project higher changes than MM-AVG for
and MM-PERF+ | methods (Figs3 and 5, which allows  which the median change is close to the individual models’
for a better understanding of the e ect of weighting on thanedian change, indicating that higher weights are given to
uncertainty of the future projections. In addition, for the parthe NEXGDDP models projecting higher decreases. This is
ticular case of the weighted bias-adjusted Euro-CORDEXnore noticeable for the Warm Spell Duration Index (WSDI),
ensemble, which was found to provide the best performanstdown in Fig.3c, f, and con rms that higher weights are
in present climate conditions (see Fljy.we also look at the given to warmer models. This is also noticeable from the
spatial patterns of the projected changes (#igFor each curves showing the annual evolution (Fig. S6) and corrobo
indicator, the Mann—Whitney U test has been applied to teshtes that weighting seems to be more sensitive to the cli-
the statistical signi cance (at a 95% con dence level) of thanmate index than to the spatial location. This can be explained
change at the station level. Note that the Mann—Whitney By the fact that individual models perform better for some
is non-parametric and does not make any assumption abdndicators than for others, which results in a di erent weight-
the distribution of the underlying data (James and Waslhng e ect (more noticeable for indicators poorly simulated

ington2013). by the models, e.g., WSDI here). Moreover, the low spatial
variability of the results obtained may be presumably related
3.2.1 Temperature and related extreme events to the relatively small size of our target region, which might

explain the similar weighting e ect found across the di er
The boxplots in Fig3 show the spread of the projectedent stations.
changes for annual mean temperature along the 22 stationsChanges’ variation for WSDI is larger than for CSDI
as projected under the RCP4.5 and RCP8.5 scenarios (panlgy. 3b, e) and we can notice higher amplitudes for WSDI,
a and d, respectively). The three ensembles of models prasggesting that the warming will gain more from high tem-
ject a generalized increase in temperature by the end of therature events than cold ones, consistent with observed
century. Warming varies between 1.5 °C and 3 °C (3.5 °@ends in Driouech et al. (2020a). Changes’ amplitudes are
and 5 °C) according to RCP4.5 (RCP8.5), depending on tleven higher for NEXGDDP. Indeed, for RCP4.5 (RCP8.5),
model and location, which is in agreement with previoushe Euro-CORDEX ensemble projects increases up to 150
studies (Donat et al. 2013; Filahi et al. 2015; Ozturk et al(250) days while increases of more than 200 (300) days are
2018; Waha et aR017 Zittis et al., 2019). Note that weight expected according to NEXGDDP models. Remarkably, the
ing shows a better performance in reducing uncertainty fapread of the projected changes, which is the highest for
the bias-adjusted Euro-Cordex and NEXGDDP ensemblddEXGDDP, is largely reduced after weighting.
(with higher percentages of  higher than one). Moreo- For a spatial assessment of these results, maps iaFig.
ver, in some cases, weighting can introduce slight changebow for the 22 locations of interest, the projected changes
in the signals projected by the unweighted ensemble medior annual mean temperature, as given by the weighted bias-
For instance, the median change corresponding to the thradjusted Euro-CORDEX ensemble under the RCP8.5. In
weighting methods is shifted up (compared to the individuajeneral, the yearly mean temperature is expected to increase
models’ median), which indicates that higher weights arsignificantly over Morocco in the range between 4 and
given to the models that reproduce higher warming levs.5 °C in inland stations and between 2.5 °C to above 3.5 °C
els. Note the importance of this result which suggests thakear the coast. The MM-PERH method shows slightly
weighting would contribute to the provision of more reliabledi erent results in a few stations while the MM-AVG and
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Fig. 4 Future changes of mean temperature (°C) (a), CSDI (days) (bjespect to 1971-2005. Within each panel, top/middle/bottom maps
WSDI (days) (c), precipitation (%) (d), R95p (%) (e) and CDD (dayskorrespond to the MM-AVG/MM-PERF/MM-PERH weighting

(f) obtained from weighted bias-adjusted Euro-CORDEX multi-method. A black circle indicates that the projected change is signi -
model ensemble according to RCP8.5 for the period 2071-2100, wittant at a 95% con dence level, according to a Mann—Whitney U test

MM-PERF give similar spatial patterns of changes. Théransport of cooler and moisture air, hence softening the
increase is statistically signi cant at a 95% level over nearlg ects of climate change local warming.

all stations for both scenarios RCP4.5 and RCP8.5. The pat-As for CSDI and WSDI indices, the spatial pattern of
tern of changes is mostly linked to inland/coastal contragirojected changes across the 22 stations considered is shown
and is also noticed for the RCP4.5 scenario (see Fig. S1.&).(Fig. 4b, ¢ respectively). The changes for both indices
Similar results about cooler mean temperature changes neae statistically signi cant in most of the stations. CSDI is
coasts were discussed in Cardoso et al. (2019) focusing erpected to decrease down to 5 days, especially in inland
Portugal. The lower warming in the coastal areas may bstations. WSDI, however, is expected to increase substan-
related to local sea-breeze circulations responsible for thilly: up to 100 days in coastal regions and between 100
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Fig. 5 Boxplots of future changes for precipitation (%) &, R95p  shown in the top (bottom) row. The number above over each non-blue
(%) (b, e) and CDD (days) (cf) for the period 2071-2100, with boxplot is the percentage of higher than one (see the text for
respect to 1971-2005. Results for the RCP4.5 (RCP8.5) scenario aletails)

and 200 days in inland regions. This means that, by the ehadeed, the standard deviation of the results found for the
of the century, between one and two thirds of the year woulthree multi-model means is much smaller than individual
correspond to what's currently considered a heatwave spethodels, regardless of the weighting approach considered.
Doubtless, this will have important e ects on di erent socio- A similar weighting e ect is also noticeable for high pre-
economic sectors, including agriculture, health, tourism, etcipitation events (R95p) and annual longest dry spell (CDD)

despite the projected changes are intensi ed by MM-PERF
3.2.2 Precipitation and related extreme events and MM-PERF+ | for the case of NEXGDDP (Fidb, c,

e, f). In general, a decrease in the percentage of precipita-
The boxplots for projected annual precipitation changeson amounts issued from very wet days can be expected
over Morocco are shown in Fifa, d. Our results indicate from all ensembles for both scenarios although some indi-
a high consensus between models in all ensembles towanddual models project increases up to 20%. The decrease
a decrease in annual precipitation, which is in agreemeirt R95p varies mostly, for individual models, betweet®
with previous studies (Thrasher et al., 2012; Driouech et ahnd 80% for RCP4.5 and betweer20 and 100%, for
2013,2020b; Tramblay et al. 2013; Donat et al. 2014). Som&CP8.5. Weighting leads to median changes around 20%
individual models from bias-adjusted Euro-CORDEX andor both Euro-CORDEX ensembles for RCP4.5 and around
NEXGDDP project an increase of about 10% for the RCP4.545% for RCP8.5 independently from the method used.
scenario. Comparing the three ensembles, Euro-CORDEMM-PERF and MM-PERF | project a 5% more decrease
projects the highest decreases, with changes ranging framannual precipitation from very wet days for NEXGDDP.
about 20% to 40% under RCP4.5 ( 35% to 55% for Consistent with the projected reductions in precipitation
RCP8.5). For the other two ensembles, the projected changasross the stations, all ensembles project an increase in the
for RCP4.5 are 5%—-10% lower. The three weighting metmumber of CDD, indicating that more prolonged drought
ods further reduce such di erences in the strength of thepisodes are expected in the future. The changes issued from
decrease, leading all of them to very similar results withimndividual models range between 10 and 50 days for the
each ensemble. The weighting contributes highly to reducingCP4.5 scenario and between 10 and 80 days for RCP8.5.
the uncertainty of precipitation changes across the di ereMIEXGDDP ensemble projects the lowest increase although
stations (orange, green, and pink boxplots of bgg.d). the spread amongst models is reduced by the weighting and
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the additional few days gained from MM-PERF and MM-based on similar previous studies but other metrics might
PERF + 1 methods respectively. have led to di erent weights and ranks and therefore to
Maps in Fig.4d, e, f show the spatial patterns of pro-maybe di erent results (e.g., Gleckler et al. 2008; Kjell-
jected changes for precipitation and its related extreme indstrém et al2010; Ring et al2017).
ces. These maps bring to light a general and statistically The sensitivity to the metric choice can also depend
signi cant decrease in both mean and extreme precipitaan the number of the models considered (Knutti 2018).
tion, together with a reinforcement in drought persistencédence, the di erences we noticed between NEXGDDP
In particular, projected changes for high precipitation eventand Euro-CORDEX datasets could be more related to the
(R95p) are more signi cant in the case of RCP8.5 than fosize of the corresponding ensembles (21 and 10, respec-
RCP4.5 (see S1). For all the ensembles, the three weigthitvely) than to the di erent nature (statically and dynami-
ing methods lead to similar projected changes. Very fewally downscaled, respectively). Some studies select the
stations (2—3) exhibit some slight increase or decrease best performing models to constitute new “smaller” sub-
the amplitude of the projected changes depending on tlemsembles (Ahmed et al. 2019; Cardoso et al. 2019). This
method and index. would de nitely give di erent results for the three weight-
ing approaches considered in this work. However, it can
lead to the loss of information from the eliminated models.
4 Discussion It can also induce some political sensitivities since it is dif-
cult to dismiss models from certain centers or countries
Finding the ideal solution for climate model weighting hasn a coordinated modeling project for example.
been controversial so far. Indeed, beyond the question of As an alternative to assighing weights to models,
whether or not to weigh the di erent models, the metrics anénother research topic focuses on the so-called emergent
methods used for this task have been largely discussed in thenstraints which allow for reducing the uncertainties in
literature, and advantages, as well as limitations, have beetlimate change projections through a relationship between
found depending on the application of interest. In principlethe observation and the projection (Wenzel et al. 2014).
it seems reasonable to think that weighting models accord+is relationship (usually established through some form
ing to their performance and interdependence may ensuoéregression across models) can then be used to estimate a
ensemble democracy (Knutti et al. 2017). Thus, one of theonstrained projection that is relatively independent of the
aims of this work is to con rm whether or not more sophis-underlying models (Boé et al. 2009; Cox et al. 2013; Mahl-
ticated weighting procedures based on model performanestein et al. 2012). This method is, however, highly suscep-
and independence outperform simpler ones based only ¢ible to the quality of the observed data, the understanding
model performance, and to compare both alternatives withf the physical processes, and sometimes the subjective
straightforward averaging (i.e., equal weights). The choice afecisions of the researcher (Keupp et al. 2019). As shown
metrics for both rst approaches, the size of each ensembie Caldwell et al. (2018), recent studies using emergent
as well as the chosen time scale constitute the main limitaenstraints on equilibrium climate sensitivity have pointed
tions of this work. out several limitations of this method. Other options con-
There are multiple ways to proceed with model weightingsist of interpolations in a low-dimensional model space
and it is very di cult to agree on an optimal way. An in- (Sanderson et al. 2015b) or Bayesian methods (Tebaldi
nite number of performance metrics can be de ned: qualitet al.2004).
assessment metrics such as correlation, root mean squaréur results add evidence to the statement by Weigel
error, and bias for example (Baumberger et al., 20id et al. (2010) that equal weighting, for some applications,
Cardoso et al. 2019), spatial performance assessment metaybe the most transparent way to combine models and
rics such as SPAtial EF ciency metric (SPAEF) or Fractionscan be preferable to other weighting strategies which may
skill score (FSS) (Ahmed et al. 2019; Koch et al. 2018) onot represent the true hidden uncertainties appropriately.
any other quality scores comparing the model to observ&urthermore, a simple evaluation of models’ performance
tions. However, the choice of an appropriate performander the present climate is not really su cient to rank the
metric is quite challenging (Keupp et al. 2019; Knutti et al‘best performing’ models (e.g., Dosio et al. 2019). Thus, it
2010, 2018; Weigel et a2010). is challenging to nd a suitable methodology to subsample
Moreover, weighting approaches can be very sensitivan ensemble by just weighting-based approaches. We also
to the chosen metric: if weighting is based on a criteriofiound that taking the independence of models within the
that is inadequate for the targeted quantity or is dominateshsemble into consideration may not be of much help in
by variability, then there is a possibility that the result getsome applications, especially when this aspect is evaluated
worse rather than better (Weigel et al. 2010). The perfobased on the same kind of metrics used to evaluate the mod-
mance metrics considered for this work have been selectets’ performance.
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All this implies that e cient model weighting requires a more severe in inland regions than near coasts for both
more careful investigation of models’ performance and-indescenarios. Moreover, the vast majority of the models sug-
pendence by taking into account the ability of the modelgest an increase of warm spell durations by the end of the
to simulate the physical driving processes which are key farentury while cold spells are not expected. Besides, most
the region and application of interest. of the models agree on an alarming decrease in precipita-

tion and accordingly longer and more severe dry condi-

tions. Based on the multi-model mean changes, most of
5 Conclusion the models show a decrease in the amount of precipitation

issued from high precipitation events although some indi-
We investigate in this work the e ect of model weight- vidual models project an increase.
ing over a collection of widely used multi-model ensem- A di erence between the three weighting approaches is
bles -Euro-CORDEX, bias-adjusted Euro-CORDEX, andound for the NEXGDDP ensemble in the case of extreme
NEXGDDP- over northern Morocco. We apply three dif indices, especially WSDI and CDD. MM-PERF and MM-
ferent weighting methods of reference nowadays and us8cRF+ | tend to project more severe changes (less pre-
6 climate indices: mean temperature, CSDI, WSDI, meaaipitation and higher warming) highlighting the fact that
precipitation, R95P, and CDD. All model simulations weremore warming/drying models are given higher weights
first evaluated against local observations issued from @hese models are considered more reliable). For the other
set of 22 meteorological stations for the historical periodndicators, the uncertainty due to the choice of the multi-
(1971-2005). model combination strategy is nearly negligible, with the

Our results show that weighted ensembles provide betténree weighting methods leading to almost identical spatial
scales than unweighted ones. In particular, weighting is uspatterns of climate change over Morocco.
ful in centering the model simulations towards the observed Overall, although weighting is important in sum-
quantities and reducing their biases’ mean value and dispenarizing the climate models’ information and reducing
sion. This suggests that weighted ensembles may providiee projected changes’ uncertainties, it represents some
more reliable (i.e., less uncertain) future projections in thémitations. In particular, we illustrated that metric-based
climate change context. weighting does not always lead to considerable improve-

None of the three weighting approaches is found to bments compared to the basic ensemble average. Using
systematically better than the others; they provide similanodel weighting approaches may require more under
results in most of the cases. The bias-adjusted Euro-COBRtanding of the physical processes related to the applica-
DEX ensemble shows the smallest bias for mean temper@en of interest.
ture but a similar weighted median bias (compared to the
two other multi-model ensembles) for warm (WSDI) andSuppIeme_ntary I_nformatioﬁl'he onl_ine version contains supplemen-
cold extreme events (CSDI). The bias-adjusted Euro—COF&ary material available at https://doi.org/10.1007/s00382-021-05910-w
DEX_ exhibits also the smz_illest bias for mean preCIpItat'OilcknowledgementsThe authors are grateful to the Direction Générale
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