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ABSTRACT

Context. Future large-scale surveys with high-resolution imaging will provide us with approximately 105 new strong galaxy-scale
lenses. These strong-lensing systems will be contained in large data amounts, however, which are beyond the capacity of human
experts to visually classify in an unbiased way.
Aims. We present a new strong gravitational lens finder based on convolutional neural networks (CNNs). The method was applied to
the strong-lensing challenge organized by the Bologna Lens Factory. It achieved first and third place, respectively, on the space-based
data set and the ground-based data set. The goal was to find a fully automated lens finder for ground-based and space-based surveys
that minimizes human inspection.
Methods. We compared the results of our CNN architecture and three new variations (“invariant” “views” and “residual”) on the
simulated data of the challenge. Each method was trained separately five times on 17 000 simulated images, cross-validated using
3000 images, and then applied to a test set with 100 000 images. We used two different metrics for evaluation, the area under the
receiver operating characteristic curve (AUC) score, and the recall with no false positive (Recall0FP).
Results. For ground-based data, our best method achieved an AUC score of 0.977 and a Recall0FP of 0.50. For space-based data, our
best method achieved an AUC score of 0.940 and a Recall0FP of 0.32. Adding dihedral invariance to the CNN architecture diminished
the overall score on space-based data, but achieved a higher no-contamination recall. We found that using committees of five CNNs
produced the best recall at zero contamination and consistently scored better AUC than a single CNN.
Conclusions. We found that for every variation of our CNN lensfinder, we achieved AUC scores close to 1 within 6%. A deeper
network did not outperform simpler CNN models either. This indicates that more complex networks are not needed to model the
simulated lenses. To verify this, more realistic lens simulations with more lens-like structures (spiral galaxies or ring galaxies) are
needed to compare the performance of deeper and shallower networks.

Key words. gravitational lensing: strong – methods: numerical – methods: data analysis – techniques: image processing –
cosmology: observations – dark matter

1. Introduction

Future strong gravitational lense (SL) studies will help fur-
ther constrain cosmology and galaxy evolution. As of today,
galaxy-scale lenses have been used successfully to constrain
the Hubble constant by measuring the time-delay of lensed
images of quasars independently of other measurement tech-
niques (Bonvin et al. 2016; Suyu et al. 2017). The magnification
of lensed source-objects allows observations and studies of back-
ground objects at much higher redshifts than are usually visible
to telescopes (Kneib et al. 2004; Richard et al. 2011; Atek et al.
2015). Measurement of galaxy-scale SLs can accurately con-
strain the total mass of the galaxy by probing the dark matter
structure. This can be used to estimate the fraction of dark mat-
ter in galaxy halos when used in combination with weak-lensing
analysis (Gavazzi et al. 2007) or by itself (Jiang & Kochanek
2007; More et al. 2011; Sonnenfeld et al. 2015). It can also be
used to constrain the slope of the inner mass density profile
(Treu & Koopmans 2002a,b; More et al. 2008; Koopmans et al.
2009; Cao et al. 2016) and the initial stellar mass function

(Treu et al. 2010; Ferreras et al. 2010; Leier et al. 2016). One of
the largest lens catalogs was produced by the Sloan Lens ACS
Survey (SLACS) with about 100 observed lenses (Bolton et al.
2008). These SLs were discovered by selecting lens candidates
from the spectroscopic database of the Sloan Digital Sky Survey
(SDSS). Lens candidates were chosen by identifying the spec-
troscopic signature of two galaxies in the spectra, one galaxy
at a greater distance than the other. These candidates were then
verified by follow-up observation using the Hubble Space Tele-
scope.

Historically, SLs were found serendipitously by human in-
spection of data. However, a systematic search by experts is
too time-consuming to be a practical proposition for future
large-scale surveys unless it were to involve citizen scientists.
For example, the number of new lens systems from the Eu-
clid mission (Laureijs et al. 2011) and from the Large Synop-
tic Survey Telescope (LSST Science Collaboration et al. 2009)
survey is expected to reach at least 105 SLs among 109 objects
(LSST: Oguri & Marshall 2010; HST: Pawase et al. 2014; Eu-
clid: Collett 2015). Similarly, the amount of SLs found by the
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SKA survey is expected to be on the same order of magnitude
(McKean et al. 2015). Efficient automated gravitational lens-
finding techniques are urgently needed.

The Spacewarps project1 was an attempt to use and train non-
experts at lens classification. Through an interactive website,
amateur scientists were trained to sort through data from
CFHTLS (Marshall et al. 2015). They found 29 promising new
lens candidates in the survey (More et al. 2016), but this method
will likely be too slow and too much subject to human error
for future data sets. Semi-automated methods like arc detectors
using clustering techniques have been used with some success
(Lenzen et al. 2004; Cabanac et al. 2007) and have been further
improved. Joseph et al. (2014) and Paraficz et al. (2016) added
machine-learning to these techniques, using a Principal Compo-
nent Analysis (PCA) based approach to remove the foreground
galaxy from the image and facilitate the detection of arcs. Re-
cently, Petrillo et al. (2017) and Jacobs et al. (2017) started us-
ing convolutional neural networks (CNNs) for lens detection.
CNNs belong to a class of efficient image-classifier techniques
that have revolutionized image processing (Lecun et al. 1998). In
astrophysics, they have been applied successfully to galaxy mor-
phology (Huertas-Company 2015), redshift estimation (Hoyle
2016), and spectra analysis (Hála 2014).

The Euclid Strong-Lensing working group, in collaboration
with the Bologna lens factory2, has started the Galaxy-Galaxy
Strong-Lensing challenge3 (GGSLC: Metcalf et al., in prep.) in
light of future large-scale imaging surveys such as the Euclid
mission. The goal was to determine the best technique for find-
ing gravitational lenses for both ground-based and space-based
imaging.

Our goal was to explore and optimize CNN architectures for
lens classification. We successfully applied it to the GGSLC and
were awared first and third place in the two categories of the
GGSLC. In this paper, we present the CNN lens finder in detail
that we created for the GGSLC challenge and discuss the advan-
tages and disadvantages of CNN lens classifiers when applied on
simulated and real data. The paper is organized as follows. Sec-
tion 2 gives a brief overview of artificial neural networks (ANN)
and CNNs and their usage in image processing. Section 3 out-
lines the details of our algorithm implementation and the two
winning CNN architectures of the challenge, while in Sect. 4
we present some interesting alternative architectures. Section 5
summarizes the results of the different architectures we applied
to GGSLC data, and we discuss them.

2. Theory

2.1. Artificial neural network

Artificial neural networks are machine-learning techniques in-
spired by the study of the human brain (Hebbian learning: Hebb
1950). ANNs are capable of learning classification or regression
tasks in N dimensions by training using a set of labeled exam-
ples. This makes them easily applicable to complex problems for
which explicitly programmed solutions or mathematical mod-
els are difficult to write. The main drawback of ANNs is the
computation cost of the training procedure. More modern train-
ing techniques coupled with advances in GPU processing power
made ANNs versatile and capable of being applied to almost any
data set. They are created by stacking layers of neurons together.

1 https://spacewarps.org/
2 https://bolognalensfactory.wordpress.com/
3 metcalf1.bo.astro.it/blf-portal/gg_challenge.html

Fig. 1. Left: structure of a neuronal unit. Each neuron implements a lin-
ear combination (using weights wi and a bias b) of its input x followed
by a nonlinear activation function a(x). Right: ANN structure. Neurons
in the same layer all receive the same input. The stacking of layers al-
lows the ANN to define a model parametrized by the weight variables
of the network.

Each neuron implements a linear combination (using weights wi
and a bias b) of its input x followed by a nonlinear activation
function a(x),

y(x) = a

 N∑
i=1

wixi + b

 , (1)

where N is the dimension of the inputs.
A layer consists of multiple neurons applied to the same in-

put. Each output is passed as an input to the next layer. This
cascade of nonlinear combinations of inputs ends at the output
layer (see Fig. 1). In a classical ANN, all possible connections
are established and exploited, in short, it is fully connected. A
neuron in a given layer will transmit its outputs to all neurons
in the next layer. Every layer between the input and the output
layer is called a hidden layer. The initial input layer is sometimes
also called a front layer. An ANN model is parametrized by the
weights w and biases b of the neurons.

These weights and biases are trained iteratively. ANNs make
predictions when presented with a training input. As the model
parameters are randomly initialized, the first predictions are very
different from the ground truth of the input.

The ANN then evaluates the error according to some pre-
defined cost function and computes appropriate corrections to
the parameters. These prediction errors are propagated backward
through the layers, from the output to the front layer, and induce
parameter updates. The technique is known as back-propagation
(Rumelhart et al. 1986) and is commonly built on gradient de-
scent for the computation of the parameter updates.

2.2. Convolutional neural network

Deep ANNs, models that have more than one or two hid-
den layers, perform better than shallow networks. The math-
ematical evidence for this statement is still scarce, but it is
empirically observed. The continued growth in computation
power made ANNs interesting for scientific application. How-
ever, computational cost of training increases with depth, and
limitations in gradient-based procedures are challenging perfor-
mance obstacles. Training with gradient methods generates a so-
called vanishing-gradient problem, first identified by Hochreiter
(1991). The magnitude of the gradient diminishes as it is back-
propagated through the layers. The typical result is that layers
close to the front layer effectively stop learning. While still af-
fected by the vanishing-gradient problems, CNNs limit its ef-
fect by reducing the number of connections and sharing weights.
This mitigation motivated the development of CNNs and their
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convolutions max pooling convolutions fully connected

input: 101x101x1
101x101x4

50x50x4

50x50x8
2048

output: 1

Fig. 2. Example of a CNN architecture: The input image undergoes a
series of convolution layers into a series of feature maps. The first con-
volution transforms the 101 × 101 pixel image into four 101 × 101 pixel
feature maps. To lower computation cost, max-pooling layers are used
in between convolutions. They reduce the dimensionality of the image,
dividing the size of the image by two. A fully connected layer then com-
bines all feature maps for the classification.

subsequent application to image recognition (Lenet-5 model,
Lecun et al. 1998).

The breakthrough for CNN came when Krizhevsky et al.
(2012) created an architecture that won the 2012 ImageNet
Large-Scale Visual Recognition Challenge4. His submission
achieved a classification error of only 15.3% compared to the
second-best submission with 26.2% obtained by a method not
based on a neural network. CNNs have been used extensively in
image processing ever since.

Our CNNs (Fig. 2) are created by stacking the following lay-
ers: convolution layers convolve the input image by a number of
small kernels (or features maps, typically of dimension 3 × 3 to
7×7). The parameters to be optimized during training are the in-
dividual kernels. These weights are shared by all neurons in the
layers (the kernels are the same for the whole layer). Pooling lay-
ers reduce the dimensionality of the input to decrease the num-
ber of parameters and avoid overfitting. The most common pool-
ing technique is the max-pooling method. It partitions the input
image into non-overlapping quadrants and yields the maximum
value in the quadrant. Fully connected (fc) layers are the classic
ANN neuron layer. Every input is connected to every neuron of
the layers. They are used as the final CNN layers to merge the
information contained in the feature maps into the desired out-
put form. Dropout layers are only active during training. They
randomly sever half the connections between the two layers they
separate (Hinton et al. 2012). This is done to reduce coadaption
of the neurons (learning the same features) and reduce overfit-
ting. Batch normalization layers normalize and shift the output
along a small input sample B = {x1...m} following the equation

yi = γ
xi − µB

σ2
B

+ β, (2)

where µB and σB are the mean and the variance over B. γ and
β are two model parameters of the layer. Batch normalization is
used to increase the training speed of the CNN (Ioffe & Szegedy
2015).

Convolution layers take advantage of the local spatial cor-
relation in the data. Stacking multiple convolution layers im-
plies a global treatment of the signal, making the network shift-
invariant (i.e., features will be detected independently of their
position). This make CNNs especially effective when treating
images (Mallat 2016).

2.3. Data set of the Galaxy-Galaxy Strong-Lensing
Challenge

The data for the GGSLC was provided by the Bologna lens fac-
tory challenge. The Bologna lens factory project is a complex

4 http://image-net.org/

lens-simulation project. It is based on the Millennium simula-
tion (Lemson & Virgo Consortium 2006), with modeling of the
gravitational lensing effect using the Glamer ray-tracing tool
(Metcalf & Petkova 2014) and with MOKA to create the multi-
plane dark halos and their substructures (Giocoli et al. 2012).
The models and the parameters used to generate the simulations
were blinded for the duration of the challenge.

Each image of the SL challenge was a 101×101 pixel stamp
centered around an object. Participants had to submit a confi-
dence value p ∈ [0, 1] for each image. An object with a high con-
fidence value was interpreted as a lens. Two categories of data
were proposed with separate data sets, each with 20 000 training
and 100 000 test images: (i) a space-based data set that consisted
of images in a single visible band (simulating exposures of the
Euclid instrument VIS); and (ii) a ground-based data set with
images taken in four bands (U, G, R, and I) with a lower singal-
to-noise ratio (S/N) and random masking of pixels, mimicking
noisy data.

The ratio of lenses to non-lenses in the simulated data was
much higher than in reality, around one-to-one, as an imbalance
of examples (called skewed classes) can lead to biases. The re-
sults are have been made public, and a detailed discussion of
the simulations and results will be provided in Metcalf et al. (in
prep.). Our baseline architecture submission to GGSLC ranked
first in the space-based data category and third in the ground-
based category (Fig. 9). CNNs in general dominated the chal-
lenge. CNN-based methods filled the seven best submission in
both categories.

3. CNN lensfinder: architectures

For this paper, four different types of CNN architectures were
applied to the training data of the GGSLC: a simple CNN ar-
chitecture that forms the baseline comparison for the paper, a
so-called residual architecture based on the paper by He et al.
(2015), and two further architectures with additional invariant
properties. The final version of each architecture was selected
after a heuristic study of the parameter space.

3.1. Baseline architecture

The baseline architecture as shown in Fig. 3a was inspired from
typical CNN architectures that performed well in the ImageNet
competition (Simonyan & Zisserman 2014). It is organized by
stacking convolution blocks. This simple baseline architecture
achieved first place in the space component of GGSLC. A con-
volution block is the superposition of 2 convolutional layers fol-
lowed by a pooling layer to reduce the dimensionality of the im-
age and a batch-normalization layer. The baseline architecture
is comprised of 8 convolutional layers, organized into 3 convo-
lution blocks and 2 stand-alone layers, and 3 fully connected
layers at the top. There is thus a total of 11 layers. With the ex-
ception of the initial layer, every convolution layer uses 3×3 con-
volution kernels for efficiency reasons (Simonyan & Zisserman
2014). The first convolution layer uses a 4 × 4 kernel to yield an
even number of pixels for easier manipulation. At each convolu-
tion block, the number of features was doubled, resulting in 256
features in the last block. The fully connected layers used either
1024 or 2048 features.

For each layer, we chose a modified version of the rectifier
linear unit (ReLU) activation function because of its sparse rep-
resentation capability (Glorot et al. 2011; Arpit et al. 2016). The
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Fig. 3. Visualization of the baseline and residual architecture for the
CNN lensfinder: the convolution blocks (red) indicate the size of the
kernel and the number of features. The fully connected blocks (yel-
low) indicate the number of features. The arrows indicate the flow of
the data, and between the blocks, we show the dimensionality of the
input (Npixel × Npixel × Nfeatures). The last fully connected layer yields a
confidence value of the object being a lens. The initial layer has Nb fea-
tures, either one or four, depending on the category of the data (space
and ground, respectively). Batch normalization and dropout layers are
indicated as gray blocs.

activation is given by

f (x) =
1

√
π − 1

(√
2πmax(0, x) − 1

)
. (3)

Inputs of the networks have dimension of 101× 101×Nb, where
Nb is the number of bands (Nb = 1 for space and Nb = 4 for
ground). The wavelength-dependent information (in the third di-
mension) is handled naturally by extending the kernel dimension
from two to three (spatial to spatial plus wavelengths).

3.2. Residual architecture

A common way for improving CNN is to increase the depth, that
is, the number of convolutional layers. With creating increas-
ingly deeper CNNs comes the vanishing-gradient problem de-

Fig. 4. Structure of a residual block: The feature maps F(x) from two
stacked convolutional layers are added to input x. Each green circle
represents a convolutional layer.

tailed before. At some point in the training process, the accuracy
starts to saturate and degrade, generating an upper limit to the
possible depth of CNNs. To compensate for this, He et al. (2015)
introduced residual learning. In the GGSLC challenge, Francois
Lanusse’s deep lens classifier (Lanusse et al. 2018) used residual
learning to create a 46-layer deep CNN that won the ground part
of the challenge. We adapted our residual architecture to ana-
lyze the advantages and disadvantages compared to the baseline
CNN.

In a classical convolution layer, the feature map is created
from scratch, that is, it learns an unreferenced mapping. The end-
goal of the training process is to find parameters that minimize
the cost function. We denote by H(x) the optimum feature map
and by F(x) the map currently held in the parameters. In other
words, the training updates F(x) until

H(x) = F(x). (4)

In contrast, residual networks train by optimizing a residual
mapping x, or the difference between the ideal and the real fea-
ture map. He et al. (2015) stated that it is easier to optimize the
residual feature map than the unreferenced map,

H(x) = F(x) + x, (5)

where x is the identity mapping obtained by using shortcut con-
nections skipping the convolution layers (Fig. 4). Our residual
architecture as shown in Fig. 3b is 20-layer deep with 3 small
residual blocks, 4 large residual blocks, and 3 fully connected
layers with 1024 features. The small residual block is composed
of 2 convolutions and 1 shortcut, keeping the same number of
features. The large residual block is composed of 3 convolu-
tions and 1 shortcut followed by a convolution layer, doubling
the number of features.

3.3. Implementation details

Other than the differences in the approach to the problem, the
networks shared a number of implementation details that we out-
line here.

– Cost function: we chose the binary cross-entropy cost func-
tion as the cost function C driving the training,

C = −
1
N

∑{
y ln(yp) + (1 − y)

[
(1 − ln(yp)

]}
, (6)

where N is the number of training examples, y is the ground
truth, and yp is the classification prediction.

– Data augmentation: to increase the number of training sam-
ples, we used data-augmentation techniques. The goal is to
generate more examples out of the original training set by
exploiting physically invariant transformations, for example,
rotating the image by 90 degrees. The benefit of increasing
the training set size is to reduce overfitting.Taking advantage
of the dihedral group symmetry (Fig. 6) of the lens problem,
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the training sets were augmented using 90-degree rotations
and flipping operations. We did not use rotation angles dif-
ferent than 90 degrees to avoid having to interpolate in pixel
space.

– Training: the challenge training set was subdivided into a
training set (of 17 000 images) that was used by the net-
works to learn and a validation set (3000 images strong)
to check the performances on an independent set. The per-
formance was monitored every 1000 steps by evaluating
predictions made on the validation set. At each training
step, we randomly selected batches of 30 images (15 lenses
and 15 non-lenses) and ran the learning procedure for
∼250–300 epochs using the ADAM minimization algorithm
(Kingma & Ba 2015). We trained five networks with the
same architecture and selected the best-performing individ-
ual.

– Library: the models were implemented using the
Tensorflow library (Abadi et al. 2015) on a GeForce
GTX 1060 graphic card. The training time took ap-
proximately 1 h/100 epochs for the baseline model and
2 h/100 epochs for the residual model. The final prediction
of the classification for the challenge on the 100 000 test
images took approximately 20 min.

3.4. Image invariance

The idea behind these two next architectures was to deal with the
inability of most lens finders to recognize and handle the invari-
ant features of gravitational lenses. CNNs are, by design, already
invariant to translation, but not to rotation, scaling, and flipping.
The pretraining data augmentation phase renders them more ro-
bust to these symmetry operations, but not invariant. By modi-
fying the CNN architecture so as to be invariant or more robust
to different types of symmetries, we expect to reduce identifica-
tion errors. The following sections describe how we increased
the invariance of our models.

3.4.1. Views architecture

Several models trained to accomplish the same task form a com-
mittee. Predictions of a committee typically result in some sort
of weighted combination of its members’ predictions. They have
been used to improve classification results for example on the
MNIST5 problem (Ciresan et al. 2011) or to detect anomalies in
the predictions (Nguyen et al. 2014).

The views architecture (Fig. 5b) trains two neural networks
separately to look for lenses of different sizes. The first network
looks at the whole image, detecting large lenses spanning the
whole image. The second uses only the central part of the im-
age. By combining the prediction of the two networks, smaller
lenses should be detected while not neglecting the detection of
the larger lenses. In other words, the first network takes as input
the whole image, like the baseline model, while the second only
accepts a smaller stamp of 45×45 pixels. To simplify the smaller
network, we used only 5 × 5 convolution layers and fewer fea-
tures at each layer.

3.4.2. Invariant architecture

The invariant architecture adds additional invariant properties to
the model. While relatively untested, this has been used with

5 MNIST database of handwritten digits, http://yann.lecun.com/
exdb/mnist/
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Fig. 5. Visualization of the invariant and views architecture for the CNN
lensfinder: the convolution blocks (red) indicate the size of the ker-
nel and the number of features. The fully connected blocks (yellow)
indicate the number of features. The arrows indicate the flow of the
data, and between the blocks, we show the dimensionality of the in-
put (Npixel × Npixel × Nfeatures). The last fully connected layer yields a
confidence value of the object being a lens. The initial layer has Nb fea-
tures, either one or four, depending on the category of the data (space
and ground, respectively). Batch normalization and dropout layers are
indicated as gray blocs.

success for a galaxy morphology classifier on Galaxy Zoo data
(Dieleman et al. 2015, 2016). The invariant architecture takes
advantage of the dihedral symmetry of the lens-finding problem
(Fig. 6) by using dihedral equivariant convolutional layers that
we refer to as Dec layers.

At the level of the input layer, eight operations of the same
convolution kernel, transformed by a different transformation of
the dihedral group, are applied to the input image. The output is
divided into eight different output channels (see Fig. 7),

yi = Conv(x, Fi) i ∈ {0, . . . , 7}, (7)
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Fig. 6. Representation of the dihedral symmetry group: An optimal lens
finder should be invariant to the operations of this group (i.e., flipping
and rotation).

Fig. 7. Dihedral equivariant architecture: Kernels with identical colors
but different orientation are identical kernels to which a different dihe-
dral operations has been applied. Phase 1: seperation into eight chan-
nels, one for every input channel and member of the dihedral group.
Phase 2: convolution of the eight channels with eight separate kernels.
Each output channel from a Dec layer is the sum of all the input chan-
nels convolved by all feature kernels of the layer transformed by one of
the dihedral operations. Phase 3: the eight channels are summed, giving
a dihedral invariant result.

where i is one of the eight specific dihedral transformation and
Mi is the filter to which a dihedral transformation has been ap-
plied.

Compared to the baseline version, for the Dec layer there are
eight different convolution kernel instead of one: one kernel for
each transformation of the dihedral group (Fi, i ∈ {0, . . . , 7}).
Each kernel is initialized and trained separately from each other.
Each output channel in a Dec layer is the sum of all the input
channels convolved by all the different feature kernels of the
layer transformed by one of the dihedral operations (Fig. 7). The
result of the eight channels, y j, is a dihedral invariant quantity,

y j =

7∑
i=0

Conv(xi, jF j−1◦i) j ∈ {0, . . . , 7}. (8)

The two layers illustrated in Fig. 7 have the property of being
invariant with respect to the dihedral group. Our invariant archi-
tecture is shown in Fig. 5a and follows the same fundamental
scheme as the baseline architecture. Since using eight channels
increases computation time and makes the model more prone to
overfitting, the number of features of the convolutional layers is
divided by four. The invariance was tested by checking that ro-
tated and flipped versions of the same image are attributed the
same score by the classifier.

4. Results

In this section we describe the results of the different architec-
tures applied to the GGSLC data.
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Fig. 8. Receiver operating characteristic (ROC) curve: The GGSLC
ranked the classifiers as a function of the area under the ROC curve
(AUC). For a perfect classifier, the score is 1, and for a random classi-
fier, it is 0.5.

4.1. Performance metric

We first start by a brief overview of the performance metrics we
used to quantify the performance of the lens classification.

– The true-positive rate (TPR) measures how well the classifier
detects lenses from the whole population of objects,

TPR =
NTrue positives

NTrue psitives + NFalse negatives
· (9)

This metric is also known as recall. The best algorithms have
a TPR close to 1.

– The false-positive rate (FPR) measures the contamination of
the positive detections by false positives,

FPR =
NFalse positives

NTrue negatives + NFalse positives
· (10)

The best algorithms have an FPR close to 0.
– The receiver operating characteristic (ROC) is a visual rep-

resentation of the TPR and FPR. Since they depend on the
threshold t ∈ (0, 1) defined to distinguish objects as lenses
or non-lenses, the ROC curve (Fig. 8) is created by plotting
TPR(t) as a function of FPR(t) for t ∈ (0, 1). The challenge
ranked the classifiers as a function of the area under the ROC
curve (AUC), which is the integral of the ROC curve between
an FPR of 0 and 1. A perfect classifier would score 1, while
a randomly predicting classifier would score 0.5.

4.2. Training, submission, and results

After the challenge deadline, we tested our four architectures
on the GGSLC data. As for the baseline architecture, we used
our 17 000-image training set and the 3000-image validation set.
Each architecture was trained five separate times. In Table 1
we show the result of this committee training. The performance
is also evaluated in Table 3 on the challenge test data as the
ground-truth values were released to participants after the sub-
mission deadline. The standard deviation of the five runs is also
given. The two metrics used to evaluate the performance of the
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Table 1. Training results: rach architecture was run five separate times.

Space Training Validation
baseline 0.9920 ± 0.0020 0.9764 ± 0.0017
views 0.9898 ± 0.0030 0.9753 ± 0.0021

residual 0.9958 ± 0.0028 0.9765 ± 0.0024
invariant 0.9997 ± 0.0003 0.9719 ± 0.0016
Ground Training Validation
baseline 0.9953 ± 0.0090 0.9905 ± 0.0082
views 0.9980 ± 0.0010 0.9924 ± 0.0006

residual 0.9990 ± 0.0023 0.9932 ± 0.0027
invariant 0.9999 ± 3 × 10−6 0.9880 ± 0.0030

Notes. The training and validation AUC scores are the mean of these
runs. The error is the standard deviation.

methods are the (i) the AUC and (ii) the zero false-positives,
Recall0FP (that is, the fraction of lenses recovered with zero
false-positives).

The AUC results are much better for ground-based data than
for space-based data (Fig. 9) although the images have a lower
S/N than the space-based images. This increased performance
could be due to the increased amount of information in the form
of the four bands, instead of the single VIS-like band for space.
The lower S/N in the ground-based data does not seem to hinder
prediction.

The baseline, views, invariant and residual architectures
achieved equally good AUC results on the validation set and the
test set within the standard deviation of the runs. This is surpris-
ing because deeper networks, like the residual one, are expected
to perform better than shallower models. The scores are too close
to the optimum to confidently distinguish between the architec-
tures. The most likely explanation is that the simulated data were
too simple for the CNN lensfinder. The simulations did not in-
clude spiral galaxies or some other ring-like objects capable of
confusing gravitational lens classifiers. A more complex method
was therefore not needed to classify the data correctly. The dif-
ference that can be seen between the validation scores and the
test scores in Tables 1 and 3 can be attributed to a slight overfit-
ting. This is probably due to the small size of the validation set
we used in comparison to the test set.

The invariant architecture has a lower validation AUC score
than the others, but performs equally well on the test set. This
may indicate that the invariant architecture generalizes the lens
model better than other architectures. This could be due to the
imposed invariant properties, as we have given the model some
additional knowledge. This has no effect on the final test score
but could become important when applying the CNN lensfinder
to real data. Since the amount of known galaxy-scale lenses is
small, a sufficiently large training set for a CNN lensfinder can
only be obtained by simulated lenses (see Petrillo et al. 2017,
for a CNN lensfinder applied to CHFTLS data). The caveat here
is that CNNs trained on simulation might miss lenses because
the simulated training set was unrealistic. The better the CNNs
generalize the lens model, the lower the chance that they will
missidentify objects. Ideas exist to force CNNs to focus on the
lens model. One is to use multiple different simulations to create
lenses (Jacobs et al. 2017). Adding dihedral invariance to CNNs
could be another way of doing this.

The ground-based results are extremely encouraging, espe-
cially because of the purity of the score. In a classification
problem with a 1-to-1000 ratio between lenses and non-lenses,

Table 2. Confusion matrix (baseline architecture, GGSLC challenge)
for TPR0.

Space-based Classified as non-lens Classified as lens
Non-lens 59742 40

lens 20957 19264

Ground-based Classified as non-lens Classified as lens
Non-lens 50042 17

lens 21754 28194

Notes. The TPR0 threshold was chosen by the GGSLC organizers for
no false-positive in the first 10 000 images of the test set.

Table 3. Test, Recall0FP , and Recall1FP results.

Space Test AUC Recall0FP Recall1FP

baseline 0.9322 ± 0.0016 0.01 ± 0.02 0.04 ± 0.04
committee b. 0.9326 0.01 0.01

views 0.9324 ± 0.0013 0.26 ± 0.06 0.28 ± 0.07
committee v. 0.9343 0.30 0.32

residual 0.9322 ± 0.0006 0.23 ± 0.04 0.29 ± 0.03
committee r. 0.9346 0.29 0.30

invariant 0.9332 ± 0.0006 0.27 ± 0.04 0.28 ± 0.05
committee i. 0.9399 0.32 0.33

Ground Test AUC Recall0FP Recall1FP

baseline 0.9761 ± 0.0011 0.44 ± 0.13 0.49 ± 0.08
committee b. 0.9773 0.50 0.55

views 0.9746 ± 0.0011 0.35 ± 0.19 0.43 ± 0.17
committee v. 0.9759 0.35 0.39

residual 0.9775 ± 0.0006 0.44 ± 0.06 0.46 ± 0.07
committee r. 0.9795 0.50 0.55

invariant 0.9774 ± 0.002 0.39 ± 0.11 0.45 ± 0.05
committee i. 0.9813 0.49 0.49

Notes. Each architecture was run five times. The test scores are the
mean of these runs.

algorithms with even a very small contamination can be domi-
nated by false positives. The baseline model performs well on the
metric Recall0FP = 0.44 in the ground-based test set (Table 3).
In a more realistic setting with a ratio of lenses to non-lens ob-
jects, we would have found 22 out of the 50 lenses in a test set
containing 100 000 images without any false positives.

Table 3 shows that the standard deviation of Recall0FP is
large. Using the CNN that performed best on the validation set
does not guarantee the best Recall0FP or even best AUC score
(Figs. 10 and 11). The metrics vary depending on the individ-
ual result of the training run. To mitigate this, we grouped the
five training runs of our model in a committee of CNNs. The
committee output is taken as the average of their prediction. By
compensating for each other’s shortcomings, committees stabi-
lize the results and achieve a better-than-average result for the
AUC metric as well as for the Recall0FP metric (Table 3, Figs. 12
and 13). The invariant model especially is improved by this and
obtains the best scores for the space-based data.

5. Conclusions

We presented a strong gravitational lens finder based on con-
volutional neural networks (CNN). The method showed strong
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Fig. 9. ROC curve of our baseline architecture submission to the
GGSLC challenge. The solid line is the curve from our submission.
Blue is the ground-based data category, red is the space-based data cat-
egory.
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Fig. 10. Logaritmic ROC curves on ground-based data. Training (dotted
line), validation (half-dotted line) and test (solid line) score of all four
architectures. Data come from the best of five runs in terms of validation
set score.
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Fig. 11. Logaritmic ROC curves on space-based data. Training (dotted
line), validation (half-dotted line) and test (solid line) score of all four
architectures. Data come from the best of five runs in terms of validation
set score.
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Fig. 12. Logaritmic ROC curve of the baseline committee on ground-
based data. The curve is the result of the baseline committee (five base-
line CNNs taken together). The shaded areas represent the minimum
and maximum values from the five stand-alone baseline CNNs.
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Fig. 13. Logaritmic ROC curve of the invariant and residual commit-
tee on space-based data. The curve is the result of the committee (five
invariant or residual CNNs taken together). The shaded areas represent
the minimum and maximum values from the five stand-alone invariant
or residual CNNs.

performances on simulated data. It won the first place and third
place in the Strong Gravitational Lens Challenge (GGSLC), re-
spectively, in the space-based and ground-based data category.
We have also presented three other variations of that lensfinder,
among which, a residual CNN based on the recent architecture
developed by He et al. (2015).

We found that CNNs perform better on ground-based data
than on space-based data despite the lower S/N. This is probably
due to the additional bands, which add information, but this still
has to be confirmed. This can be done, for instance, by limiting
the ground-based data to one band and comparing to the other re-
sults. All four CNNs achieved almost perfect ROC curve scores
on the simulated data, with the highest area under the ROC curve
(AUC) score up to 0.9775 for ground-based and 0.933 for space-
based data. They also achieved a recall with a zero false-positive
(Recall0FP) of 50% for ground-based and of 32% for space-based
data. We showed that the best Recall0FP results were achieved
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by committees of CNNs instead of single CNNs. Committees
of CNNs consistently scored the best AUC scores. We also ob-
served that adding rotation invariance to CNNs grouped together
in committees produces the best space-based Recall0FP score.

Because all results are almost equally good, more conclu-
sions about the best CNN model cannot be drawn. Most likely
the simulations did not include enough lens-like objects capable
of inducing false positives in the lensfinder, that is, the simula-
tions were likely not realistic enough. This might explain why,
contrary to expectations, the residual CNN has not performed
better than the others. We will further explore CNN algorithms
in the future GGSLC.
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