
HAL Id: insu-03665074
https://insu.hal.science/insu-03665074

Submitted on 11 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Swell Generation Under Extra-Tropical Storms
M. C. Hell, Alex Ayet, Bertrand Chapron

To cite this version:
M. C. Hell, Alex Ayet, Bertrand Chapron. Swell Generation Under Extra-Tropical Storms. Journal
of Geophysical Research. Oceans, 2021, 126, �10.1029/2021JC017637�. �insu-03665074�

https://insu.hal.science/insu-03665074
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


1.  Introduction
Swell events are long-crested linear wave systems that propagate across the ocean basins (Ardhuin 
et al., 2009; Munk & Snodgrass, 1957; Snodgrass et al., 1966). Swells impact harbor safety, coastal float-
ing, and beach erosion (Enríquez et al., 2017; Ferreira, 2005; Hunt, 1961; Morison & Imberger, 1992; Rus-
sell, 1993; Wilson, 1957), but also modulate sea surface height and affect altimeter and other remote sensing 
observations (like future SWOT or ICESat-2, Morrow et al., 2019; Klotz et al., 2020). Importantly, swells play 
a role in air-sea interactions, possibly altering the sea surface roughness and subsequent turbulent air-sea 
fluxes (Makin, 2008). In addition, swell systems trace intense air-sea exchanges, and hence can potentially 
help to better understand air-sea fluxes and mixed-layer variability under storms, as well as impacts on glob-
al climate. The motivation of this study is to provide rapid and robust means for describing swell generation 
and how swell events are driven by mid-latitude storm variability.

Swell waves are routinely observed, for example, along coastlines using the Coastal Data Information Pro-
gram/National Data Buoy Center (CDIP/NDBC, O'Reilly et al., 2016, Figures 1b–1e), or from space by Syn-
thetic Aperture Radar (SAR) images (Chapron et al., 2001) and Real Aperture Radar measurements (Hauser 
et al., 2020). These observations can be used to back-track swell to focal points or swell source locations, 

Abstract  Storms propagate over the ocean and create moving patches of strong winds that generate 
swell systems. Here, we describe the dynamics of wave generation under a moving storm by using a 
simple parametric model of wave development, forced by a temporally and spatially varying moving 
wind field. This framework reveals how surface winds under moving storms determine the origin and 
amplitude of swell events. Swell systems are expected to originate from locations different than the 
moving high-wind forcing regions. This is confirmed by a physically informed optimization method that 
back-triangulates the common source locations of swell using their dispersion slopes, simultaneously 
measured at five wave-buoy locations. Hence, the parametric moving fetch model forced with reanalysis 
winds can predict the displacement between the highest winds and the observed swell source area. The 
model further shows that the storm's peak wind speed is the key factor determining swell energy since 
it determines surface wind gradients that lead to the spatial convergence of wave energy into a much 
smaller area than the wind fetch. Swell generation can then be described to follow a three-stage process 
that outlines a focus area where swell energy is enhanced and slightly displaced from the maximum 
wind locations. This analysis provides an improved understanding of fetches for extra-tropical swell 
systems and may help to identify biases in swell forecast models, air-sea fluxes, and upper-ocean mixing 
estimations.

Plain Language Summary  Storms generate waves on the ocean surface that can travel across 
entire ocean basins, the so-called swell waves. However, it is unclear how the amplitude and period of 
these surface waves depend on the strength and shape of the storm. One has to consider the movement 
of the storm in addition to its size, lifetime, and wind speeds. This study shows how all these parameters 
control the amplitude and period of swell events reaching the coastlines. We find that the storm's 
movement and its peak wind speed compress the wave energy to a small area, which then appears as a 
swell source location in the open ocean. This study can help to improve swell forecasts and understand 
how long-term changes in mid-latitude storms would modify the exchange of momentum and heat 
between the atmosphere and the ocean.
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either by utilizing the deep water dispersion relation in spectrograms observed at a point (Barber & Ur-
sell, 1948; Hell et al., 2019; Munk, 1947; Snodgrass et al., 1966) or by estimating the local convergence of 
the wave ray's backward trajectories derived from SAR-images (Collard et al., 2009; Husson et al., 2012). 
Both methods assume swell systems to originate from an idealized source point. Clearly, the definition of 
such a source point may appear ambiguous, given typical spatial scales O(1000 kmE ) and lifetime O (5 days) 
of an extra-tropical storm that moves at about 10 m 1sE  (Figures 1a; Eady, 1949; Hodges et al., 2011; Neu 
et al., 2012).

A path to understand the appearance of such source points and the properties of the resulting swell systems, 
is to analyze the relationship between surface winds and the resulting surface wave spectra. This relation 
can generally be well approximated by a set of semi-empirical functions that assume homogeneous wind 
speeds within an area or for a certain duration: the fetch (“fetch laws,” K. Hasselmann et al., 1973, 1976; 
Elfouhaily et al., 1997, and there in). However, these self-similar relations, first established by Kitaigor-
odskii (1962), do not account for the spatial and temporal variability of the wind forcing. It is thus unclear 
how a continuously varying wind field leads to the generation of one dominant single wave event that seems 
to stem from a very small source region, at least an order of magnitude smaller than the storm (Barber & 
Ursell, 1948; Collard et al., 2009; Hell et al., 2020; Husson et al., 2012; Munk, 1947).

Spectral wave models, like Wave Watch III (Tolman, 2009), have also known weaknesses due to their strong 
dependencies on the wind forcing field (Cavaleri, 1994; Durrant et al., 2013; Feng et al., 2006; P. A. Janssen 

Figure 1.  (a) Example synoptic situation on February 2, 2016 with the surface wind speed (shading) and negative anomalies of sea level pressure (SLP) in 
dark blue with 5 hPa increments. The arrows indicate the surface wind direction and intensity. The position of the CDIP wave buoy stations in panel b to e are 
shown as colored dots. The 10-m winds and SLP fields are taken from the hourly ERA5 analysis on a 0.25E -grid (European Center for Medium-Range Weather 
Forecasts fifth-generation reanalysis for the global climate and weather; CDS, 2017). (b–e) Observed spectrograms between mid-January and mid-February 2016 
for CDIP029, CDIP067, CDIP106, and CDIP166 (Behrens et al., 2019). The black dots indicate individual swell events identified by their long-period forerunner 
(Text S1).
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& Bidlot,  2018; Ponce & Ocampo-Torres,  1998; Stopa & Cheung,  2014). While parameterizations of the 
source terms in those numerical models essentially reproduce the fetch laws, modeled wave arrival times 
and heights are commonly biased compared to in-situ wave-buoy observations. These biases are likely re-
lated to some lack of precise information to describe storm dynamics. Extreme winds may not always be 
properly described over time and space, and generated swell systems cannot always be correctly predicted. 
This strong dependence of the modeled wave field on the wind forcing is also important when wave mod-
els are coupled to Earth system models to better represent surface fluxes and air-sea exchange (Bourassa 
et al., 2019; Li et al., 2016). In this case, wave model parameters cannot be tuned to compensate for biases in 
the wind forcing, and hence a better dynamical understanding of wave generation is still needed to include 
waves in coupled Earth system models.

An alternative to the fetch's scaling laws or spectral wave models is to consider simple wave evolution 
models, directly compared to wind and wave observations. Numerous studies have used this strategy for 
moving tropical cyclones (Bowyer & MacAfee,  2005; Chen et  al.,  2007; Kudryavtsev et  al.,  2015,  2021; 
Young, 1988, 2003; Young & Vinoth, 2013), but the relationship between faster moving extra-tropical storms 
and resulting swell events remains largely unexplored (Figure 1; Doyle, 1995, 2002; Young et al., 1987). 
Extra-tropical storms are an integral part of synoptic meteorology with ample theories about their dynam-
ics and life cycles (Bjerknes, 1919; Neiman & Shapiro, 1993; Neiman et al., 1993; Schemm & Wernli, 2014, 
review in; Schultz et al., 1998, 2018; Shapiro & Keyser, 1990) and here we aim to connect these theories with 
dynamics of wave generation.

In this study, we explicitly show how synoptic-scale dynamics can be related to properties of the generated 
sea states and the residual swell systems. We build on developments presented in Kudryavtsev et al. (2015) 
to derive a simplified model for swell events from extra-tropical storms (Section 2.1). The goal is to comple-
ment full sophisticated spectral wave models, since a simplified model can rapidly provide large ensembles 
of solutions to help retrieve the storm properties. More explicitly, we approximate the moving fetch with 
varying winds under an extra-tropical cyclones as a two-dimensional Gaussian shape and analyze the dy-
namics resulting from gradients in the wind forcing field (Section 2.2). We then use a back-triangulating 
method to retrieve the swell source location from wave buoy observations (Sections 3.1 and 3.2). This allows 
us to test the idealized moving wind fetch model for several case studies in the North Pacific (Sections 3.3 
and 3.4). Combining an idealized model for swell generation and the optimized model of swell propagation 
finally suggests a three stage life-cycle of swell waves that is, summarized and discussed in Section 4.

2.  Wave Generation in a Moving Frame of Reference
In this section, we extend the framework introduced by Kudryavtsev et al. (2015) to extra-tropical storms. 
Wave spectra of growing seas are assumed to follow self-similarity, and dynamical changes of the spectra 
are described by a single variable, the peak angular frequency pE   (K. Hasselmann et al., 1976; Kudryavtsev 
et al., 2015). The evolution of pE   in an Eulerian frame is then described by

2
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with 15.4E c  , and q  3 10/ . Here, and in the following analysis, we use a set of parameters for a so-called 
young sea development (Badulin et al., 2007; K. Hasselmann et al., 1976; Kudryavtsev et al., 2015, details 
in Appendix A3). In the following, outlined dynamics remain the same for all possible choices of these 
parameters. Note that under constant winds Equation 1 is reduced to the familiar “fetch relations” (K. Has-
selmann et al., 1973, 1976; Elfouhaily et al., 1997, and references therein).

The above equations solely describe the spectral peak variables ( ,g pE c c  and pE  ), but this is sufficient to derive 
the whole wave energy spectrum following semi-empirical relations (Elfouhaily et al., 1997; K. Hasselmann 
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et al., 1973; Pierson & Moskowitz, 1964). The total wave energy E E and significant wave height sE H  of the 
growing wave field are then related to the peak frequency pE   with

2 2 2 2
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where 74.41 10eE c    and 1E p  , again following K. Hasselmann et al. (1976), Badulin et al. (2007), and 
Kudryavtsev et al. (2015). For this simple case of stationary wave generation, the energy of the generated 
wave field E E travels with the group velocity gE c  and hence can eventually leave the generation area. Over the 
open ocean, wave generation is related to patches of strong winds under storms, called the fetch, that are 
neither stationary nor infinite (Munk, 1947). The standard fetch relations are thus theoretical limits, and the 
fetch's characteristic scales and its propagation must be taken into account.

For a storm and its fetch that are both moving with the translational speed E V , the wave-growth equation 
Equation 1 must be written in a Lagrangian frame of reference, moving with the storm as

2
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where E X x Vt   is the along-wind coordinate in the moving reference frame (Kudryavtsev et al., 2015). 
This equation describes the evolution of a growing sea in the moving frame with coordinates ( ,E X t), and the 
forcing ( , )pE u   that is, a function of the local wind speed ( , )E u X t . This nonlinear first-order partial differen-
tial equation is used in the following two subsections to outline the effects of a moving fetch on growing 
waves for typical scales of extra-tropical storms. First for storms with constant winds for which the equation 
can be solved analytically (Section 2.1), and then with temporally and spatially varying winds following a 
Gaussian form (Section 2.2).

2.1.  Constant, Finite Moving Wind Models

First, we consider constant steady winds E u under a storm of length E L and duration E T , steadily moving with a 
constant translation velocity E V . Constant winds imply a constant forcing function , such that Equation 4 can 
be solved analytically for pE   using the method of characteristics (Appendix A). Figure 2 shows these char-
acteristic curves of wave energy for typical scales of tropical and extra-tropical storms. The characteristic 
curves 0 0 0( , , , )E X t X t c  describe the position of a growing nonlinear wave packet which has a group speed 0E c  at 
position 0E X  and time 0E t , as it passes through the forcing field. Their first derivatives ( )t gE X c V    describe 
wave energy's speed gE c  relative to the speed of the moving frame E V , and their curvature is proportional to the 
acceleration of this wave field and similarly the intensity of wave energy growth ( tt gE X c E    ).

The initial sea is assumed to be at rest ( 0 0E c  ) such that the wave energy at the beginning of the storm  
( 0( , ,0,0)E X t X , Figure 2 bottom axis) is slow and propagates backward in the moving frame of the storm (for 
example in Figure 2a day 0–0.3). Even though these young seas propagate slower than the storm, their en-
ergy continues to grow because they are continuously exposed to the steady wind forcing. With time, the 
peak frequency decreases, and the group velocity of the peak wave energy increases (Equation 3). After a 
critical time critE   (dashed black line in Figure 2), the peak wave energy starts traveling at the same speed as 
the storm, that is, gE c V . This timescale from the wind's onset until gE c V  is

11
,q q

crit
c u V
g
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
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and the distance the storm has traveled during this time is
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c uX qu
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where 5( , ) 1.23 10E c c q     and q  3 10/  measuring the efficiency of wave growth depending on the sea 
state (Appendix A).

While tropical and extra-tropical cyclones may have comparable translation velocities, tropical cyclones are 
smaller in scale, but can create very strong surface wind speeds for several days. This leads to a trapping 
or quasi-resonance of wave energy under tropical storms (Kudryavtsev et al., 2015). Trapping also appears 
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under extra-tropical storms that are large enough ( critE X X , Figure  2 red dots), and, more importantly, 
last long enough ( critE t  , Figure 2 dashed black line). Trapping can create more energetic (i.e., faster and 
longer) swell waves, because the growing sea-state remains longer under the forcing wind field than it 
would under a stationary wind field. Hence, only wave energy whose characteristic curves originate at a 
time larger than critE   or at a position larger than critE X  can end up propagating to the forefront of the moving 
fetch and being exposed to the maximum possible wind forcing (dark blue lines in Figure 2).

The trapping conditions are determined by the wind speed and translation velocity (Equations 5 and 6). 
Figure 2 illustrates how these critical scales differ between fetches of tropical cyclones (Figure 2a, 6critE    
to 10 h and 50critE X   to 100 km Kudryavtsev et al., 2015) and extra-tropical cyclones (Figures 2b and 2c, 

12critE    to 36 h and 100critE X   to 400 km).

The characteristic curves of wave energy under constant moving winds can then be separated into curves 
that leave the storm from the rear ( 0 critE X X ), curves that start further in the front ( 0 critE X X ) and reach the 
trapping condition, and finally curves that start at later time in the storm ( 0 critE t  ) and at the rear ( 0 0E X  ).  
For this last situation, the initial group velocity of the waves must be larger or equal to E V , otherwise those 

Figure 2.  Characteristic wave energy curves for an idealized fetch model with constant and translating wind. (a) 
Characteristic curves for typical scales of a tropical cyclone (E V  = 10 m 1sE  , E u = 30 m 1sE  , duration E T = 4 days, length scale 
is 200 km, same parameters as in Kudryavtsev et al., 2015). The characteristic curves with lowest pE   and the highest 
wave energy, that is, the longest characteristic curve (dark blue) start at the red dot ( critE X ) and goes to its exit location 
(green dot). The green line indicates exit locations that have the same value of pE   as the green dot, but in this case 
the wave energy was generated along the light blue lines starting after critE   (dashed black line). Orange lines indicate 
characteristic curves that start at 0E t  but don't grow as long as the longest characteristic curve and result in smaller wave 
energy. The thickness of the characteristic curves is proportional to the wave's energy, or 1

pE   (b) Same as (a) but for a 
length-limited extra-tropical storm with strong winds (E V  = 10 m 1sE  , E u = 20 m 1sE  , duration E T = 5 days, length scale is 
1,000 km). (c) Same as (b) but for a time-limited extra-tropical storm with weak winds E u = 10 m 1sE  .
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will not be able to propagate forward in the moving reference system and will leave the storm from the rear 
(Figure 2 light-blue curves, defined as 0( ,0, , )E X t t V ).

Characteristic curves for the three cases are separated by a special case corresponding to the longest, most 
energetic characteristic curve (Figure 2, dark blue line). It defines the largest generated wave energy for 
a given moving fetch and indicates if moving fetches are either “length-limited” or “time-limited.” For 
length-limited conditions, the most energetic waves leave the storm before it terminates, and the swell 
properties are limited by the length scale of the storm (Figures 2a and 2b, green dot). For time-limited con-
ditions, the maximum swell energy is limited by the duration of the storm (Figure 2c). For both cases, more 
than one characteristic curve is associated with the largest possible wave energy. Length-limited storms 
may last long enough such that more than one curve reaches the front of the storm. This implies a constant 
radiation of energetic waves from the front of the fetch, starting after a certain time from the onset of the 
storm (Figures 2a and 2b, green vertical lines). Time-limited cases may not last long enough for the curve 
starting at crtiE X  to reach the front of the storm. These cases result in most energetic waves leaving the storm 
in a spatial spread when it ends (Figure 2c, green horizontal line).

Extra-tropical storms can thus be either length- or time-limited (Figures 2b and 2c), while tropical storms 
mostly correspond to length-limited wave growth regimes (Figures 2a; Kudryavtsev et al., 2015). To illustrate 
this expected variability of extra-tropical storms, the effect of changes in the length, speed, and wind forcing 
on the largest generated group velocity along the longest characteristic curve is shown in Figure 3. For typ-
ical scales of extra-tropical storms (Figure 3a, green line), the fetches can be either time- or length-limited 

Figure 3.  (a) Travel time of the longest characteristic divided by the fetch duration (5 days) for constant moving 
wind model with a propagation speed E V  = 10 m 1sE   (as in Figures 2b and 2c). Blue shading indicates length-limited 
fetches, red shading indicates time-limited fetches and the black line shows cases with a travel time along the longest 
characteristic curve equal to the duration of the fetch. The green line indicates the parameter space in (b). (b) Group 
velocity of the longest characteristic curves of fetches with E L = 1,000 km, translational speed of E V  = 10 m 1sE  , but 
varying wind speed and duration. The trapping condition ( gE c V ) is shown as black dashed line, while the fetch- and 
time-limited cases are shown as red and blue lines.
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(Figure 3a, black line). It is also possible that small extra-tropical storms do not even reach the trapping 
condition, as indicated to the left of the dashed black line in Figure 3b.

This constant-wind model outlines the general dynamics of swell generation under a moving storm and 
how its bulk spatio-temporal parameters affect the resulting swell systems. However, this conceptual model 
fails to explain why observed swell events have a clear temporal maximum (Figures 1b–1e) that seems to 
originate from a very small source location (Munk, 1947). In addition, this model implies that the forcing is 
constant within the fetch area and discontinuous at its boundaries.

2.2.  A Gaussian Moving Wind Model

Hereafter, we relax the assumption of constant wind forcing to better represent the storm's life cycle and to 
account for the fact that observed winds vary smoothly over space and time. We now describe the wind forc-
ing ( , )E u X t  in Equation 4 as a two-dimensional Gaussian function in space and time. This two-dimensional 
Gaussian moving fetch can be interpreted as representative of the wind patch typically established behind 
the cold front of a low-pressure system (Figure 4, gray shading) that travels with about the same translation 
velocity E V  as the storm (Figure 4, orange arrows). This fetch typically establishes on the equator-ward side 
of the storm and is tightly linked to the storm life-cycle (Neiman & Shapiro, 1993; Schemm & Wernli, 2014; 
Schultz et al., 2018), and could be called the “dangerous semi-circle,” as under tropical cyclones (Araka-
wa, 1954; Sherman, 1956). Anticipating on the results of the observational analysis in Section 3, we assume 

Figure 4.  A moving fetch embedded in a Northern Hemisphere extra-tropical storm. The storms center E L is adjacent by a warm and cold front (thick gray lines 
with half circles or triangles). The moving fetch is located behind the cold front (gray shading with blue arrows) and moves with the same translational velocity 

E V  as the cyclone center E L (orange arrows) to the bottom right. The green area indicated the source region as suggested by a Gaussian moving wind model 
(Section 2.2) and observations (Section 3). Swell waves radiate away from this source region (small gray arrows).
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that the propagation direction of the fetch (Figure 4, orange arrows) is aligned with its dominant wind 
direction (Figure 4, blue arrows) and hence also aligned with the direction of the generated waves.

The space-time Gaussian wind forcing is defined by a wind speed maximum, maxE u , a 95%E -width, and a 95%E
-duration, while the 95% corresponds to 2E   standard deviations of the Gaussian curve. Solutions of Equa-
tion 4 for two typical extra-tropical storms are shown in Figures 5a and 5d. A storm with a 95%E -fetch-width 

Figure 5.  Characteristic curves from two-dimensional Gaussian winds in the moving frame of reference. (a) Two-
dimensional Gaussian wind forcing (gray shading) with characteristic curves (colored lines) within the 95%-extension 
of the winds (black dashed lines). The wind forcing is defined by a 95%-width of 1,000 km, a 95%-duration of 3.6 days, 
a translational velocity E V  of 10 m 1sE   and peak wind speed maxE u  of 20 m 1sE  . (b) Group velocity along the characteristic 
curves as a function of time with colors same as in (a). The translational velocity E V  = 10 m 1sE   is shown as black 
dashed line. (c) Same as in (b) but for wave age   2

10
c u

g
/ . The dashed-dotted and dashed line indicate E  = 1 or 10 

respectively. Panels (d) to (f) as (a) to (c) but for peak wind speed maxE u  = 10 m 1sE   rather then maxE u  = 20 m 1sE  .
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of 1,000  km, a 95%E -duration of 3.6  days and 10maxE u   m 1sE   shows characteristic curves similar to the 
length-limited case of constant winds (Figures 5a and 2b). The major difference is that characteristic curves 
converge and cross near the storm's leading edge, at the end of the storm's lifecycle (Figure 5a, day 2.5–3). 
The convergence of characteristic curves in a focus area results from the spatial gradients in the Gaussian 
wind forcing and does not appear with a constant, Heaviside-function wind forcing (Section 2.1). Hence, 
any realistic storm, with local wind maximum and smooth wind distribution, will have spatial gradients and 
focus characteristic curves from different parts of the moving storm.

The convergence of the characteristic curves show a focusing of wave energy by the superposition of wave 
trains and the formation of a convergence region (Figures 5a and 5d). The convergence and crossing of 
curves indicate that sea states with different generation histories (different paths of integration) propagate 
to the focal area and locally enhance the total wave energy spectrum. Enhanced wave energy will lead to 
increased dissipation and more nonlinear wave-wave interactions (S. Hasselmann & Hasselmann, 1985; 
Kudryavtsev et al., 2021), that is, the convergence of wave energy can add another forcing term in Equa-
tion  4. The largest estimated wave energies on the characteristic curves (Figure  5b, light blue to green 
curves) are thus likely lower-bound estimates, because independent solutions along the characteristics do 
not capture the expected enhanced dissipation and nonlinear wave-wave interactions due to wave energy 
convergence. Still, the proposed model is useful to explain the governing relations between the fetch scales 
and the moving storm, although it might lead to systematic biases for the total wave energies and peak wave 
frequencies.

The described wave-ray convergence leads to an area with significantly enhanced wave energy that can last 
for about half a day (Figure 5a between day 2–2.5 and Figure 5d between day 2.5 and 3). This area encloses 
the steepest waves of the wave generation process and is substantially smaller than the wind fetch that 
caused it (Figures 5a and 5d, gray shading). In the following, we argue that this small and distinct area acts 
as the source location for linearly propagating swell waves. From a distant location, it can be interpreted 
as a point source of swell waves (Section 3.2; Munk, 1947). This source location corresponds to the transi-
tion region from a nonlinear and very steep sea, mainly driven by wave-wave interactions, to a dominantly 
linear sea. In this transition region, the wind forcing decreases and subsequent wave-energy fluxes across 
frequencies vanish as well. The transition results in a linear sea that is, dispersive and its wave energy starts 
to travel as the superposition of linear waves. This interpretation of the characteristic curves focusing in a 
transition region predicts that an observable source location of swell systems should be displaced ahead of 
the strongest moving winds, rather than at the center of the high wind speed region. Observational evidence 
for this phenomenon is shown in Section 3.

2.3.  Wave Age of Mature and Old Seas Under Moving Fetches

The Gaussian wind model emphasizes the nonlinear behavior of the wave energy growth and the impor-
tance of the wave field's generation history under the moving wind field. The wind forcing of sea states 
without a generation history can be solely described by the local wave age   2 c u

g
/  (right hand side of 

Equation 4), because the nonlinear advection term is small and gE c  is proportional to E u (Figures 5c and 5f, 
day 0–2; Edson et al., 2013). However, once nonlinear advection increases, the wave energy growth cannot 
simply be described by the local wave age parameter (Figures 5c and 5f, day 2–3). These mature or old seas 
describe a situation where the simple relation between wave age, group velocity, and wind speed breaks 
down. While the group velocity only slowly grows, the wave age rapidly increases mainly due to constant or 
even decreasing local wind speeds.

A comparable wind forcing E u on the right-hand side of Equation 4 can thus correspond to different degrees 
of wave development, that is, different gE c . When waves start to reach a mature state of development, the 
wind forcing starts to decrease and limit the peak frequency downshift. We expect this nonlinear behavior to 
be more important for old seas, that is, when the wave's peak phase velocity and the local wind velocity ap-
proach fully developed conditions of 0.85E    (P. Janssen, 2004). In addition, wave energy convergence can 
counteract the local decay of the wind forcing and maintain a high wave steepness (see previous section). 
These focusing effects, associated with converging wave rays, should lead to enhancement and stabilization 
of the wave energy level. Thus, parametrizations of the wave's energy based on the local winds alone (e.g., 
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Bourassa et al., 2013) may fall short under moving fetches of synoptic storms. A proper description of the 
wave energy needs to account for the nonlocal wave dynamics.

2.4.  Scales of Extra-Tropical Storms Shape Wave Events

The spatio-temporal scales of extra-tropical storms thus govern the focal point of wave energy convergence 
and control resulting peak group velocities and wave energies. Using the Gaussian wind model, the spatial 
gradients are proportional to the ratio of maxE u  and the 95%E -width. Since the average storms width is related to 
the Rossby radius and thus hard to change (Eady, 1949), the main control parameters become maxE u  and E V . To 
illustrate this resulting sensitivity on maxE u , Figure 5d shows a moving fetch with the same parameters as in 
Figure 5a, but for a weaker peak wind speed and hence a weaker spatial gradient. Compared to strong wind 
conditions, weaker winds temporally delay trapping condition gE c V  and the location where the character-
istic curves cross (Figure 5a, day 2–2.5 and Figure 5b, day 2.5–3) resulting in an overall lower group velocity.

A more systematic assessment is shown in Figure 6. Characteristic curves are calculated using Equation 4, 
but now for various combinations of storm sizes, duration, speeds, and wind forcing. For each set of storm 
conditions, we take the largest resulting group velocities to test the sensitivity of gE c  on the storm scales. 
Because characteristic curves converge and cross, wave energies merge, and the largest gE c  derived from the 
method of characteristics is likely to be underestimated (Section 2.2). However, this is still a useful metric to 
understand how the storm's scales control regimes of wave generation.

Comparisons between the peak velocity maxE u  and translation velocity E V  for typical scales of extra-tropical 
cyclones are shown in Figure 6a (95%-width and -duration are 1,000 km and 3.5 days). The two cases from 
Figure 5 are indicated by black triangles and illustrate how solely changes in the peak wind speed lead to 
different peak wave energies. Higher peak velocities maxE u  or faster-moving storms E V  lead to higher group 
velocities (Figure 6a, green shading). However, if a storm moves too fast, wave growth is limited because 
trapping effects are weaker or do not appear at all (Kudryavtsev et al., 2015, Figure 6a, to right of the black 

Figure 6.  The dependences of the largest generated group velocity from the two-dimensional Gaussian wind model on the storm's scales. (a) Largest generated 
group velocities for varying translational velocity E V  and peak wind speed maxE u . The dashed black line separates fetch- and time-limited cases. Cases 1 and 2 from 
Figure 5 are shown as the black upward- and downward pointing triangles. (b) Same as (a) but for changes in the 95%-width and 95%-duration. The parameter 
space of (a) and (b) are represented as green or blue dot in the respective other panel. The observational case from Section 3 (Figure 9c) is shown as red dot in 
(a) and (b).
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dashed line). No trapping occurs for fast storms with relatively weak winds; a situation that is, likely un-
common for extra-tropical storms.

The fetch length and duration also affect the wave energy generation (Figure 6b). For typical but constant 
translation velocities and peak wind speeds, the wave energy increases when the storm is larger or lasts 
longer. However, more persistent storms are more effective in creating large wave energies than larger 
storms. For example, changing the storm size by 20% from 1,000 km to about 1,200 km has a weaker effect 
than changing the storm's duration by one day (Figure 6b, starting from the green dot). The importance of 
the storm's duration is again due to the trapping condition because trapping will always occur if the storm 
lasts long enough (Section 2.1).

3.  A Case Study of a North Pacific Storm
In this section, we combine observed surface wave spectra with reanalysis surface winds to assess the con-
sistency of the Gaussian moving fetch model for swell generation. We analyze the case of a single storm 
over the North Pacific and explain how dispersed swell arrivals in wave buoy observations provide strong 
evidence for a small swell source location. We employ a physically constrained machine learning method-
ology that heavily borrows from ideas in Munk (1947), Barber and Ursell (1948), Snodgrass et al. (1966), 
as detailed in Hell et al. (2019, 2020). This method triangulates the spatio-temporal coordinates of a single 
swell source which is simultaneously observed at five wave buoy stations. This helps to check wherever 
or not the hypothesis from Kudryavtsev et al. (2015) can be extended to extra-tropical storms with smooth 
Gaussian winds (Section 2; Figure 4), and if the swell source location is indeed displaced compared to the 
strongest observed wind forcing. We first give a brief overview of the algorithm used to establish the source 
location. A more detailed description of the algorithm and two additional case studies can be found in the 
Text S1 and Figures S4–S6. An example code is available at https://doi.org/10.5281/zenodo.5201953.

3.1.  Physically Constrained Optimization of a Parametric Swell Model—In Brief

We designed a parametric swell propagation model that is, optimized on five pre-identified wave events. The 
spectral shape of the parametric model is described by a commonly used shape function (K. Hasselmann 
et al., 1973; Elfouhaily et al., 1997), it's time component as an Erlang distribution (Hell et al., 2019), and its 
decay as a function of the travel distance (Jiang et al., 2016, Text S1.3).

The optimization is performed in five steps. First, swell wave events observed by the Coastal Data Infor-
mation Program (CDIP) wave buoy network (Behrens et  al.,  2019) are identified in the very long swell 
band. Second, the parametric model is fitted to each swell event at each wave buoy observation, and the 
uncertainty of its parameters are estimated to evaluate the spectral dispersion slope and the quality of the 
observation (Hell et al., 2019). Third, the swell events are matched by their estimated initial time that can 
be inferred from the events dispersion slope (Barber & Ursell, 1948; Collard et al., 2009; Munk, 1947; Snod-
grass et al., 1966). In the fourth step, these sets of matched swell events are used to compare with parametric 
model outputs, but now assuming a common isentropic point source origin. Given a resulting hypothetical 
source point, the parametric model provides dispersion slopes, arrival times, and the wave's amplitude at-
tenuation for each member in the set of swell observations. A combined cost function is then optimized for 
the common source point as described in the following (Section 3.2).

The algorithm's robustness largely builds from the fact that swell observations carry information about their 
source location. The radial distance to a source location is indirectly measured by the dispersion slopes of the 
wave events spectrograms (Barber & Ursell, 1948; Collard et al., 2009; Munk, 1947; Snodgrass et al., 1966). 
The combination of three or more buoy observations generally provides sufficient means to retrieve a com-
mon source location of the swell. Here, we use observations at five locations to reduce errors due to the 
spherical geometry and potential distorted observations at one or more location (see next section). Details 
about this algorithm, the parametric swell model and the cost-function design are given in the Text S1.

https://doi.org/10.5281/zenodo.5201953
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3.2.  Triangulation of Swell Origins

The cost function between the parametric model and the data helps to quantify the performance of the 
model fit. A map in longitude, latitude and time of most likely wave origins is derived to define a measure 
on the model fit. A likelihood 1e fE L   indicates a perfect model fit and implies that all data variance is ex-
plained by the model, while 0e fE L   indicates total model failure (Equation 11 in Text S1.5).

The result of the optimization is shown Figure 7 for a storm between the January 4th and 8th, 2016 (Fig-
ures S4 and S6 for other examples). The green hexagon in Figure 7a indicates the most likely common 
source location for the swell events detected at five buoys (Figures 7b–7f). The identified source location 
on January 4, 2016 at 6:30 is identical for either a brute-force search in the parameter space, or a global cost 
minimization (within a 25-km radius and 1 h, Figure S1).

Figure 7.  Results for the source point optimization for the case study in January 2016. (a) The colored circles show 
the best fit great-circle distanced for the respective stations (colored dots). The great-circle radii correspond to the 
sloped lines in panel (b) to (f) and the green hexagon is the position of the most likely common origin on January 4, 
2016 at 06:00 UTC. The green shading shows the likelihood measure 0.5e fE L   for this time step and the black contour 
the corresponding likelihood of L

e f
 0 6. . (b–f) The fitted parametric models (contours) compared to the station data 

(colored shading). The gray shadings in panel (b) to (f) is the weighting on the data during the optimization, and the 
weight in the sub-titles is the data's weight in the multi-station cost function (Text S1).
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Even though both methods return a source location close to ocean station PAPA (CDIP 166), they somehow 
lead to different interpretations of the process of swell generation. While the global optimization returns a 
single optimum that would indicate a common point source for the wave's energy (Munk, 1947), the brute 
force method is in principle less precise but can hint at multiple areas of similar likelihood. It samples a 
broader parameter space and hence can provide a likelihood map of swell origins (Figure 7a, green shading).

Note that the assumption of a single optimum essentially follows the idea of a linear inversion of the ob-
served dispersion slopes in observations (Figures 1b–1e and 7b–7f; Munk, 1947), which in turn directly im-
plies the existence of a point source (Figure 7a, green hexagon). However, the brute force method optimizes 
a cost function designed under the assumption of this point source, but it returns a multitude of location 
with similar likelihood (Figure 7a, green shading). The assumption of an idealized point source is still a 
reasonable interpretation for a single distant observer of swell, but some refinement is needed in the context 
of the transient wave generation and decay (Section 3.4).

The brute force sampling shows how the maximum of e fE L  shifts in space for a sequence of time steps (Fig-
ure 7a, green dots). It means that observed waves either originate earlier from a position west of the most 
likely source location, or later from a position east of the most likely source location (Figure 7a, green dots). 
This trace of local maxima in e fE L  can be interpreted as a progression of wave origins rather than a single 
point, as suggested by the constant or Gaussian wind models (Figures 2b, 2c and 5). This trace of local max-
ima in e fE L  is used in the next section to combine the observed wave events with observed wind patterns that 
are related to propagating storms.

Note that a successful optimization of the multi-station cost function may not always be straightforward. 
Indeed, local wind swell and wave-current interactions on the swell travel paths are able to distort the wave 
buoys observations (Gallet & Young,  2014; Villas Bôas et  al.,  2017), and possibly alter the optimization 
procedure (Hell et al., 2020). Figures 7b–7f compares instances of the parametric wave model (colored con-
tours) for the most likely source location (green hexagon in panel a) to the respective observations (colored 
shading). The parametric model captures the observed dispersion slopes in four out of five cases. Compari-
son between the model and data from CDIP 106, close to Hawaii (Figure 7e and red dot in Figure 7a), indi-
cates a modeled wave arrival about 1 day later and further away than the observation. Hence, the observed 
wave event close to Hawaii could result from a closer source than suggested by the best model fit, and still be 
related to the same storm system. In such a case, a different growth history, that is, a different effective fetch, 
would be necessary. This case study shows that a more holistic understanding of the optimization hints at 
the complexity of wave generation in the real world, but also shows that even imperfect and distorted data 
can support the hypothesis in Section 2.2.

3.3.  Comparing Observed Swell Origins to Reanalysis Winds

To interpret the relation between possible wave origins and the wind pattern that creates them, we show 
three snapshots of surface winds and sea level pressure from hourly ERA5 reanalysis on a 0.25E -grid in 
the North East Pacific (Figure 8, European Center for Medium-Range Weather Forecasts fifth-generation 
reanalysis for the global climate and weather; CDS, 2017). The storm propagates eastward, and its associ-
ated strong surface winds, the fetch, move eastward as well (red area at about 160E W and 40E N in Figure 8a 
moves to about 150E W and 50E N in Figure 8c). The same propagation can be seen for the local maxima of 

e fE L  and hence for the source location of swell (Figure 7a, green dots). Interestingly, the swell origins appear 
systematically ahead of the highest wind speeds (Figures 8a–8c). This displacement between the swell or-
igins, estimated from wave buoys, and the highest wind forcing, estimated from reanalysis, is the same as 
predicted for swell generation by a moving fetch (Section 2.2). Hence the physically informed brute-force 
optimization shows how the trace of most likely swell origins, that is, a trace in the local maximum of e fE L , 
co-travels with the patch of highest wind speeds under a moving storm.
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3.4.  Computing Waves Growth From Realistic Moving Winds

We can now compare the propagating, co-located winds patches and swell origins to the moving Gaussian 
wind model. To do so, we transform the surface winds in a Lagrangian frame using its average propagation 
speed.

Figure 8.  Optimized source locations compared to reanalysis winds (shading and vectors as in Figure 1) and negative 
SLP anomaly (dark blue contours as in Figure 1) for a date early in the event (a, 2016-01-03 10:00), the most likely 
origin time (b, 2016-01-04 04:00), and late in the event (c, 2016-01-04 14:00). The light green dots or the hexagon 
represent the most likely swell wave origin for the respective time step and the dark green dots are most likely swell 
wave origins for all time steps. The black line between the point A and B is a least-square fit to these dots of most likely 
origin and defines the transect through the wind data in panels (d) and (e). The transect through the wind data between 
point A and B is shown for along-transect (d) and across transect (e) winds. The wind data are indicated in red and blue 
shading, the area observed of most likely wave origin as green contours ( 0.6e fE L  ), and its maximum as green hexagon. 
The estimated translational velocity along the transect is shown as black line (see Figure S2).
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We first define a transect line for the wind data using a least-square fit to the trace of e fE L  (Figures 8a–8c, 
straight black lines between A and B). Next, we take data along this transect over a width of 440 km from 
the wind reanalysis between the points A and B. The wind is rotated to along- and across-transect velocities 
and then averaged orthogonal to the transect (Figure S2). The resulting time evolution of the along- and 
across-track averaged winds as well as contours of e fE L  are shown in Figures 8d and 8e. Finally, we estimate 
the average propagation speed E V  of the along-transect wind patch using again a least square fit (Figures 8d 
and 8e, black sloped line, Figure S3). The estimated propagation speed E V  of 14.1 m 1sE   is then used to shift 
the data in the frame of reference of the moving wind patch.

The resulting along-transect velocities and the contours of e fE L  are shown in the moving frame of reference 
in Figure 9a. The area of most likely swell origin is clearly displaced in space and time compared to the 
highest wind speeds (Figure 9a, green contours and red shading). The most likely swell origin is about one 
day delayed compared to the strongest winds. It is thus unlikely that the observed swell waves originate 
from the area of highest wind speeds. Instead, swell waves are delayed in the moving frame of reference. A 
temporal delay in the moving frame implies also a spatial displacement in the Eulerian frame, as already 
observed in Figure 8. This space-time displacement cannot be explained by the stationary fetch laws, which 
only describe swell properties away from a constant-wind “fetch” area (Section 2; Elfouhaily et al., 1997; K. 
Hasselmann et al., 1973; Kitaigorodskii, 1962). This space-time displacement is in line with the predicted 
delay in the moving frame of reference between strongest wave growth and linear swell propagation disper-
sion (Section 2.2).

The spatial-temporal delay of the estimated wave origins can be explained by analyzing the characteristic 
curves of wave growth forced with the transformed wind data. As in Section 2.2, we use the method of char-
acteristics to solve Equation 4 but now using the along-transect reanalysis winds in the moving frame of ref-
erence (Figures 9a and 9b, shading). The characteristic curves are initialized from a sea at rest ( 120 spE    , 

Figure 9.  Observed winds in the moving frame of reference. (a) Same as Figure 8d but in the moving frame of 
reference. The black line Figure 8d would be here a vertical line. (b) Same as (a) but with characteristic curves of 

pE   solving Equation 4 with the method of characteristics. (c) Same as Figure 5a but for scale estimated from (b): 
95%-width = 2,800 km, 95%-duration = 4 days, maxE u  = 22 m 1sE  , and E V  = 14.1 m 1sE  . The characteristic curves with the 
highest wave energy are marked as blue line in panel b and c and the green hexagon indicates the position where wave 
growth can terminate the latest. The dashed black line in (c) is the 95%-boundary of the forcing field.
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Appendix A) where the winds are zero ( 0E u  ) and represent paths of wave energy growth that propagate in 
the moving reference frame (Figure 9b, black and blue contours). As in the idealized model (Section 2.2), 
the line thickness shows that wave energy and group velocity increase along the path while pE   decreases. 
Several characteristic curves reach the trapping condition ( gE V c ) and some paths converge and cross due 
to large-scale gradients in the wind forcing (Figure  9b, day 2.5–3.5, see also Figure  S5 for another case 
study).

The path with the largest final wave energy is shown in blue in Figure 9b. This characteristic curve is ter-
minated, where the wind forcing reaches zero (Figure 9b, green hexagon), indicating the last space-time 
location of possible active wave growth. While this is a practical definition of where wave growth decays, 
because Equation 4 only captures wave growth, it is remarkable that the longest characteristic curve over-
laps with the area of most likely swell origin and crosses its peak (Figure  9b, green dot and contours). 
Even though this area of most likely origins is transformed in the moving frame of reference, it is derived 
independently from the solutions of the characteristic curves. And, while the wind forcing of the character-
istic curves is taken along the trace of the triangulated swell origins (Section 3.2), there is no need for the 
longest characteristic curve to match the independent buoy observation. This match between the forward 
calculation of the wave growth model forced by reanalysis winds (Equation 4) and the back triangulation 
of linear swell propagation (Figure 7) provides evidence that the conceptual idea of a Gaussian wind mod-
el (Section 2.2) is sufficient to capture the necessary dynamics of wave growth and swell generation by a 
moving storm. This is, to some extent, surprising given the nonlinear nature of Equation 4 and potential 
biases in the surface winds (Allen et al., 2020; Gille, 2005; Hell et al., 2020; Ribal & Young, 2019; Trindade 
et al., 2020; Wentz et al., 2015).

To further explain why wave growth from transformed reanalysis winds is able to match the triangulated 
swell origins, we use the Gaussian wind model from Section 2.2, for parameters that match the scales of the 
observed wind forcing ( 14.1E V   m 1sE  , 22maxE u   m 1sE  , a 95%E -duration of 4 days and 95%E -width of 2,800 km, 
Figure 9c). The Gaussian wind model is able to reproduce and predict a trajectory of the largest wave energy 
align with the observed source locations (compare Figures 9b and 9c, blue line and green dot). It captures 
the observed larger-scale spatial and temporal wind gradients that are needed to create the convergence 
of the characteristic curves (Figures 9b and 9c). This provides evidence that a Gaussian moving fetch is a 
sufficient model to understand swell generation by extra-tropical cyclones (see Figures S4–S6 for additional 
examples).

4.  Discussion and Conclusion
Swell wave generation from extra-tropical storms is a long-standing problem (Munk, 1947). Here, we pre-
sented a comprehensive explanation of why swell systems likely originate from small locations that do not 
necessarily match the high wind forcing regions. This explanation points to aspects in the process of swell 
generation that need to be better captured to improve wave forecast models but are also relevant for estimat-
ing air-sea fluxes and ocean mixed-layer variability.

A two-dimensional Gaussian wind model is found to be sufficient to represent the wave generation under a 
moving storm and to improve upon constant wind forcing conditions (Sections 2.1 and 2.2). The storm and 
its cold sector are assumed to travel with a constant translation velocity (Figure 4), even though in reality, 
the storm's fetch propagation might likely vary in speed and direction. The proposed model is highly ideal-
ized but is still detailed enough to capture the main wave-generation mechanism during the life-cycle of an 
extra-tropical storm as for example, described in Neiman and Shapiro (1993), Neiman et al. (1993), Schemm 
and Wernli (2014), and Schultz et al. (2018). It is also found to be a sufficient minimal model to explain 
observed displacements of estimated swell source location compared to the highest wind forcing locations 
(Section 3.3; Figures 9b and 9c; Hell et al., 2020). The combination of a Lagrangian wave-growth model with 
an optimized swell propagation model suggests three stages in the life cycle of swell wave energy.

•	 Stage 1: Wave Growth Under a Moving Fetch in a Young and Growing Sea
Starting from a sea at rest, wind forcing creates short waves as a result of wave-wave interactions, wave 
growth and dissipation. Wave-wave interactions lead to a continuous decrease of the peak frequency pE  , 
while the total wave's energy and significant wave height increase (Equation 3). For an actively growing 
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wave field, the wave energies in different frequency bands are strongly coupled through wave-wave inter-
actions. This coupling likely inhibits frequency dispersion and let us uniquely describe the wave spectra 
by its peak parameters. The energy of the nonlinear sea state thus mainly travels with the group velocity 
of its dominant frequency ( )g pE c   shown by characteristic curves in Figure 10.

At first, waves are slower than the storm and propagate backwards in the moving frame of reference. 
With time this young sea continues to grow, its peak frequency decreases, and the associated group veloc-
ity accelerates (Figure 10). Eventually, the wave's energy starts to propagate with a speed comparable to 
the storm, such that the wave energy is trapped under the storm ( gE c V , Section 2.1). The wave's energy 
is now strongly growing because the previously established nonlinear sea is exposed to the strongest 
winds of the moving fetch (growing sea in the center of Figure 10). This process ends when the wave 
energy leaves the storm or when the wind forcing vanishes.

This strong wave energy growth depends on if the wave's energy is trapped ( gE c V ) or not. This trap-
ping, or quasi resonance (Bowyer & MacAfee, 2005; Dysthe & Harbitz, 1987; Kudryavtsev et al., 2015; 

Figure 10.  Schematic of wave growth under a moving storm with Gaussian wind. The gray shading shows the 
wind forcing and the dashed gray line marks the 95%-boundary of the Gaussian wind forcing. The colored lines are 
characteristic curves of wave generation in the reference system of moving extra-tropical storm. Wave growth starts 
with a young sea from rest and a small peak group speed. It develops into a growing sea that travels at the speed of the 
storm, until the wind forcing retires in an old sea such that the sea state eventually stops growing and the nonlinear 
wave-growth terms decay. Once the wave energy in each frequency band is dominantly linear the wave energy disperses 
and travel as linear sea, that is, swell.
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Young, 1988; Young & Vinoth, 2013), mainly depends on the ratio of the wind speed to the translation 
velocity (Equations 5 and 6). Wave energy is more easily trapped if the translation velocity of the storm 
is small or the wind speed is high (Figures 3b and 6a).

•	 Stage 2: Decay of Nonlinear Terms in an Old Sea
When the wind forcing decays, the wave energy does not immediately turn into linearly propagating 
swell. Instead, dissipation may remain active, with the wave-wave interactions counteracting the wind 
forcing decay. The peak frequency downshift ceases and the waves's steepness starts to decrease. Hence, 
the still steep nonlinear sea decays (Kudryavtsev et al., 2021). This results in a transformation to progres-
sively more linear sea (old sea, Figure 10). Timescales on which the nonlinear terms in the wave-action 
equation decay are inversely proportional to the fourth power of the wave steepness and are typically 
about three hours (Zakharov & Badulin, 2011; Zakharov et al., 2019). During this time, the wave field 
transforms from a nonlinear (steep wave spectrum) to a dominantly linear sea state (broader wave spec-
trum). Because the wave field still propagates during this relaxation time, the location where the wave 
spectrum is dominantly linear differs from the last location where the wind was still substantially grow-
ing waves.

•	 Stage 3: Linear Propagation of Swell
Once the wave field becomes linear, the wave energy in each frequency band propagates following the 
deep water wave dispersion relation as a linear sea (Figure 10 and radial propagation in Figure 4). At 
this stage, almost no interaction occurs between the different frequency bands. From this point on, the 
travel distance and energy attenuation are proportional to the amount of dispersion, which in turn is the 
difference in the arrival time between waves of different frequencies (Text S1.4; Ardhuin et al., 2009; Bar-
ber & Ursell, 1948; Munk, 1947). A backward triangulation based on linear propagation as in Section 3 
can then be applied successfully, as long as the swell's interactions with currents, eddies, and other wind 
forcing remain weak along its great circle path.

The Gaussian wind model is a smooth forcing field that can also be related to the scales of extra-tropical 
storms (Figures  6 and 11). Four parameters characterize the moving fetch; its translation velocity E V , its 
length-scale along the peak wind direction (95%-width), its lifetime (95%-duration), and its peak wind speed 

maxE u . All of them are determined by synoptic-scale dynamics. It follows that processes that influence the 
storm's intensity may also influence the shape, amplitude, and peak period of the observed swell events 
(Figure 11). This analysis provides a practical means to connect observed swell events to storm character-
istics and confirms that nonlocal swell measurements can be used to quantify storms over the open ocean 
(Hell et al., 2020). This can further link the current and future swell wave climate to common diagnostics 
of extra-tropical storms (Figure 11; Hoskins et al., 1985; Schemm & Wernli, 2014; Schultz et al., 2018) and 
their statistics (Andrews & McIntyre, 1976; Bengtsson et al., 2006; Charney, 1947; Eady, 1949; Mbengue & 
Schneider, 2016; Shaw et al., 2016, and others).

The idealized model of a moving fetch suggests that wave event intensities are most sensitive to spatial gra-
dients in the wind forcing fields (Figure 6a). Since the average size of storms, and their fetch (1,000 km), are 
constrained by basic properties of Earth's mid-latitudes flow (Bengtsson et al., 2009; Catto, 2018; Eady, 1949; 
Hodges et al., 2011; Sinclair et al., 2020), the spatial wind gradient is mainly determined by the peak wind 
speed maxE u . A larger peak wind speed and a stronger spatial wind gradient lead to more efficient trapping of 
the wave energy, with the consequence of larger swell waves. Note that at the leading edge of the moving 
fetch, the spatial wind gradient is related to the complex dynamics at the storm's cold front. The Gaussian 
wind model (Section 2.2) is a sufficient minimal model to explain the underlying dynamics but may not 
fully capture these smaller-scale wind gradients. It can be easily extended by introducing non-Gaussian 
corrections to the spatial wind distribution.

Intensities of wave events are also sensitive to the ratio of the peak wind speed maxE u  and storm propagation 
speed E V  because they are key to determine the trapping conditions (Equation 6). If their ratio, u V

max
/ , is rel-

atively large, the trapped wave energy leaves the wind forcing at its leading edge, co-located with the storm's 
cold front (Figures 4 and 7e). This can be interpreted as a “length-limited” fetch (Figures 2b and 5a). In con-
trast, if u V

max
/  is small the trapping is less intense and the wind forcing may decay before the wave energy 

reaches the leading edge of the fetch. This is better interpreted as a “time-limited” fetch (Figures 2c and 5d). 
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Length- or time-limited fetches may frequently occur under extra-tropical storms (Figures  3, 6 and  11), 
while tropical storms usually reach a length-limited situation that constantly radiates waves (Figure 2a). 
Under such a condition, the generated wave field would depend only on the storm's propagation velocity 
(Kudryavtsev et al., 2015).

Reanalysis products have biases in their representation of wind extremes (Gille, 2005; Hell et al., 2021). 
These wind extremes are represented in the Gaussian model as the peak wind speed. The sensitivity of the 
resulting swell peak period to the peak wind speed (Section 2.4) indicates that biases in wind extremes can 
cause biases in wave models by altering the processes of wave growth (Aouf et al., 2021). Errors in the peak 
wind speed of a few meters per second change the spatial wind gradients, alter the location of the highest 
energy convergence, and consequently the location where the swell energy starts to travel as linear waves. 
This might result in biases in arrival times of swell events. The present analysis suggests that swell analysis 
will lead to a better representation of extreme surface wind speeds and hence also improve surface wave 

Figure 11.  Peak group velocity gE c  of wave events from a Gaussian wind forcing of different velocity E V  and duration. 
The given peak wind speed and 95%-width are predefined as 10maxE u   m 1sE   and 1,000 km. The joint distributions of 
storm track speeds and lifetime are shown for the Northern Hemisphere (red) and Southern Hemisphere (black) as 
contours and their maxima as colored dots. The results for scales of a Gaussian wind forcing as in Figures 5d–5f are 
shown as blue triangle. The storm track statistics are derived from reanalysis sea level pressure fields using Murray and 
Simmonds (1991a, 1991b). Note that this algorithm does not provide a peak wind speed maxE u  such that we assume 10 m 

1sE  , even though we point out that maxE u  is an important parameter for the resulting peak group velocity.
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models (Cardone et al., 1996; Cavaleri, 2009; Durrant et al., 2013; Feng et al., 2006; P. A. Janssen & Bid-
lot, 2018; Osinski & Radtke, 2020; Ponce & Ocampo-Torres, 1998; Stopa & Cheung, 2014).

Any moving fetch with nonconstant winds will have spatial wind gradients leading to convergence of wave 
energy (Section 2.2). A convergence of the characteristic curves from different regions of the moving fetch 
can create wave-energy hot spots, indicated by crossing characteristic curves (Figure 5). This convergence of 
wave energy may lead to additional dissipation and/or additional wave-wave interactions, which intensify 
swell wave growth and the down-shifting of the peak frequency. Hence, it could be modeled as another 
forcing term in Equation 4, to which the wave spectrum can adjust rather quickly. It also implies that these 
local wave energy convergences correspond to enhanced breaking, which dissipates part of the wave energy 
in the upper ocean. Accordingly, we speculate that the location of the strongest winds may not necessarily 
be the location of the largest momentum transfers to the ocean, nor the location of the observable origin of 
swell (Figure 4). Instead, swell source locations can be interpreted as markers for intense momentum flux 
from the wave field to the ocean.

Finally, air-sea fluxes of heat, momentum, and 2COE  are currently parameterized by the standard bulk flux 
formulae (Edson et al., 2013; Fairall et al., 2003). The wave field's contribution to these fluxes is often de-
scribed by wave age 12 gE uc  . We suggest that the sea state at many locations under a moving storm cannot 
be explained solely by local parameters, like wave age (Figures 5c and 5f; Hsu et al., 2019). Because the local 
sea state results from the moving wind fetch, its group velocity is constrained by wind forcing to which 
the wave energy was previously exposed. This introduces a nonlocal condition on the momentum transfer 
between the atmosphere and ocean. This means that feedbacks between the wave spectrum and the turbu-
lent spectrum of the atmosphere (Ayet et al., 2020; Zou et al., 2020), or feedbacks of surface waves and the 
upper ocean (Li et al., 2016, 2019), can only capture these wave-induced nonlocal conditions when the wave 
spectra are computed, that is, advected, rather than assumed by local conditions. Alternatively, the wave 
spectra could be characterized by metrics that account for nonlocal wave history that goes beyond wave age.

Here, we have used standard wave buoy observations of ocean swell in the eastern Pacific to identify storm 
systems that generate wave events. We defined a parametric swell model that combines standard swell 
spectra, a prescribed time decay, and the deep water wave dispersion (Text S1). The novelty in this approach 
is that swell events from storms are treated as objects whose shapes and origins are learned from the data. 
This allows us to (a) reevaluate common models of wave spectra, (b) classify and match swell observations 
in a diverse set of existing data sets, and (c) use deviation from this parametric model to learn about other 
phenomena, for example, wave-current interaction (Gallet & Young, 2014; Quilfen & Chapron, 2019; Villas 
Bôas & Young, 2020).

We have outlined how choices in the design of a supervised learning algorithm are linked to the under-
standing of the physics we wish to investigate. Wave generation is a stochastic process that involves non-
linear physics, such that a single point source of swell is not realistic, even though it is assumed in the par-
ametric model (Section 3.2; Text S1). We account for this paradox by letting the optimization be imprecise 
(brute-force method), rather than precise (global optimization). The latter would likely overfit the model, 
which could be corrected by an extensive posterior uncertainty exploration around a prior defined opti-
mum. In either case, imprecise optimization, and uncertainty estimates of the most likely swell origins play 
an important part in this analysis (Figure 7). This approach suggests that observed swell arrivals could be 
modeled by a superposition of swell source points using ordinary fetch laws and Green's functions along the 
trace (Figure 7a, green dots). However, that kind of model would still fall short in describing the nonlinear 
dynamics prior the linear swell propagation (Section 2).

Appendix A:  Solution of the Lagrangian Advection Equation in the ( , )X t  Plane
A1.  Method of Characteristics for Constant Wind Forcing

We follow Kudryavtsev et al. (2015) and solve the advection equation Equation 4 in the moving frame of 
reference for constant winds E u, a constant advection speed E V  along a characteristic line ( ( ), ( ), ( ))gE t s X s c s , and 
with initial conditions 0 0, ( )E t X t  and 0( )gE c t  at 0E s  . The set of equations to be solved is
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1dt
ds

� (A1)

2

( )pd g
ds u


 
 

  
 

� (A2)

,g
dX c V
ds

 � (A3)

where the peak period pE   is related to the peak group velocity via the deep water dispersion relation 
1
2g

p

gE c


 . Equations  A1–A3 are solved numerically in Section  2.2 and there after. The characteristics 

curves are initialized for numerical reason the from 120 spE    . This corresponds to gE c  of about 27.8 10E   
m 1sE   and its difference from zero has no effects on the overall results.

Equation A1 reduces to 0E s t t   and hence gives the characteristic coordinate as a function of time. Equa-
tion A2 is the temporal fetch relation which reads in dimensional coordinates

0( ) ( ) ,
qt

qt
p t

g gt c t t C
u u 
 

   
 

� (A4)

with E C is the integration constant, and tE q  and E c are defined in Appendix A3 or Kudryavtsev et al. (2015). 
Equation A2 can also be solved for the group velocity gE c , and yields

0 0( ) ( ) ( ).
qt

q qt t
g g

gc t c u t t c t
u


 
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 

� (A5)

with E c  again defined in Appendix A3. Finally, the position E X along the characteristic reads, from Equation A3

1
0 0 0 0

1( ) ( ) ( )[ ( ) ] ( ).
1

qt
q qt t

g
t

gX t c u t t t t c t V X t
q u


  

         
� (A6)

A2.  Derivation of the Critical Time and Length Scale for Constant Moving Wind Forcing

Waves generated at the beginning of the storm ( 0 0E t  ) follow characteristic curves with initial conditions 
0(0)E X X  and (0) 0gE c  , assuming the sea initially at rest.

The time scale critE t  at which the trapping of wave every appears is when Equation A5 equals the speed of the 
storm E V , such that

,
qt

qq tt
crit

gV c u t
u


 

  
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� (A7)

which yields
11
.q q

crit
ct u V
g



� (A8)

At critE t , waves that have started at critE X  should be exactly at the rear boundary of the storm, that is, at 0E X  .  
From Equation A6, this yields

11 ,
1

qt
qq tt

crit crit crit
t

gX c u t t V
q u


  
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� (A9)
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1

2 ,
q
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c uX q u
g V
  

  
 

� (A11)

with using Equation  A8 and tE q  defined in Equation  A13. Waves with an initial condition 0 critE X X  will 
eventually move faster than the storm and will all have the same group velocity at a given time, following 
the temporal fetch law Equation A5.
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A3.  Choice of Constants

Wave growth estimated by the Lagrangian advection equation (Equation 4) and subsequent quantities de-
pend on a set of semi-empirical parameters (Badulin et al., 2007). Here we choose parameters based on K. 
Hasselmann et al. (1976), for the case of a “young sea.” With the choice of q  3 10/  and a wave growth 
parameter 15.4E c  , the other parameters follow as

15 1,
2

p q   � (A12)

0.43,
1t

qq
q

  
� (A13)

1
1 76.08,

2

qt

q
t

qc c 

   
 
 

� (A14)

74.41 10 ,ec  � (A15)

and
1 11

1 52 (1 ) 1.23 10 .q qtc c q 

 
        

� (A16)

Note that, Kudryavtsev et al. (2015) used a slightly different E q (see their Appendix A1), but the results are 
comparable.

Data Availability Statement
The CDIP data are available on the wave buoy observations were furnished by the Coastal Data Informa-
tion Program (CDIP, https://doi.org/10.18437/C7WC72). The ERA5 reanalysis was provided through the 
through the Copernicus Climate Change Service Climate Data Store (CDS, https://doi.org/10.24381/cds.
adbb2d47) in 2017. Neither the European Commission nor ECMWF is responsible for any use that may be 
made of the Copernicus information or data it contains. The code is available and preserved at https://doi.
org/10.5281/zenodo.5201953.
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