Skip to Main content Skip to Navigation
Journal articles

Impact of salinity on element incorporation in two benthic foraminiferal species with contrasting magnesium contents

Abstract : Accurate reconstructions of seawater salinity could provide valuable constraints for studying past ocean circulation, the hydrological cycle and sea level change. Controlled growth experiments and field studies have shown the potential of foraminiferal Na / Ca as a direct salinity proxy. Incorporation of minor and trace elements in foraminiferal shell carbonate varies, however, greatly between species and hence extrapolating calibrations to other species needs validation by additional (culturing) studies. Salinity is also known to impact other foraminiferal carbonate-based proxies, such as Mg / Ca for temperature and Sr / Ca for sea water carbonate chemistry. Better constraints on the role of salinity on these proxies will therefore improve their reliability. Using a controlled growth experiment spanning a salinity range of 20 units and analysis of element composition on single chambers using laser ablation-Q-ICP-MS, we show here that Na / Ca correlates positively with salinity in two benthic foraminiferal species (Ammonia tepida and Amphistegina lessonii). The Na / Ca values differ between the two species, with an approximately 2-fold higher Na / Ca in A. lessonii than in A. tepida, coinciding with an offset in their Mg content (∼ 35 mmol mol-2 versus ∼ 2.5 mmol mol-1 for A. lessonii and A. tepida, respectively). Despite the offset in average Na / Ca values, the slopes of the Na / Ca-salinity regressions are similar between these two species (0.077 versus 0.064 mmol mol-1 change per salinity unit). In addition, Mg / Ca and Sr / Ca are positively correlated with salinity in cultured A. tepida but show no correlation with salinity for A. lessonii. Electron microprobe mapping of incorporated Na and Mg of the cultured specimens shows that within chamber walls of A. lessonii, Na / Ca and Mg / Ca occur in elevated bands in close proximity to the primary organic lining. Between species, Mg banding is relatively similar, even though Mg content is 10 times lower and that variation within the chamber wall is much less pronounced in A. tepida. In addition, Na banding is much less prominent in this species than it is in A. lessonii. Inter-species differences in element banding reported here are hypothesized to be caused by differences in biomineralization controls responsible for element uptake.
Document type :
Journal articles
Complete list of metadata
Contributor : Nathalie POTHIER Connect in order to contact the contributor
Submitted on : Tuesday, May 10, 2022 - 3:32:00 PM
Last modification on : Thursday, May 12, 2022 - 3:19:37 AM


Publisher files allowed on an open archive


Distributed under a Creative Commons Attribution 4.0 International License



Esmee Geerken, Lennart Jan de Nooijer, Inge van Dijk, Gert-Jan Reichart. Impact of salinity on element incorporation in two benthic foraminiferal species with contrasting magnesium contents. Biogeosciences, 2018, 15, pp.2205-2218. ⟨10.5194/bg-15-2205-2018⟩. ⟨insu-03663865⟩



Record views


Files downloads