Skip to Main content Skip to Navigation
Journal articles

Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy

Ryan B. Anderson 1, * Olivier Forni 2 Agnes Cousin 2 Roger C. Wiens 3 Samuel M. Clegg 3 Jens Frydenvang 4 Travis S. J. Gabriel 1 Ann Ollila 3 Susanne Schröder 5 Olivier Beyssac 6 Erin Gibbons 7 David S. Vogt 5 Elise Clavé 8 Jose-Antonio Manrique 9 Carey Legett 3 Paolo Pilleri 2 Raymond T. Newell 3 Joseph Sarrao 3 Sylvestre Maurice 2 Gorka Arana 10 Karim Benzerara 6 Pernelle Bernardi 11 Sylvain Bernard 6 Bruno Bousquet 8 Adrian J. Brown 12 César Alvarez-Llamas 13 Baptiste Chide 2 Edward Cloutis 14 Jade Comellas 3 Stephanie Connell 14 Erwin Dehouck 15 Dorothea M. Delapp 3 Ari Essunfeld 3 Cecile Fabre 16 Thierry Fouchet 11 Cristina Garcia-Florentino 10 Laura García-Gómez 13 Patrick Gasda 3 Olivier Gasnault 2 Elisabeth M. Hausrath 17 Nina L. Lanza 3 Javier Laserna 13 Jeremie Lasue 2 Guillermo Lopez 9 Juan Manuel Madariaga 10 Lucia Mandon 11 Nicolas Mangold 18 Pierre-Yves Meslin 2 Anthony E. Nelson 3 Horton Newsom 19 Adriana L. Reyes-Newell 3 Scott Robinson 3 Fernando Rull 9 Shiv Sharma 20 Justin I. Simon 21 Pablo Sobron 22 Imanol Torre Fernandez 10 Arya Udry 17 Dawn Venhaus 3 Scott M. Mclennan 23 Richard V. Morris 21 Bethany Ehlmann 24 
Abstract : The SuperCam instrument on the Perseverance Mars 2020 rover uses a pulsed 1064 nm laser to ablate targets at a distance and conduct laser induced breakdown spectroscopy (LIBS) by analyzing the light from the resulting plasma. SuperCam LIBS spectra are preprocessed to remove ambient light, noise, and the continuum signal present in LIBS observations. Prior to quantification, spectra are masked to remove noisier spectrometer regions and spectra are normalized to minimize signal fluctuations and effects of target distance. In some cases, the spectra are also standardized or binned prior to quantification. To determine quantitative elemental compositions of diverse geologic materials at Jezero crater, Mars, we use a suite of 1198 laboratory spectra of 334 well-characterized reference samples. The samples were selected to span a wide range of compositions and include typical silicate rocks, pure minerals (e.g., silicates, sulfates, carbonates, oxides), more unusual compositions (e.g., Mn ore and sodalite), and replicates of the sintered SuperCam calibration targets (SCCTs) onboard the rover. For each major element (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), the database was subdivided into five "folds" with similar distributions of the element of interest. One fold was held out as an independent test set, and the remaining four folds were used to optimize multivariate regression models relating the spectrum to the composition. We considered a variety of models, and selected several for further investigation for each element, based primarily on the root mean squared error of prediction (RMSEP) on the test set, when analyzed at 3 m. In cases with several models of comparable performance at 3 m, we incorporated the SCCT performance at different distances to choose the preferred model. Shortly after landing on Mars and collecting initial spectra of geologic targets, we selected one model per element. Subsequently, with additional data from geologic targets, some models were revised to ensure results that are more consistent with geochemical constraints. The calibration discussed here is a snapshot of an ongoing effort to deliver the most accurate chemical compositions with SuperCam LIBS.
Document type :
Journal articles
Complete list of metadata

https://hal-insu.archives-ouvertes.fr/insu-03663667
Contributor : Nathalie POTHIER Connect in order to contact the contributor
Submitted on : Tuesday, May 10, 2022 - 12:18:40 PM
Last modification on : Friday, August 5, 2022 - 12:31:45 PM

Links full text

Identifiers

Citation

Ryan B. Anderson, Olivier Forni, Agnes Cousin, Roger C. Wiens, Samuel M. Clegg, et al.. Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 2022, 188, ⟨10.1016/j.sab.2021.106347⟩. ⟨insu-03663667⟩

Share

Metrics

Record views

15