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Within a genuinely gauge invariant approach recently developed for the computation of the cosmo-

logical backreaction, we study, in a cosmological inflationary context and with respect to various

observers, the impact of scalar fluctuations on the space-time dynamics in the long wavelength limit.

We stress that such a quantum backreaction effect is evaluated in a truly gauge independent way using a

set of effective equations which describe the dynamics of the averaged geometry. In particular we show

under what conditions the free falling (geodetic) observers do not experience any scalar-induced back-

reaction in the effective Hubble rate and fluid equation of state.

DOI: 10.1103/PhysRevLett.106.121304 PACS numbers: 98.80.Cq, 04.62.+v

Introduction.—The computation of backreaction effects
induced by cosmological fluctuations in an inflationary era
[1,2] has been the subject of controversial analysis [3–7].
Such a task has been plagued by fundamental ambiguities
in constructing perturbatively gauge invariant (GI) observ-
ables [3] and average quantities. The basic fact that the
averaging procedure does not commute with the nonlinear
evolution of Einstein equations [8] was first exploited to
study the effective dynamics of the averaged geometry for
a dust universe [9] (see [10] for a recent application in the
context of inhomogeneity driven inflation). Gauge invari-
ance of averaged quantities has recently been addressed in
a novel context which introduces a GI but observer depen-
dent averaging prescription [11] (see [12] for a recent
application of such a prescription to the analysis of the
present Hubble rate) whereas the effective equations for
the averaged geometry [9] have been generalized in a
covariant and GI form in [13]. Taking advantage of these
recent results and having in mind the backreaction of
quantum fluctuations during inflation, we devote this
Letter to describing an analysis of the GI effective equa-
tions which nevertheless depend on the different observers
intrinsically used in the GI construction.

Gauge invariant backreaction.—We start by illustrating
how, following a recent proposal [11,13], one may define
observables, of a nonlocal nature and constructed with
quantum averages, which obey GI dynamical equations.
Specifically what has been investigated is how to give a
classical or quantum GI average of a scalar SðxÞ, for a
classical field or a composite quantum operator, assumed
to be renormalized, respectively. In such an approach the
fundamental point is the choice of a hypersurface, which
defines a class of observers, with respect to which the
average is done. In particular a hypersurface�A0

is defined,

using another scalar field AðxÞ with a timelike gradient,
through the constraint AðxÞ ¼ A0, where A0 is a constant.
Both the scalars S and A are not GI but one may construct
an average which does have the desired property. We
simply consider here a spatially unbounded �A0

which is

reasonable in an inflationary context. Eventually one might
constrain it to be bounded in the spatial direction by using
other scalar fields having a spacelike gradient, if available.
In investigations such as the actual dynamics of the
Universe, one may imagine more suitable choices such as
past light cone regions, which, however, make the problem
extremely more complicated.
Once the GI definition is given, the computation of the

averaged quantity can be done in any gauge (coordinate
frame). We can define the quantum (classical, see notation
of [11]) averaging prescription of a scalar quantity SðxÞ as a
functional of AðxÞ which can be reduced, in the (barred)
coordinate system �x� ¼ ð�t; ~xÞ where the scalar A is homo-
geneous, to the simpler form [11,13]

hSiA0
¼ h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�ðt0; ~xÞj

p
Sðt0; ~xÞi

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�ðt0; ~xÞj
p i

; (1)

where we have called t0 the time �t when �Að �xÞ ¼ Að0Þð�tÞ ¼
A0. The quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�ðt0; ~xÞj
p

is the square root of the
determinant of the induced three dimensional metric on
�A0

. Note that in a general covariant definition the average

is defined on a space-time region where the distribution
n�r��ðAðxÞ � A0Þ has support. The vector n� defines

the associated observer by n� ¼ �Z�1=2
A @�A, ZA ¼

�@�A@�A and � is the Heaviside step function.

Following the results of [11,13] one can consider an
effective scale factor aeff which describes the dynamics
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of a perfect fluid-dominated early Universe as aeff ¼
h ffiffiffiffiffiffiffij ��jp i1=3 (where we have chosen Að0ÞðtÞ ¼ t to have stan-
dard results at the homogeneous level [14]), and obtain a
quantum gauge invariant version of the effective cosmo-
logical equations for the averaged geometry:�
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where Rs is a generalization of the intrinsic scalar curva-
ture [13], � ¼ r�n

� the expansion scalar, and �2 the

shear scalar with respect to the observer. We then define

" ¼ �� ð�þ pÞð1� ðu�n�Þ2Þ; (4)

� ¼ p� 1

3
ð�þ pÞð1� ðu�n�Þ2Þ; (5)

with u� the 4-velocity comoving with the perfect fluid and

� and p are, respectively, the (scalar) energy density and
pressure in the fluid’s rest frame. In the inflationary sce-
nario we consider the inflaton field as the fluid. Moreover,
we define the effective observer dependent energy density
�eff A by writing the right-hand side (rhs) of Eq. (2) as
ð8�G=3Þ�eff A while the effective pressure peff A is
obtained by rewriting the rhs of Eq. (3) as ð4�G=3Þ�
ð�eff A þ 3peff AÞ.

In order to deal with the metric components in any
specific frame we employ the standard decomposition of
the metric in terms of scalar, transverse vector (Bi, �i) and
traceless transverse tensor (hij) fluctuations up to the sec-

ond order around a homogeneous Friedman-Lemaitre-
Robertson-Walker zero order space-time

g00 ¼ �1� 2	� 2	ð2Þ;

gi0 ¼ �a

2
ð
;i þ BiÞ � a

2
ð
ð2Þ

;i þ Bð2Þ
i Þ

gij ¼ a2½�ijð1� 2c � 2c ð2ÞÞ þDijðEþ Eð2ÞÞ
þ 1

2
ð�i;j þ �j;i þ hijÞ þ 1

2
ð�ð2Þ

i;j þ �ð2Þ
j;i þ hð2Þij Þ�

where Dij ¼ @i@j � �ijr2=3 and for notational simplicity

we have removed an upper script for first order quantities.

The Einstein equations connect those fluctuations with the
matter ones. In particular the inflaton field is written to

second order as �ðxÞ ¼ �ðtÞ þ ’ðxÞ þ ’ð2ÞðxÞ.
These general perturbed expressions can be gauge fixed.

Let us recall some common gauge fixing (of the scalar and
vector part): the synchronous gauge (SG) is defined by
g00 ¼ �1 and gi0 ¼ 0, the uniform field gauge (UFG)
apart from setting �ðxÞ ¼ �ðtÞ must be supplemented by
other conditions (we consider gi0 ¼ 0), finally the uni-
form curvature gauge (UCG) is defined by gij ¼
a2½�ij þ 1

2 ðhij þ hð2Þij Þ�.
In the following we shall take the long wavelength (LW)

limit as our approximation and consider the cosmological
backreaction with respect to different observers.
(a) The geodetic, or free falling, observers which are

associated with a scalar field homogeneous in the SG [14].
We consider such observers to be the most interesting ones
from a physical point of view.
(b) The observers associated with a scalar homogeneous

in the UFG. We shall show that up to second order in
perturbation theory they are equivalent to free falling ob-
servers.
(c) Let us also briefly comment on the possibility of

defining an observer which measures an unperturbed e-fold
number N in the LW limit, i.e., an unperturbed effective
expansion factor. Consistently one finds, for such an ob-
server which can be associated with a scalar homogeneous
in the UCG, identically zero backreaction effects in
Eqs. (2) and (3).
Geodetic observers.—We start by defining a free falling

observer whose kinematics is determined by the equation
t� ¼ v�r�v� ¼ 0 for its velocity v�, which can be de-

termined in any reference frame from the corresponding
metric. In our analysis we keep contributions up to second

order in the fluctuations: v� ¼ vð0Þ
� þ vð1Þ

� þ vð2Þ
� . In the

SG one has v� ¼ ð�1; ~0Þ.
Our first task is to define the scalar field AðxÞ associated

with this observer. Such a scalar field should give n� ¼ v�

and appears to be the one homogeneous up to second order
in the SG (see [14] for the complete description).
For later use, let us exhibit the general condition for a

scalar field AðxÞ to be associated with free falling observers
at first order. In this case t� should be zero up to the first

order. The zero order condition is trivially satisfied for any
scalar. At first order the� ¼ 0 condition is always satisfied
while the � ¼ i condition gives

d

dt

�
Að1Þ

_Að0Þ

�
� 	 ¼ 0: (6)

As is easy to check, the left-hand side of this condition is

GI since the vector tð0Þ� is identically zero.
In general, using the coordinate transformations up to

second order [15]

x� ! �x� ¼ x� þ 

�
ð1Þ þ 1

2ð
�ð1Þ@�
�ð1Þ þ 

�
ð2ÞÞ; (7)
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we define the expressions associated with Eq. (1), going
from a general coordinate system to the barred one.

Our strategy is therefore the following: we shall con-
struct the observables and study Eqs. (2) and (3) using
Eq. (1). The results are by definition GI, this allows us to
use the results for the dynamics of the inflaton and metric
fluctuations, which satisfy the Einstein equations, up to
second order, in any frame convenient for the calculations
(we shall use the results computed in the UCG [7]).

In the LW limit we have

�� ¼ 3H � 3H �	� 3 _�c þ 9
2H �	2

þ 3 �	 _�c �6 �c _�c �3H �	ð2Þ � 3 _�c
ð2Þ � 1

8hij
_hij (8)

� @� �A@� �A ¼ 1� 2 �	þ 4 �	2 � 2 �	ð2Þ (9)

and for the measure in the spatial section

ffiffiffiffiffiffiffi
j ��j

q
¼ a3

�
1� 3 �c þ 3

2
�c 2 � 1

16
hijhij � 3 �c ð2Þ

�
: (10)

Let us note that we shall neglect in our computations the
dependence on the tensor fluctuations hereafter (see, how-
ever, [16] for the backreaction of tensor fluctuations in
de Sitter space-time). Inserting Eqs. (8)–(10), in Eq. (2)
one obtains the simple expression

�
1

aeff

@aeff
@A0

�
2 ¼ H2

�
1þ 2

H
h �c _�c i � 2

H
h _�c ð2Þi

�
: (11)

Let us turn our attention to the SG observers. The
coordinate transformations needed to go to the SG are
characterized by


0ð1Þ ¼
Z t

dt0	;


0ð2Þ ¼ �	
Z t

dt0	þ
Z t

dt0ð2	ð2Þ � 	2Þ;

where we neglect a non dynamical constant contribution.
Using Eq. (7) we have

�	 ¼ 0;

�c ¼ c þH
Z t

dt0	;

�’ ¼ ’� _�
Z t

dt0	;

�c ð2Þ ¼ c ð2Þ �H	
Z t

dt0	� 1

2
ð _H þ 2H2Þ

�Z t
dt0	

�
2

� ð2Hc þ _c Þ
Z t

dt0	þH

2

Z t
dt0ð2	ð2Þ � 	2Þ:

In order to evaluate the backreaction Eq. (2), as said, we
choose to perform the calculation in the UCG. In this gauge
we need the solution to the equations of motion for the
inflaton and the metric. To first order, one has

	 ¼ 1

2M2
pl

_�

H
’; (12)

where M�2
pl ¼ 8�G, and considering only the LW limit

one gets

’ ¼ fð ~xÞ
_�

H
)

Z t
dt0	 ¼ �fð ~xÞ

Z t
dt0

_H

H2
¼ 1

_�
’: (13)

These lead to �’ ¼ 0, �	 ¼ 0 and �c ¼ H
_�
’ where the last

term, which we insert in (11), is constant in such a limit.
To second order we restrict to the particular case of a

non-self-interacting massive inflaton field [7]. In such a
case, in the LW limit and at the leading order in the slow-
roll approximation, one has

h	ð2Þi ¼ 1

M2
pl


h’2i;

where 
 ¼ � _H=H2. We then obtain

h _�c ð2Þi ¼ HOð
2Þ h’
2i

M2
pl

:

Inserting the various results into Eq. (11), we find�
1

aeff

@aeff
@A0

�
2 ¼ H2

�
1þOð
2Þ h’

2i
M2

pl

�
; (14)

where, for a massive chaotic model [7] in the LW limit and
Hi ¼ HðtiÞ � H, one has

h’2i
M2

pl

’ � 1

24�2

H6
i

M2
plH

2 _H
� H4

i

H2M2
pl

lna (15)

(see [17] for a generic single field inflationary scenario).
Therefore there is no leading backreaction in the slow-roll
parameter 
 on the effective Hubble factor induced by
scalar fluctuations. Provided the coefficient of h’2i in
Eq. (14) does not turn out to be zero, the quantum back-
reaction has the chance of appearing in the next-to-leading
order, with a secular term related to the infrared growth of
inflaton fluctuations. On the other hand such a growth gives
a negligible effect whenever the quantity in (15) is much
smaller than 
�2. One can proceed in a similar way with
the analysis of the second backreaction equation (3) by
evaluating directly the expressions. However, we give here
a more general result valid for any observer and slow-roll
inflationary models. If for the effective Hubble factor one
finds�

1

aeff

@aeff
@A0

�
2 ¼ H2

�
1þ ðc
n þOð
nþ1ÞÞ h’

2i
M2

pl

�
;

then, from the consistency between the effective equations
for the averaged geometry, one obtains

� 1

aeff

@2aeff
@A2

0

¼ � _H�H2 �H2½c
n þOð
nþ1Þ� h’
2i

M2
pl

and it is easy to see that the effective equation of state is
unperturbed up to the leading nontrivial order, i.e.,
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weffA ¼ peff A

�eff A

¼ �1þ 2

3

þOð
nþ1Þ h’

2i
M2

pl

:

For the SG observer one has n ¼ 2 and we obtain the
same condition as before to have no appreciable scalar
backreaction effects. Non-negligible effects could appear
at the end of inflation (H�m) for initial conditions such

that HðtiÞ � ðm2MplÞ1=3, which is an energy scale much

smaller than the Planck one but is, however, associated
with an extremely long inflationary era. Indeed such values
give a typical number of e-folds of the order ofOð104Þ, for
Mpl ¼ 105m, and correspond to the case where nonlinear

corrections become really important [17,18]. In this case
other computational techniques are required.

UFG observer.—Let us introduce the observers associ-
ated with a scalar homogeneous in the UFG. Such an
observer always sees as homogeneous the inflaton field
� along its whole evolution during the inflationary regime.
It is easy, following [14], to identify the scalar associated to
this observer as

AðxÞ ¼ Að0Þ þ
_Að0Þ
_�
’þ

_Að0Þ
_�
’ð2Þ þ

_Að0Þ

2 _�2

� €Að0Þ

_Að0Þ �
€�
_�

�
’2:

In this way the condition (6) to have geodesic observers to
first order becomes

d

dt

�
’
_�

�
� 	 ¼ 0: (16)

Such a condition is trivially satisfied in the LW limit [as
can be seen in the UCG using Eqs. (12) and (13)]. To see if
this equivalence is valid also to second order one should

study the condition tð2Þ� ¼ 0. The quantity tð2Þ� is GI in this

case since tð0Þ� ¼ tð1Þ� ¼ 0, and the condition can be studied
in any gauge. Choosing the barred gauge it becomes

�	ð2Þ ¼ 0 and is satisfied in the LW limit. As a consequence
the UFG observers are physically equivalent to the free
falling ones and experience the same backreaction, as can
be explicitly verified by calculations.

Let us emphasize that this property is not valid in
general for all observers in the LW limit. Let us, for
example, consider the observer define by the scalar homo-
geneous in the longitudinal gauge (
 ¼ E ¼ 0). This is
defined to first order by

AðxÞ ¼ Að0Þ þ _Að0Þ
�
a

2

� a2

2
_E

�

and the condition (6) is not verified as can be easily seen.
Such observer is not in geodesic motion and it may see a
backreaction effect, even to leading order in the slow-roll
parameter, which is in general different with respect to that
experienced by a free falling observer. This case will be
studied elsewhere.

Conclusions.—We have applied for the first time the
gauge invariant observer dependent approach introduced
in [11,13] to analyze backreaction effects induced by long

wavelength scalar fluctuations in the cosmological early
universe during an inflationary era.
We have seen how for geodetic observers the backreac-

tion of long wavelength scalar fluctuations does not appear
to leading order in the slow-roll approximation for a m2�2

chaotic inflationary model. Moreover, we have shown
under what conditions the backreaction is negligible or
not in the next-to-leading order. In the same long wave-
length limit the tensorial contribution also disappears. This
is a physical result which is derived in a truly gauge
invariant way.
Modes with shorter wavelengths, which typically be-

have less classically, may be a source of backreaction
seen by physical observers, through all the terms, present
in the equations, which have been neglected here. Second
order tensor and scalar contributions, the latter depending
also on the former, could also be investigated within the
present framework. Computations are much more involved
but will give a consistent gauge invariant answer to such a
question, at least for the second order perturbative
expansion.
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