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We completely clarify the feature of primordial non-Gaussianities of tensor perturbations in the most

general single-field inflation model with second-order field equations. It is shown that the most general

cubic action for the tensor perturbation hij is composed only of two contributions, one with two spacial

derivatives and the other with one time derivative on each hij. The former is essentially identical to the

cubic term that appears in Einstein gravity and predicts a squeezed shape, while the latter newly appears in

the presence of the kinetic coupling to the Einstein tensor and predicts an equilateral shape. Thus, only

two shapes appear in the graviton bispectrum of the most general single-field inflation model, which could

open a new clue to the identification of inflationary gravitational waves in observations of cosmic

microwave background anisotropies as well as direct detection experiments.

DOI: 10.1103/PhysRevLett.107.211301 PACS numbers: 98.80.Cq, 04.30.Tv

Inflation, an accelerated expansion of the early Universe
caused by a scalar field called inflaton, is a quite promising
paradigm of cosmology, and primordial perturbations gen-
erated from inflation are crucial clues to the yet unidenti-
fied inflationary model. From the properties of the
primordial perturbations such as the power spectra and
spectral indices, we can extract information about the
theory governing the inflaton dynamics. Among them,
the non-Gaussian signature in the cosmic microwave back-
ground (CMB) has been paid much attention in recent
years, along with the great progress in precise cosmologi-
cal observations. So far, most of the literature has focused
upon non-Gaussianities of the scalar perturbations [1], as
they are most directly connected to the CMB observations.
Tensor perturbations [2], however, are also generated dur-
ing inflation, whose direct detection would be the most
obvious evidence for inflation. When we try to detect
tensor perturbations with the CMB measurements and/or
with the direct detection experiments, it is essentially
important to remove the background (contamination)
sources. For example, the B-mode polarizations are
dominated by the lensing effects on relatively small scales.
Astrophysical sources like white dwarf binaries could
dominate the power spectrum for a wide range of
frequencies of the background gravitational waves. Thus,
non-Gaussianities will be a key feature of the tensor

perturbations [3,4] as well as the scalar perturbations be-
cause they can help us to discriminate the inflationary
signals from other contamination sources even if the
latter dominates the power spectrum. For this purpose,
we need to completely clarify the features of the
non-Gaussianities of primordial tensor perturbations
produced during inflation, which enable us to make tem-
plates for non-Gaussianities of primordial gravitational
waves.
In this Letter, we, for the first time, investigate the

non-Gaussianities of primordial tensor perturbations based
on the most general single-field inflation model, i.e.,
generalized G inflation [5], make a complete identifi-
cation of the shapes of bispectra, and explore the
possibility of large non-Gaussianities from the tensor
sector.
The Lagrangian for generalized G inflation is the most

general one that is composed of the metric g��, the scalar

field �, and their arbitrary derivatives, and has the second-

order field equations. The Lagrangian was first derived by

Horndeski in 1974 [6], and very recently it was rediscov-

ered in a modern form as the generalized Galileon [7], i.e.,

the most general extension of the Galileon [8,9], in four

dimensions. The generalized Galileon is described by the

sum of the following four:
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L 2 ¼ Kð�;XÞ; L3 ¼ �G3ð�;XÞh�;

L4 ¼ G4ð�;XÞRþG4X½ðh�Þ2 � ðr�r��Þ2�;
L5 ¼ G5ð�;XÞG��r�r��� 1

6G5X½ðh�Þ3
� 3h�ðr�r��Þ2 þ 2ðr�r��Þ3�;

(1)

where K and theGi’s are arbitrary functions of� and X :¼
�ð@�Þ2=2. Here we used the notation GiX for @Gi=@X.
The generalized Galileon can be used as a framework to
study the most general single-field inflation model.
Generalized G inflation contains novel models, as well as
previously known models of single-field inflation such as
standard canonical inflation, kinetically driven inflation
[10], extended inflation [11], R2 inflation [12], new
Higgs inflation [13], and (minimal) G inflation [14]. The
above four Lagrangians can even reproduce the nonmini-
mal coupling to the Gauss-Bonnet term [5].

In [5], the background equations for generalized G in-
flation is presented, and the most general quadratic actions
for tensor and scalar perturbations are determined, giving
the power spectra of the primordial perturbations. The
most general cubic action for scalar perturbations is
worked out in [15,16]. The curvature perturbation in gen-
eralized G inflation is shown to be conserved on large
scales at nonlinear order in [17]. We are going to present
the most general cubic action for tensor perturbations to
determine the possible tensor bispectrum arising from
single-field inflation.

The perturbed metric around a cosmological back-
ground may be written as

g00 ¼ �1; g0i ¼ 0; gij ¼ a2ðtÞðehÞij; (2)

where

ðehÞij ¼ �ij þ hij þ 1
2hikhkj þ 1

6hikhklhlj þ � � � ; (3)

and hij is a transverse and traceless tensor perturbation,

@ihij ¼ 0 ¼ hii, with repeated spatial indices summarized

by �ij. Here we dropped all the scalar modes [15,16],

focusing on tensor perturbations. The perturbed metric
defined in this way is convenient for calculating the action
because we have

ffiffiffiffiffiffiffi�g
p ¼ a3. We plug the metric (2) into

the action

S ¼ X5
i¼2

Z
d4x

ffiffiffiffiffiffiffi�g
p

Li; (4)

and expand it in terms of hij to get the quadratic and cubic

actions. Only the Lagrangians that involve the curvature
tensors and r�r��, i.e., L4 and L5, contribute to the

quadratic and cubic actions.
The quadratic action was already derived in [5]:

Sð2Þ ¼ 1

8

Z
dtd3xa3

�
GT

_h2ij �
F T

a2
ð@khijÞ2

�
; (5)

where an overdot denotes d=dt and

F T :¼ 2½G4 � Xð €�G5X þG5�Þ�; (6)

G T :¼ 2½G4 � 2XG4X � XðH _�G5X �G5�Þ�: (7)

From the action we see that the propagation speed of the

gravitational waves is given by ch :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F T=GT

p
, which

may differ from unity. In order for the system to be stable
F T > 0 and GT > 0 are required.
The linear perturbation equation derived from the action

(5) can be solved in the Fourier space,

hijðt;xÞ ¼
Z d3k

ð2�Þ3
~hijðt;kÞeik�x: (8)

To proceed further, it is convenient to introduce a new time
coordinate defined by y ¼ chdt=a. We assume for simplic-
ity that the inflationary Universe may be approximated by
de Sitter spacetime and F T and GT are approximately
constant. Using the normalized mode solution,

c k ¼
ffiffiffiffi
�

p
a

ffiffiffiffiffiffiffiffi
ch
F T

s ffiffiffiffiffiffiffi�y
p

Hð1Þ
3=2ð�kyÞ; (9)

where Hð1Þ
3=2 is the Hankel function, the quantized tensor

perturbation is written as

~h ij ¼
X
s

½c ke
ðsÞ
ij ðkÞasðkÞ þ c ��ke

�ðsÞ
ij ð�kÞays ð�kÞ�;

(10)

where eðsÞij is the polarization tensor with the helicity states

s ¼ �2, satisfying eðsÞii ðkÞ ¼ 0 ¼ kje
ðsÞ
ij ðkÞ. Here we adopt

the normalization such that eðsÞij ðkÞe�ðs
0Þ

ij ðkÞ ¼ �ss0 .

Choosing the phase of the polarization tensors appropri-

ately, we have the relations e�ðsÞij ðkÞ ¼ eð�sÞ
ij ðkÞ ¼

eðsÞij ð�kÞ. The commutation relation for the creation and

annihilation operators is given by ½asðkÞ; ays0 ðk0Þ� ¼
ð2�Þ3�ss0�ðk� k0Þ. The 2-point function can now be com-
puted as

h~hijðkÞ~hklðk0Þi ¼ ð2�Þ3�ð3Þðkþ k0ÞP ij;klðkÞ; (11)

P ij;kl ¼ jc kj2�ij;klðkÞ; (12)

where we introduced

�ij;klðkÞ ¼
X
s

eðsÞij ðkÞe�ðsÞkl ðkÞ: (13)

The power spectrum P h ¼ ðk3=2�2ÞP ij;ij is given by

P hðkÞ ¼ 2

�2

H2

F Tch

��������ky¼�1
; (14)

where y ¼ �1=k corresponds to the time of the sound
horizon exit.
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Having thus obtained the quadratic action and the solu-
tion to the linearized equation governing the inflationary
gravitational waves, we now move on to the cubic action.
The most general cubic action for tensor perturbations in
the single-field context is obtained as

Sð3Þ ¼
Z

dtd3xa3
�
X _�G5X

12
_hij _hjk _hki

þ F T

4a2

�
hikhjl � 1

2
hijhkl

�
@k@lhij

�
;

(15)

which is composed only of two contributions. Clearly, the
term with one time derivative on each hij appears only if

G5X � 0. This term is absent in the case of Einstein grav-
ity, nonminimal coupling to gravity [L3 ¼ fð�ÞR], and
even in the case of new Higgs inflation, which involves a
nonstandard kinetic term of the form G��@��@�� [18].

However, in the presence of nonminimal coupling to the
Gauss-Bonnet term, this term does not vanish [5]. The
terms of the form h2@2h, where @ represents a spatial
derivative, is already present in the case of Einstein gravity,
and even in the most general case only the overall normal-
ization is generalized from the Planck mass squaredM2

PL to
the function F T .

The 3-point function can be computed by employing the
in-in formalism,

h~hi1j1ðk1Þ~hi2j2ðk2Þ~hi3j3ðk3Þi
¼ �i

Z t

t0

dt0h½~hi1j1ðt;k1Þ~hi2j2ðt;k2Þ~hi3j3ðt;k3Þ; Hintðt0Þ�i;

where t0 is some early time when the perturbation is well
inside the sound horizon, t is a time several e-foldings after
the sound horizon exit, and the interaction Hamiltonian is

HintðtÞ ¼ �
Z

d3xa3
�
X _�G5X

12
_hij _hjk _hki þ � � �

�
: (16)

It will be convenient to introduce the non-Gaussian ampli-
tude Ai1j1i2j2i3j3 defined by

h~hi1j1ðk1Þ~hi2j2ðk2Þ~hi3j3ðk3Þi

¼ ð2�Þ7�ð3Þðk1 þ k2 þ k3ÞP 2
h

Ai1j1i2j2i3j3

k31k
3
2k

3
3

: (17)

We write Ai1j1i2j2i3j3 ¼ AðnewÞ
i1j1i2j2i3j3

þAðGRÞ
i1j1i2j2i3j3

, where

AðnewÞ
i1j1i2j2i3j3

and AðGRÞ
i1j1i2j2i3j3

represent the contributions

from the _h3 term and the h2@2h terms, respectively. Just
for simplicity, here again the inflationary Universe is ap-
proximated by de Sitter spacetime, which allows us to
compute the non-Gaussian amplitude assuming that

X _�G5X ’ const and F T ’ const. Each contribution is
then found to be

A ðnewÞ
i1j1i2j2i3j3

¼ HX _�G5X

4GT

k21k
2
2k

2
3

K3
�i1j1;lmðk1Þ�i2j2;mnðk2Þ�i3j3;nlðk3Þ; (18)

A ðGRÞ
i1j1i2j2i3j3

¼ ~Af�i1j1;ikðk1Þ�i2j2;jlðk2Þ½k3kk3l�i3j3;ijðk3Þ � 1
2k3ik3k�i3j3;jlðk3Þ� þ 5 permutations of1; 2; 3g; (19)

where K ¼ k1 þ k2 þ k3 and

~Aðk1; k2; k3Þ :¼� K

16

�
1� 1

K3

X
i�j

k2i kj� 4
k1k2k3
K3

�
: (20)

We see that the second contribution, which is present in the
case of Einstein gravity, is independent of any functions in
the Lagrangian, and hence for all the models of single-field
inflation AðGRÞ

i1j1i2j2i3j3
coincides with the one in general

relativity. (For this reason we associate this piece of the
amplitude with the superscript ‘‘GR.’’) The size of the first
contribution,AðnewÞ

i1j1i2j2i3j3
, is crucially dependent on how �

couples to gravity along the inflationary trajectory. Only
those two amplitudes are sufficient to characterize the
tensor bispectrum in the most general single-field inflation
model.

We are now in position to discuss whether or not large

non-Gaussianities can be obtained fromAðnewÞ
i1j1i2j2i3j3

. Since

GT � HX _�G5X, the ratioHX _�G5X=GT cannot be large in

models with large HX _�G5X. The only possibility is that
various terms in GT are arranged to cancel each other to
give GT � 0. (Note, however, that GT must be finite and

positive.) This then yields F S ��F T , where F S is the
coefficient of ð@�Þ2 in the quadratic action of the curvature
perturbation � and must be positive to avoid gradient
instabilities (see Ref. [5]). Therefore, models with small
GT tend to be unstable against either scalar or tensor
perturbations. For this reason, generally speaking, it is
rather nontrivial to get large non-Gaussianities from the
_h3 term, though one cannot completely deny the possibility
of making both F S and F T positive with the help of the
functional degrees of freedom of our Lagrangian.
Let us turn to the two polarization modes,

�ðsÞðkÞ :¼ ~hijðkÞe�ðsÞij ðkÞ; (21)

and consider their amplitudes As1s2s3 of the bispectra
h�s1ðk1Þ�s2ðk2Þ�s3ðk3Þi. The amplitude may be defined

in an analogous way to Eq. (17), so that As1s2s3
ðnewÞ;ðGRÞ ¼

e�ðs1Þi1j1
ðk1Þe�ðs2Þi2j2

ðk2Þe�ðs3Þi3j3
ðk3ÞAðnewÞ;ðGRÞ

i1j1i2j2i3j3
. We thus obtain

A s1s2s3
ðnewÞ ¼ HX _�G5X

4GT

k21k
2
2k

2
3

K3
F
s1s2s3
ðnewÞ ðk1; k2; k3Þ; (22)
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A s1s2s3
ðGRÞ ¼ ~Aðk1; k2; k3ÞFs1s2s3

ðGRÞ ðk1; k2; k3Þ; (23)

where we defined

Fþþþ
ðnewÞ ðk1; k2; k3Þ :¼

K3

64k21k
2
2k

2
3

�
K3 � 4

X
i�j

k2i kj � 4k1k2k3

�
;

(24)

Fþþþ
ðGRÞ ðk1; k2; k3Þ :¼ K2Fþþþ

ðnewÞ ðk1; k2; k3Þ=2, and

Fþþ�
ðnewÞ;ðGRÞðk1; k2; k3Þ :¼ Fþþþ

ðnewÞ;ðGRÞðk1; k2;�k3Þ. Since our

theory accommodates no parity violation, we have
F���
ðnewÞ;ðGRÞ ¼ Fþþþ

ðnewÞ;ðGRÞ and F��þ
ðnewÞ;ðGRÞ ¼ Fþþ�

ðnewÞ;ðGRÞ.
The non-Gaussian amplitudes Aþþþ

ðnewÞ and Aþþþ
ðGRÞ are

plotted in Figs. 1 and 2. One sees that the amplitude of the
new contribution peaks in the equilateral configuration,
while the GR contribution becomes largest in the squeezed
limit. This gives a clear distinction between the two differ-
ent contributions, and the two characteristic shapes would
be helpful to discriminate the inflationary gravitational
waves from those produced by other sources. The other
correlation functions, such as the �þþ one, are subdo-
minant relative to the þþþ one because for equilateral
configurations Fþþ�

ðnewÞ ¼ Fþ�þ
ðnewÞ ¼ F�þþ

ðnewÞ ¼ Fþþþ
ðnewÞ =9 and

Fþþ�
ðGRÞ ¼ Fþ�þ

ðGRÞ ¼ F�þþ
ðGRÞ ¼ Fþþþ

ðGRÞ =81, and in the

squeezed limit, k3 ! 0, one has Fþþþ
ðGRÞ � Fþþ�

ðGRÞ �
�k21=2 and Fþ�þ

ðGRÞ � F�þþ
ðGRÞ � �k43=32k

2
1.

In this Letter, we have clarified primordial non-
Gaussianities of tensor perturbations arising from the
most general single-field inflation model with second-
order field equations, and have found that they are com-
pletely determined by two different contributions: AðnewÞ
and AðGRÞ. Our results provide at least two distinctive

features to test the framework of generalized G inflation
based on the graviton non-Gaussianities. First, AðnewÞ is a

unique feature of the kinetic coupling term G5. Any detec-
tion of this type of bispectrum, no matter large or small,
would unambiguously indicate the existence of nonvanish-
ing G5X, at least in the Galileon framework. Second, the
contribution AðGRÞ is a fixed and universal feature for

single-field inflation models which are all within the gen-
eralizedG-inflation framework. It is impossible to enhance
or suppress this contribution in generalized G-inflation
models. In other words, any detection of the enhancement
or suppression of this contribution to the graviton bispec-
trum would imply new physics beyond generalized G
inflation and/or other astrophysical sources. The two con-
tributions are clearly distinguishable according to their
shapes of non-Gaussianities.
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