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ABSTRACT
There are several issues to do with dwarf galaxy predictions in the standard � cold dark matter
(�CDM) cosmology that have suscitated much recent debate about the possible modification
of the nature of dark matter as providing a solution. We explore a novel solution involving
ultralight axions that can potentially resolve the missing satellites problem, the cusp-core
problem and the ‘too big to fail’ problem. We discuss approximations to non-linear structure
formation in dark matter models containing a component of ultralight axions across four
orders of magnitude in mass, 10−24 � ma � 10−20 eV, a range too heavy to be well constrained
by linear cosmological probes such as the cosmic microwave background and matter power
spectrum, and too light/non-interacting for other astrophysical or terrestrial axion searches.
We find that an axion of mass ma ≈ 10−21 eV contributing approximately 85 per cent of the
total dark matter can introduce a significant kpc scale core in a typical Milky Way satellite
galaxy in sharp contrast to a thermal relic with a transfer function cut off at the same scale,
while still allowing such galaxies to form in significant number. Therefore, ultralight axions
do not suffer from the Catch 22 that applies to using a warm dark matter as a solution to the
small-scale problems of CDM. Our model simultaneously allows formation of enough high-
redshift galaxies to allow reconciliation with observational constraints, and also reduces the
maximum circular velocities of massive dwarfs so that baryonic feedback may more plausibly
resolve the predicted overproduction of massive Milky Way Galaxy dwarf satellites.

Key words: elementary particles – galaxies: dwarf – galaxies: halo – cosmology: theory – dark
matter – large-scale structure of Universe.

1 IN T RO D U C T I O N

There are three outstanding problems in the dwarf galaxy astro-
physics of the standard � cold dark matter (�CDM) cosmology.
The controversies on small scales may be summarized as (a) the
missing satellites problem (MSP), (b) the cusp-core problem (CCP)
and (c) the ‘too big to fail’ problem (which we refer to here as the
massive failures problem, MFP), all reviewed in Weinberg et al.
(2013).

The MSP and CCP with CDM structure formation can both be
solved by introducing a length-scale into the DM. This can be ther-
mal, coming from free streaming of warm dark matter (WDM),
or, as we will discuss below, non-thermal, coming from coherent
oscillations of a light scalar field. The thermal solution may suf-
fer from a Catch 22 issue, whereby galaxy formation occurs too
late (Macciò et al. 2012c). We show here that the non-thermal
solution both avoids this dilemma and also augurs well for a

� E-mail: djemarsh@gmail.com

particle-orientated solution of MFP, a problem for which a feedback
solution seems questionable (Boylan-Kolchin, Bullock & Kapling-
hat 2012; Garrison-Kimmel et al. 2013b), although not all agree
(Brooks et al. 2013).

The paper is organized as follows. We introduce ultralight scalar
dark matter and compare the linear theory to WDM in Section 2. In
Section 3, we compute the halo mass function (HMF) and model a
cut-off in it. In Section 4, we discuss the halo-density profile and
core formation. In Section 5, we discuss the relevance of our model
for MFP, and in Section 6 we discuss implications for high-redshift
galaxy formation. The casual reader can skip to Section 7 where we
summarize and discuss our main results, and provide a guide to the
relevant figures. Appendix A provides details of our two-component
density profile model.

2 U LT R A L I G H T S C A L A R DA R K M AT T E R

A coherently oscillating scalar field, φ, in a quadratic potential
V = m2

aφ
2/2, has an energy density that scales as a−3 and thus
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can behave in cosmology as DM (Turner 1983, 1986).1 The relic
density contains a non-thermal component produced by vacuum
realignment, which depends on the initial field displacement φi.
The Klein–Gordon equation is

φ̈ + 3Hφ̇ + m2
aφ = 0 , (1)

where the Hubble rate H = ȧ/a. When H � ma, the field is
frozen by Hubble friction and behaves as a contribution to the
cosmological constant (which is negligible for sub-Planckian field
values). Therefore, in order to contribute to DM we must have
ma � H0 ∼ 10−33 eV. Once the mass overcomes the Hubble fric-
tion at ma ≈ 3H (aosc), the field begins to coherently oscillate. The
relic density is then an environmental variable set by the initial field
displacement: �a = �a(ma, φi) ≈ (8πG/3H 2

0 )aosc(ma)3m2
aφ

2
i /2.

As we will discuss below there is a length-scale, which depends
on the inverse mass, below which perturbations in the scalar field
energy density will not cluster. Therefore, the clustering of light
scalar DM is observationally analogous to that of thermal relic dark
matter. In the range 10−33 eV ≤ ma � 10−28 eV, the clustering scale
is analogous to hot (H)DM, for example composed of thermal relic
neutrinos of mass mν � 1eV (Amendola & Barbieri 2006; Marsh
et al. 2012). In this section, we will discuss how scalar masses in the
range 10−24eV � ma � 10−20 eV lead to structure formation that
is analogous to WDM in an observationally relevant mass range.
Related aspects of structure formation for axion/scalar dark mat-
ter in this mass range have been studied in, e.g. Hu, Barkana &
Gruzinov 2000; Matos & Urena-Lopez 2000; Arbey, Lesgourgues
& Salati 2001, 2003; Bernal & Guzman 2006; Lee & Lim 2009;
Park, Hwang & Noh 2012.

While the signatures of thermal relics and ultralight scalars
are similar in large-scale structure, there are distinct signatures
in the adiabatic and isocurvature cosmic microwave background
(CMB) spectra (Marsh et al. 2012, 2013), and future measure-
ments of weak lensing tomography can further break degeneracies
(Amendola et al. 2012). For the range of axion masses, we consider
aosc ∝ (ma/eV)−1/2 and the redshift zosc is in the range 105 � zosc

� 107. If the axion field is coupled to photons, the rolling field from
φ = φi to φ = 0 at zosc can further affect the CMB. For axions
with mass ma � 10−28 eV that roll after recombination this leads
to rotation of CMB polarization (see e.g. Komatsu et al. 2009). For
heavier axions rolling at z ∼ 106, photon production in primor-
dial magnetic fields may lead to CMB spectral distortions (Mirizzi,
Redondo & Sigl 2009). It is necessary to understand the observa-
tional signatures of the parameters ma and �a if we are to make in-
ferences about the nature of the DM from cosmological constraints,
and in particular if hints from the CMB and large-scale structure
are pointing to a hot, warm or ultralight scalar component to the
DM. In the rest of this paper, we will explore in detail structure for-
mation with ultralight scalars, and similarities and differences with
thermal DM.

Such ultralight scalars might arise in a string theory context. It is
well known that string theory compactified on sufficiently compli-
cated six-dimensional manifolds contains many axion like particles
(ALPs) (Witten 1984; Svrcek & Witten 2006). In Arvanitaki et al.
(2010), it was pointed out that since the masses of such axions
depend exponentially on the areas of the cycles in the compact

1 Exponential potentials can also be relevant in the tracking solution Ferreira
& Joyce (1997, 1998). Light fields as DM with various potentials have had
their background evolution studied in e.g. Matos, Vázquez-González &
Magaña (2009).

manifold, one should expect a uniform distribution of axion masses
on a logarithmic scale spanning many orders of magnitude. This
phenomenon was dubbed the ‘String Axiverse’. Explicit construc-
tions of the axiverse have been made in M-theory (Acharya, Bobkov
& Kumar 2010) and Type IIB theory (Cicoli, Goodsell & Ringwald
2012).

The string axiverse has the potential to provide an elegant solu-
tion to the MSP, CCP and possibly MFP, by leading us to expect as
natural an axion mixed DM (aMDM) model with many axionic com-
ponents populating hierarchically different mass regimes. Since the
relic density produced via vacuum misalignment is environmental,
it can be taken as a free parameter to be constrained observation-
ally, although theoretical priors can be considered (e.g. Aguirre &
Tegmark 2005; Tegmark et al. 2006). A component of CDM in the
aMDM model from the axiverse arises naturally in the form of the
Quantum chromodynamics (QCD) axion (Peccei & Quinn 1977;
Weinberg 1978; Wise, Georgi & Glashow 1981; Preskill, Wise &
Wilczek 1983; Berezhiani, Sakharov & Khlopov 1992). The mass
of the QCD axion is fixed by the pion mass and decay constant, and
the axion decay constant fa. For stringy values of fa ∼ 1016 GeV,
the QCD axion has a mass around 10−10eV. This is light, but not
so light that the sound speed (see below) plays a cosmological role.
The requirement that the QCD axion remains light enough, barring
accidents, coincidences or fine-tuning, to solve the strong CP prob-
lem is what guarantees the lightness of the other axions, and as such
one should always expect some CDM component alongside the ul-
tralight ALPs (ULAs). Axion mixed dark matter with a QCD axion
and supersymmetric neutralino is also expected in many models of
beyond the standard model particle physics (see, e.g. Bae, Baer &
Lessa 2013).

2.1 Transfer functions

The ULA perturbations, δφ, do not behave as CDM: they have a
non-zero sound speed2 c2

a = δP/δρ, which is scale-dependent and
given by (Hu et al. 2000; Hwang & Noh 2009; Marsh & Ferreira
2010):

c2
a =

⎧⎨
⎩

k2

4m2
aa2 if k � 2maa,

1 if k � 2maa.
(2)

One finds that in a cosmology where axions make up a fraction
of the DM, fax = �a/�d, that this causes suppression of the matter
power spectrum relative to the case where the DM is pure CDM.
Suppression occurs for those modes k that entered the horizon when
the sound speed was large. The suppression is centred around a scale
km, which depends on the mass, and takes the power spectrum down
to some value S, which depends on �a, times its value in the CDM
case.

We compute the transfer functions and matter power spectrum
in cosmologies containing CDM plus a ULA component using a
modified version of the publicly available Boltzmann code CAMB

(Lewis 2000; Lewis, Challinor & Lasenby 2000). The modification,
which makes use of the fluid treatment of axion perturbations, is
described in Marsh et al. (in preparation). The transfer function is
defined as

Tax(k) =
(

PaMDM(k)

P�CDM(k)

)0.5

. (3)

2 This is in the cosmological frame, e.g. synchronous or Newtonian gauge,
where δφ 	= 0.
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Figure 1. The transfer function, equation (3) for aMDM with
ma = 10−22 eV and varying axion fractions to total DM. For comparison, we
also plot the FCDM transfer function of Hu et al. (2000) and the WDM trans-
fer function (equation 4) with mW ≈ 0.84 keV chosen to match the transfer
function half-mode, km (equation 5). With this choice and �a/�d = 1 the
axion transfer function at km is much steeper than its WDM counterpart.

We compare to the WDM transfer function (in the case where all
the DM is warm)

TWDM(k) = (1 + (αk)2μ)−5/μ , (4)

where μ = 1.12 (Bode, Ostriker & Turok 2001). The mixed
C+WDM case is discussed in more detail in e.g. Anderhalden
et al. (2013). A well-defined characteristic scale to assign to any
such step-like transfer function is the ‘half-mode’

T (km) = 0.5(1 − T (k → ∞)) , (5)

where T(k → ∞) ≥ 0 is the constant plateau value of the trans-
fer function on small scales. This is not the Jeans scale where all
structure is suppressed. The Jeans scale is found analytically to be
(Hu et al. 2000)

kJ = (16πGρm)1/4m1/2
a . (6)

The ρ1/4 scaling follows from balancing the growing and oscillating
modes in e
t where 
2 = 4πGρ − (k2/2m)2, with k2/2m coming
from the oscillation frequency of the free field.

In Fig. 1, we plot the linear theory aMDM transfer function for a
variety of aMDM models, all with ma = 10−22 eV which gives
km(10−22 eV) = 6.7 hMpc−1. We compare to equation (4) with
α ≈ 0.065 h−1 Mpc chosen to give the same km. Taking �dh

2 =
0.112, �bh

2 = 0.0226, h = 0.7 as our benchmark cosmology, An-
gulo, Hahn & Abel (2013) gives α in terms of the WDM mass as

α = 0.052
( mW

keV

)−1.15
h−1 Mpc . (7)

Therefore, the matching of half-mode scales gives mW ≈ 0.83 keV
as equivalent to ma = 10−22 eV.

The logarithmic slope, dln T(k)/dln k, evaluated at k = km is much
steeper for the pure axion model than for the pure WDM model, in
agreement with the transfer function of Hu et al. (2000) for ‘Fuzzy’
(F)CDM, also shown in Fig. 1.

With decreasing fraction of DM in ULAs the slope becomes
shallower, and km moves out to larger values. The steeper slope
for ULAs compared to WDM means that models with the same
half-mode will not have kJ = kFS (where kFS is the WDM free-
streaming scale, which some authors define differently), and vice
versa. Matching Jeans and free-streaming scales, axions will have

more power on larger scales relative to WDM; matching the half-
mode, axions will have less power on small scales relative to WDM.
We choose always to match the transfer function half-mode, since
it is well defined for both models.

2.2 Mass scales

We associate characteristic masses to scales k through the mass
enclosed within a sphere of radius the half wavelength λ/2 = π/k:

M = 4

3
π

(
λ

2

)3

ρ0 , (8)

where ρ0 is the matter density.
In particular, using k = km we can expect suppression of the

formation of haloes below Mm caused by the decrease in linear
power on these scales. We have shown the effects in the transfer
function with low axion fraction for illustration, but as we will
see in Section 4 the only axion fractions relevant for producing
cored density profiles are large, �a/�m � 0.85, and so the charac-
teristic scales will be very close to their values for the pure ULA
DM case. Mass scales relevant for halo formation cover axions in
the range 10−24 eV � ma � 10−20 eV. Axions lighter than this are
well probed by the CMB and the linear matter power spectrum
(Amendola & Barbieri 2006, Marsh et al., in preparation), while
those heavier are probed by supermassive black holes (Arvanitaki
& Dubovsky 2011; Pani et al. 2012) and terrestrial experiments
(Jaeckel & Ringwald 2010; Ringwald 2012a,b). In Fig. 2, we plot
Mm(ma) for the pure ULA cosmology and find it to be fitted well
by a power law Mm ∝ m−γ

a with γ ≈ 1.35 by least squares over the
range of interest. This is very close to the value γ = 4/3 using the
fit of Hu et al. (2000).

In Fig. 2, we also show the Jeans mass, MJ, which is lower by
more than two orders of magnitude than Mm. The axion Jeans scale
is analogous to the WDM free-streaming scale, where Mfs is also
some orders of magnitude lower than Mm (Angulo et al. 2013).

Solving equation (4) for the half-mode with WDM and using the
fit with γ = 1.35 to match Mm(mW) to Mm(ma), we plot mW(ma) in
Fig. 3. The power law relating them is mW ∝ m0.39

a . Our matching
to WDM mass applies to thermal relics like gravitinos, and in Fig. 3
we show the constraint on thermal relics of mW > 0.55 keV from
Lyman α forest data reported in Viel et al. (2005). This translates to

Figure 2. The characteristic mass associated with the half-mode, km, of the
transfer function as a function of axion mass, Mm(ma), found from equations
(5) and (8). It is well fitted by a power law Mm ∝ m

−γ
a with γ ≈ 1.35. We

also show the mass associated with the Jeans scale of equation (6), which is
lower by two to three orders of magnitude.
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Figure 3. Thermal relic warm dark matter mass in keV chosen to give
the same transfer function half-mode, km (equation 5), as a ULA, as a
function of ULA mass in eV. We also show the Lyman α forest constraints
mW > 0.55 keV of Viel et al. (2005) corresponding to ma > 5 × 10−23 eV,
consistent with Amendola & Barbieri (2006).

a constraint on axion mass of ma > 5 × 10−23 eV, which is consistent
with the Lyman α constraints on ULAs reported in Amendola &
Barbieri (2006). The more recent Lyman α constraints to WDM,
such as Viel et al. (2013) (mW � 3.3keV) are much stronger, but
there is no corresponding constraint to axions using this data to
compare to.

Lyman α constraints are sensitive to the exact shape of the trans-
fer function: since mass goes as radius cubed, small differences
between the transfer functions of ULA and WDM models will be
amplified to larger differences in the associated mass scales. Lyman
α constraints also require careful calibration with hydrodynamical
simulations (as done in e.g. Viel et al. 2013). Such simulations are
available for CDM and WDM models, but not for ULAs, making
the simple comparison of constraints by mass scale perhaps too
naive.

The variance of the power spectrum, σ (M), is computed by
smoothing the power spectrum using a spherical top-hat window
function of size R, and is done within CAMB:

σ (R)2 =
∫ ∞

0

dk

k
P (k)W (k|R)2 , (9)

W (k|R) = 3

(kR)3
(sin kR − kR cos kR) . (10)

In Fig. 4, we show the variance associated with the same models as
in Fig. 1. The variance for the aMDM models varies little when the
fraction is changed between �a/�d = 1 and �a/�d = 0.5, and is
comparable to the associated WDM variance.

In the sections that follow, we investigate the suppression of halo
formation at and below Mm in axion models in more detail.

3 TH E H A L O M A S S F U N C T I O N

The MSP arises with CDM due to a larger expected number of low
mass haloes than the number of low mass satellites observed in the
Local Group (see e.g. Primack 2009, for a review).

To quantify this problem in various models, we adopt the Press–
Schechter (PS) approach (Press & Schechter 1974) to compute
the abundance of haloes of a given mass: the HMF. In the usual
formalism this gives

dn

d ln M
= −1

2

ρ0

M
f (ν)

d ln σ 2

d ln M
, (11)

Figure 4. Variance σ (M) for �CDM, and aMDM with various �ah
2 at

fixed total �dh
2 = 0.112 and axion mass ma = 10−22 eV.

ν ≡ δc

σ
, (12)

where dn = n(M)dM is the abundance of haloes within a mass
interval dM . For the function f(ν), we use the model of Sheth &
Tormen (1999) (ST):

f (ν) = A

√
2

π

√
qν(1 + (

√
qν)−2p) exp

[
−qν2

2

]
, (13)

with parameters {A = 0.3222, p = 0.3, q = 0.707}. The remaining
ingredient in this approach is the critical overdensity, δc, and what
to do on mass scales M < Mm, both of which we now discuss.

3.1 Mass-dependent critical density from scale-dependent
growth

In the case where all of the DM is made up of ULAs, as we saw
in Fig. 1, there is no structure formed below kJ, and so we should
expect no peaks in the density field, and thus no haloes, below
the mass scale MJ. However, applying the PS formalism described
above with a constant barrier δc leads to a non-zero mass function
for M < MJ. In the case of WDM, this discrepancy is modelled
in Smith & Markovic (2011) by the addition of a smooth step in
dn/dlog M at M = Mfs. In the analytical results of Benson et al.
(2012), a much sharper cut-off was seen, and was attributed in part
to a strong mass dependence in δc, which was seen to increase
rapidly below Mfs. A shallower cut-off was seen in the numerical
results of Angulo et al. (2013). In the recent work of Schneider,
Smith & Reed (2013) the cut-off due to free-streaming in WDM
was investigated, and also found to be shallower than Benson et al.
(2012). Schneider et al. (2013) advocate a sharp k-space window
function to match simulations and remove spurious structure thus
providing the source of the cut-off: investigating different cut-offs
and mass functions in aMDM will be the subject of a future work.

In the absence of numerical simulations for ULA DM, or an
existing treatment of the excursion set and spherical collapse in these
models, one does not know what form the cut-off in the HMF near
MJ should take. In addition, for mixed dark matter models where
the small-scale power is not entirely erased but only suppressed,
one does not know how much (additional, ad hoc) suppression
to introduce. In this sub-section, we make a physically motivated
argument for a mass-dependent increase in δc at low M that should
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account in some way for additional suppression in the HMF for
M < Mm.

Since we use results from CAMB, we take the overdensity δ to
evolve with redshift, and in an Einstein-de Sitter (EdS) universe,
take the critical overdensity to be fixed, δc = δEdS ≈ 1.686. Alter-
natively, one can view the overdensity as being fixed, and take δc

to evolve with redshift as δc(z) = D0δEdS/D(z) (Percival, Miller
& Peacock 2000; Percival 2005), which accounts for the growth
between z and z = 0. The growth factor D(z) is given by

D(z) = 5�m

2H (z)

∫ a

0

da′

(a′H (a′)/H0)3
. (14)

In the aMDM model, there is scale-dependent growth (see e.g.
Acquaviva & Gawiser 2010; Marsh et al. 2012), and we use this to
model the change in δc with scale. For the relatively heavy axions,
we consider here the growth at the pivot scale k0 = 0.002 hMpc−1

is the same as in �CDM, while it is much smaller at k > km. We take
δc(k) at z = 0 to be altered by an amount D(k0)/D(k), and normalize
by the same ratio in �CDM (to take account of the small amount
of scale-dependent growth there). In the interests of simplicity, we
will only be concerned with examples of the HMF at z = 0 and take
δc(z = 0, k = k0) = δEdS, which is good to within a few per cent for
�CDM (Percival 2005).3 At redshift z = 0 our model takes

δc(k) = G(k)δEdS , (15)

G(k) := D(k)�CDM

D(k)aMDM
. (16)

Two, not entirely unrelated, issues arise with this model when
trying to extract the growth from a Boltzmann code. The first is
that to use this model we must disentangle growth from transfer
function, which is by definition somewhat problematic in the case
of scale-dependent growth. Defining the transfer function as the
piece which depends solely on k this can only be done with the
logarithmic derivative d log δ/d log a = d log D/ log a, which does
not give us the absolute value at z = 0 that we seek. We take a more
practical definition suited to numerical computation. In �CDM,
the transfer function freezes in somewhere around the decoupling
epoch (Eisenstein & Hu 1997), when matter domination is total.
This provides a definition of the scale-dependent growth at z = 0
which is easily accessible from a numerical solution for δ(k, z),
normalized such that D(k = k0) = 1:

D(k)

D0
:= δ(k, 0)

δ(k, zh)

δ(k0, zh)

δ(k0, 0)
, (17)

where zh is chosen so that in �CDM the transfer function has frozen
in, and k0 � km is the pivot scale. Using CAMB, we find zh ≈ 300
works well. We then use exactly the same definition to set the scale
of D(k) in the aMDM case.

Scale-dependent growth causes the mass-dependent critical den-
sity to increase below M ≈ Mm. Fig. 5 shows G(M) for these mod-
els. There is the obvious trend that G(M) decreases with increasing
CDM fraction.

The second issue is that if the axions completely dominate the
matter density then the overdensity will become vanishingly small
for k � km even at high redshift, and so we are faced with the prob-
lem of dividing zero by zero to set the scale of D(k). This is a numer-

3 A more advanced treatment of spherical collapse in coupled quintessence
cosmologies in Tarrant et al. (2012) found that even in �CDM δc(z = 0)
can differ from δEdS by more than this amount.

Figure 5. The mass-dependent critical density from scale-dependent
growth, equation (16), is given by δc(M) = G(M)δEdS. We show G(M)
for aMDM with various �c/�d at fixed total �dh

2 = 0.112 and axion mass
ma = 10−22 eV. The spikes at low fraction are due to BAO distortions and
numerical instability defining scale-dependent growth via a ratio.

ical precision problem and, when combined with Baryon Acoustic
Oscillations (BAO) distortions, leads to the spikey/oscillatory be-
haviour of G(M) for �c/�d � 0.01 in Fig. 5.

3.2 HMF results

In Fig. 6, we plot the HMF with a fixed axion mass of ma = 10−22 eV
for a variety of values of the axion density, with fixed total
�d h2 = 0.112. We see suppression of the mass function beginning
at Mm, with the amount of suppression increasing and the asymptotic
slope of the mass function decreasing as we raise the axion density.
We show results taking δc fixed, and those with mass-dependent
δc(M), modelled for as above.

The introduction of scale-dependent growth via G(M) in Fig. 6
causes the HMF to be sharply cut off at around M ≈ 108 h−1 M�
≈ 0.01Mm with large axion fraction. This is in agreement with the

Figure 6. Halo mass function computed directly from CAMB for �CDM,
and aMDM with various fc = �c/�d at fixed total �d h2 = 0.112 and
axion mass ma = 10−22 eV. Solid lines have δc(M) while dashed lines have
δc = δEdS. At fc = 0.5 the cut-off is no longer present in the mass range
shown, the difference between δEdS and δc(M) having largely vanished. The
spikes at low fraction are due to BAO distortions and numerical instability
defining scale-dependent growth via a ratio.
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Figure 7. The HMF evaluated at M = 1 × 108 h−1 M� ≈ 0.01Mm and
M = 0.8 × 108 h−1 M� for aMDM as a function of fc = �c/�d at fixed
total �d h2 = 0.112 and axion mass ma = 10−22 eV. The HMF decreases
rapidly below the cut-off, at around 1 per cent of the half-mode mass. Varying
the CDM fraction between 1 and 15 per cent can change the value of the
HMF at the cut-off by two orders of magnitude.

cut-off of Smith & Markovic (2011) and the numerical results of
Angulo et al. (2013) for WDM: the HMF falls below its �CDM
value at the half-mode mass, but only cuts off completely at a
lower mass, intermediate between the Jeans (free-streaming for
WDM) mass and the half-mode mass. By considering fragmentation
of proto-halo objects formed in WDM cosmologies Angulo et al.
(2013) found a smoother cut-off in the HMF than the sharp cut-
off of Benson et al. (2012) coming from analytic results. By the
time we reach the Jeans scale of MJ ≈ 1.1 × 107 h−1 M� the mass
function for �a/�d = 1 is vanishingly small, more than eight orders
of magnitude below its �CDM value.

In Fig. 7, we plot the HMF evaluated at various masses near
M = 0.01Mm as a function of fc = �c/�a at low fc to investigate
the effect of a small admixture of CDM on the value of the mass
function at the cut-off. Varying fc between 1 and 15 per cent can
change the value of the HMF near the cut-off by two orders of
magnitude. The small admixture of CDM can help an aMDM model
form dwarf haloes near the HMF cut-off.

The low values of fc � 0.13, as we will see in Section 4.3, are
those relevant for core formation with aMDM. At larger values of
fc approaching the equally mixed DM fc = 0.5, the sharp cut-off
in the HMF has vanished, although it is still significantly reduced
compared to �CDM. The large admixture of CDM, if the need for
cores is foregone, still remains relevant to the MSP and introduces
no potentially problematic cut-off in the HMF.

Scale-dependent growth in aMDM induces a cut-off in the HMF
similar to the cut-off observed in numerical simulations of WDM.
In Angulo et al. (2013), the cut-off in WDM simulations could
be fit by introducing non-spherical filtering to compute σ (R). By
assigning masses to radii differently for WDM compared to CDM
after accounting for formation of haloes by fragmentation this cut-
off was made less severe. In order to discuss the assignment of
masses to haloes in aMDM, we now move on to model the halo
density profile and its normalization.

4 H A LO D EN SITY PROFILE

The Catch 22 (Maccio’ et al. 2012a) of solving the CCP with
WDM is that the WDM particle mass required to introduce a core
of sufficient size in a dwarf galaxy serves to cut off the HMF

at exactly the mass of the dwarf, so that it is never formed. At the
same time, WDM allowed by constraints from Large Scale Structure
(LSS) does not form cores of relevant (kiloparsec) size. In order to
ascertain whether the Catch 22 applies to aMDM, or indeed to the
case of pure axion DM, we must model the expected core size.

We follow Hu et al. (2000) and associate a core size to the Jeans
scale within the halo, rJ,h, below which the density will be assumed
constant.4 The Jeans scale within the halo is related to the linear
Jeans scale, rJ, by scaling the energy density in equation (6)

rJ,h =
(

ρ0

ρ(rJ,h)

)1/4

rJ . (18)

Thus, we can determine the linear Jeans scale (and so the ULA
mass) necessary to provide a given core size inside a dwarf halo,
if we know the external profile ρ(r). The assumption inherent in
equation (18) is that the coherent effects in the scalar field giving
rise to the Jeans scale survive in the non-linear regime when mode
mixing becomes important and the linear derivation of the sound
speed in equation (2) may break down. N-body/lattice simulations
of the axion field are needed to test this assumption.

Assuming that collapse occurs as in �CDM, Hu et al. (2000)
computed ρ0/ρ(rJ,h) and found that a core of size rJ,h ∼ 3.4kpc is
obtained in a dwarf halo of mass 1010 M� for an axion of mass
ma = 10−22 eV. As we have seen, the HMF for such a ULA is only
cut-off for M � 108 h−1 M� suggesting that axions do not suffer
the Catch 22 of WDM.

In the following section, we address this is in a more detailed
model of aMDM. First, we compute halo parameters with the pure
ULA variance, normalize our cored halo profile, and find the rela-
tionship between ULA mass and core size in a representative Milky
Way satellite. The picture that emerges is qualitatively the same as
Hu et al. (2000), but quantitatively different. Secondly, we extend
this picture to a two-component profile and ask whether cores can
be maintained as a small admixture of CDM is added.

4.1 The NFW Profile

For the external profile, ρ(r), outside of the Jeans scale where the
ULA behaves as CDM, we use the universal radial density profile
of Navarro, Frenk & White (1997) (hereafter, NFW):

ρ(r)

ρ0
= δchar

(r/rs)(1 + r/rs)2
, (19)

where the scale radius rs = r200/c, with r200 the virial radius, c the
concentration parameter and δchar the characteristic density.

The characteristic density is assumed to be proportional to the
density of matter in the Universe at the collapse redshift of the halo,
zcoll. The definition of zcoll(M) is fixed for NFW and follows from
PS (see also Lacey & Cole 1993) :

erfc

(
δc,EdS(D(zcoll)−1 − 1)√

2(σ 2(f M) − σ 2(M))

)
= 1

2
, (20)

The NFW profile is fitted with f = 0.01. As above we work in the
convention where δc is constant but the overdensities themselves

4 See also Arbey et al. (2001) and Arbey et al. (2003) who studied the
effect of scalar DM of mass ma ≈ 10−23 eV on galaxy rotation curves in the
presence of baryons, and core formation in the Bose condensate. Yet another
model of cores is considered by Bernal, Matos & Nunez (2003). None of
these models consider the altered cosmology and structure formation.
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evolve with linear growth factor D(z). The characteristic density is
then

δchar = C�m(1 + zcoll)
3 , (21)

where C = 3.4 × 103 fits the cosmologies of NFW. This constant
varies with the power spectrum, and we find for our Wilkinson
Microwave Anisotropy Probe 7 cosmology that

C = 1.24 × 104 , (22)

gives the correct normalization such that M in the definition of zcoll

matches M200 from the virial radius.
The virial radius is defined as the radius at which the average

enclosed density is 200 times the mean density, in terms of the halo
mass M at redshift z = 0 it is given by

r200(M, z) =
(

200
4

3
π

)−1/3 (
ρ0

h2kpc−3 M�

)−1/3

×
(

M200

h−1 M�

)1/3

h−1 kpc . (23)

For the NFW profile, the concentration and scale radius, with the
correct choice of C, are defined such that M = M200. For the cored
profile that we discuss below, the scale radius of the external NFW
profile does not have the same relationship with the true virial radius,
and we normalize separately for M200.

Finally, the concentration is defined from the characteristic den-
sity, δchar, by

δchar = 200

3

c3

ln(1 + c) − c/(1 + c)
. (24)

The definition of zcoll in equation (20), and hence the concentra-
tion defined from it will go to zero for a variance that flattens out at
low masses, as is the case for aMDM with small CDM fraction. The
lower concentration of low mass haloes in comparison to �CDM
will be relevant for MFP, which we discuss in Section 5. Since zcoll

is also lower, in Section 6 we discuss the collapsed mass fraction
and potential conflicts with observations of high-redshift galaxies.

4.2 Halo jeans scale for pure axion DM

In this sub-section, we consider the core size and normalization
of haloes in a pure ULA dark matter model. We assume collapse
occurs as in �CDM, with D(z), but use the axion variance, σ (M).

For definiteness, we consider haloes with the simplest possible
cored profile

ρcore(M, r) = θ (r − rJ,h(M))ρNFW(M, r)

+ θ (rJ,h(M) − r)ρNFW(M, rJ,h(M)) , (25)

where θ (x) is the Heaviside function, although much of what we say
below will apply to any cored profile with core radius rc = rJ,h fixed
by equation (18).5 In particular, the choice of a Heaviside function
introduces sharp transitions into the density profile, and as such is
only for illustration. The external NFW profile is consistent with
what is observed in the WDM simulations of Maccio’ et al. (2012a).

In order to find the Jeans scale within a halo we must solve
equation (18) for an NFW profile with external profile normalization
fixed at Ms (the ‘scale mass’), and shape fixed by scale radius

5 Other cored profiles are studied in e.g. Zavala, Vogelsberger & Walker
(2013) for self-interacting DM.

Figure 8. Halo profiles of equation (25) (solid lines) with various M200

compared to their parent NFW profiles of mass Ms ≈ M200 (dot–dashed
lines). The axion mass is ma = 10−22 eV and we show the linear Jeans scale,
rJ = 31.2 h−1 kpc (vertical dashed line). As long as halo becomes overdense
outside of rJ it can continue to be overdense inside until it reaches the
halo Jeans scale, rJ,h satisfying equation (18). More massive haloes are
more dense at rJ and the halo Jeans scale is smaller. No profiles form with
Ms < Mlow when the NFW parent has not become overdense outside of rJ

(although they may form by fragmentation).

rs(Ms) = r200(Ms)/c(Ms) to find rJ,h(Ms). This is not the Jeans scale
within a halo of mass M = Ms: the mass Ms is the mass that an
equivalent NFW profile would have. We will discuss normalization
of M shortly.

We use the variance for the axion model to compute our NFW
halo parameters: using the �CDM variance, the halo Jeans scales
with fixed Ms will be different. With low Ms relative to Mm the con-
centration is lower when the correct variance is used, which causes
the Jeans scale to be smaller by the increase in scale radius relative
to r200. On the other hand, the Jeans scale within intermediate and
high-mass objects is found to be larger with the correct variance.
For example, with ma = 10−21 eV the shift in halo Jeans scale inside
dwarf galaxies can be of the order of 0.1 h−1 kpc.

The Jeans scale decreases in higher density environments and
therefore the positive real solution of equation (18) is a monotoni-
cally decreasing function of Ms. At low enough Ms, then, one finds
rJ,h > rJ. This cannot be a physical solution. Solutions to equation
(18) giving rJ,h > rJ can only occur when ρ/ρ0 < 1, which repre-
sents a void and not a halo.6 This break at rJ = rJ,h will occur at
a certain mass, Mlow(M, rJ), which is a function of the linear Jeans
scale. It is found by solving

ρNFW(Mlow, rJ ) = ρ0 . (26)

This tells us that no cored haloes with normalization Ms < Mlow

exist for fixed rJ. Cored halo profiles of various masses are shown
in Fig. 8 and compared to their parent NFW profiles, with the lin-
ear Jeans scale shown for scale. It is clear that no haloes should
form that do not already become overdense outside rJ. In the
example, with rJ = 31.2 h−1 kpc, this implies that haloes with
Ms = 4 × 108 h−1 M� only just form.

6 Solutions to equation (18) with rJ,h > rJ also reminds us of another over-
looked feature of pure ULA dark matter: not only are haloes cored, having
a maximum density, but voids will also be ‘cored’, having a maximum un-
derdensity. This suggests other possible probes/virtues of ULAs (Peebles &
Nusser 2010), but we will not consider this possibility further here.
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Figure 9. The expected core size in a typical Milky Way satellite of mass
M200 = 5 × 108 h−1 M� as a function of axion mass, ma. The relationship is
well fitted by a simple power law, shown as m−0.87

a , but due to the dependence
of the concentration on ma this is not the scaling of rJ with ma. The core
size is fairly significant, �0.1 h−1 kpc, across the entire mass range, which
demonstrates that axions satisfying all large-scale structure constraints can
provide a potentially viable resolution of the cusp-core problem in CDM
haloes.

Given that no haloes form with external scale Ms < Mlow, what
is the minimum halo mass in this model? A halo is normalized to
mass M200 by the integral out to the virial radius, r200

4πρ0

∫ r200

0
r2ρcore(M, r) dr = M200 ≡ 200ρ0

4

3
πr3

200 . (27)

This defines M200(Ms). Since the Jeans scale within haloes is a
monotonically decreasing function of Ms, at some scale mass
Mnon-vir the solution for r200 will occur when ρNFW(Mnon-vir,
rJ,h(Mnon-vir)) = 200ρ0. Haloes with scale mass Ms < Mnon-vir will
not be virialized in the sense that their average density never ex-
ceeds 200 times the background density. In order to assign mass to
these haloes one cannot use M200. The total enclosed mass is found
by integrating out to ρ(r1) = ρ0. With this alternative definition of
mass it is clear that the lowest mass object formed at Ms = Mlow is
at exactly the Jeans mass, MJ.

Haloes with M < M200(Mnon-vir) will also need to have masses
assigned to radii coming from the linear filtering in σ (M|R) in the
HMF in a different manner than is applicable to CDM. This is
accounted for by fits to simulations in Angulo et al. (2013) and
is partly responsible for the less severe cut-off in the HMF found
in that work. By comparison, if we made the same assignment in
the HMF with pure axion DM, the cut-off found by introducing
scale-dependent growth might also become less severe.

We typically find that, for Ms > Mnon-vir, r200 for the cored profile
is approximately the same as for the parent NFW, and that M200 ≈
Ms. Approaching Mnon-vir, M200 drops below Ms.

Finally, having normalized our haloes, we show in Fig. 9 the
core size expected in the typical Milky Way dwarf galaxy of mass
M200 = 5 × 108 h−1 M� as a function of axion mass for the heavier
axions ma ≥ 10−22 eV allowed by the relevant Lyman α constraints.
The core size is well fitted by a single power law in axion mass.
The best-fitting power law has rJ,h ∼ m−0.87

a , while the power law
given in Hu et al. (2000) is rJ,h ∼ m−2/3

a . Hu et al. (2000) used
approximate formulae to solve equation (18) and do not give the
dependence of the concentration on axion mass. The dependence
of the concentration on axions mass comes from computing NFW

parameters with the correct variance and leads to the different power
law.

We find that there is a considerable core size for all masses con-
sidered. In particular, even our heaviest axion with ma = 10−20 eV
has a core size of rJ,h = 0.1 h−1 kpc. This heaviest axion has a char-
acteristic mass scale of Mm = 108 h−1 M� and would not affect the
formation rate of these dwarf galaxies in any dramatic way. This
demonstrates that pure ULA dark matter does not suffer from the
Catch 22 of WDM: ULAs allowed by even the most stringent large-
scale structure constraints, which would barely affect the HMF at
Milky Way satellite masses, can still give significant cores to dwarf
galaxies.

4.3 A mixed dark matter halo profile

Having understood the simple cored profile in pure axion DM,
we now move on to consider the two-component dark matter sub-
class of aMDM (see Medvedev 2013 and references therein for
recent work on two-component DM haloes). In this sub-section,
we continue to assume �CDM growth. We study axion mass
ma = 10−22 eV and a benchmark halo with M200 = 5 × 108 h−1 M�.

Again, we take the halo density profile to be NFW outside of
the halo Jeans scale, while inside the halo Jeans scale we take the
axion component to be smooth. Inside this smooth background we
then assume the CDM component of the DM collapses as usual and
forms its own NFW halo. Because the axion component is smooth
inside this radius, we superpose the profiles and therefore below the
Jeans scale the ratio of axions to CDM is not constant but decreases
at small radius. This is in agreement with the simulations of mixed
cold plus warm DM in Anderhalden et al. (2013). The assumed
two-component profile is given in Appendix A.

The size of the cored region depends on the fraction of DM that
is cold: fc = �c/�d. For r < rcore (see equation A3) there is a
cusp while for rcore(fc, Ms) < r < rJ,h(Ms) there is a core. We plot
the halo profile for fc = 0.13 in our benchmark halo in Fig. 10, while
we plot rcore(fc) for our benchmark halo in Fig. 11. We judge the

Figure 10. The mixed dark matter halo profile equation (A1) with 13 per
cent CDM, fc = 0.13. The outer region is an NFW profile of mixed axions
and CDM. The halo mass is M200 = 5 × 108h−1 M� and the halo Jeans
scale rJ,h = 5.4 h−1 kpc (outer vertical dashed line) corresponds to axion
mass ma = 10−22 eV with this particular DM composition. At the halo
Jeans scale the axions stop clustering and form a uniform component, while
the CDM forms an NFW cusp. There is a core down to rcore = 2.1 h−1 kpc
where the cusp takes over from the uniform piece (inner vertical dashed
line).
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Figure 11. Core radius and halo Jeans scale as a function of CDM frac-
tion, fc = �c/�d, in the two-component halo (equation A1). There is a
core for rcore < r < rJ,h, while there is a cusp for r < rcore, so that in-
creasing fc makes halo profiles more cuspy, as expected. The halo mass
M200 = 5 × 108h−1 M� and the axion mass ma = 10−22 eV.

core to be of significant size if it persists down to <50 per cent of the
halo Jeans scale. With fc = 0.13 the benchmark axion mass and halo
corresponds to a core in the range 2.1 h−1 kpc � r � 5.4 h−1 kpc.

Although this benchmark core is significant, it is actually not
present on sub-kiloparsec scales, which suggests that while intro-
ducing a fraction of CDM with an axion of mass 10−22 eV may raise
the HMF for low-mass dwarf galaxies to acceptable levels, it may
not provide a totally adequate solution to the CCP. As we will see
below, a more preferable solution to all the problems outlined may
be given instead by a higher axion mass.

5 TO O B IG TO FA IL?

The so-called ‘too big to fail’ problem (here ‘MFP’) was introduced
by Boylan-Kolchin, Bullock & Kaplinghat (2011). In �CDM, there
are predicted to be massive sub-haloes of the Milky Way of high
concentration and circular velocity that cannot host bright satellites,
and are not observed. One astrophysical solution to this problem
is feedback (Garrison-Kimmel et al. 2013a). WDM (Lovell et al.
2012) and C+WDM (Maccio’ et al. 2012b; Medvedev 2013) are
also known to help this problem, since the flattened variance leads
to later formation times and lower concentration for these most
massive sub-haloes.

Since the variance, σ (M) in aMDM also flattens at low masses,
just like WDM it will lead to a lower concentration for Milky Way
sub-haloes compared to �CDM if the sub-halo mass is lower than
fMm (see equation 20). In Fig. 12, we plot c(M200) for three repre-
sentative axion masses, ma = 10−22, 10−2110−20 eV and compare to
�CDM, confirming that this is the case.

MFP can also be expressed as the non-observation of large num-
bers of satellites with maximum circular velocity vmax � 40 km s−1.
The circular velocity as a function of r is given by

v(r) = (GM(<r)/r)1/2 . (28)

In Fig. 13, we plot v(r) for a halo of mass M200 = 2 × 1010 h−1 M�.
In �CDM this halo has vmax > 40 km s−1. We compare this to v(r)
where the DM is made up of an axion of mass ma = 10−22 eV, and
to WDM. The axion and WDM haloes are chosen to have the same
rmax as �CDM, having M200 = 1010 h−1 M�. Both the axion and

Figure 12. Halo concentration parameter, c(M) for �CDM and various
axion masses. The flattening of the variance near Mm causes a later formation
time for low mass haloes, and due to the presence of f = 0.01 in equation
(20) leads to a lower concentration for haloes below fMm. The lowered
concentration can help alleviate the too big to fail’ problem.

Figure 13. The circular velocity profile for a one component DM halo
in various models, derived from the NFW profile. For �CDM we have
chosen a halo with M200 = 2 × 1010 h−1 M� which has a maximum
circular velocity vmax > 40 km s−1, demonstrating that CDM suffers from
the ‘too big to fail’ problem. We compare to axion and WDM models with
M200 = 1010 h−1 M� chosen such that they have the same rmax as �CDM.
Both axions and WDM suppress vmax by a factor of about 1.5 relative to
�CDM, demonstrating their relevance for the solution to MFP. The core in
the axion density profile does not affect the suppression of vmax. We choose
axion mass ma = 10−22 eV and equivalent WDM mass of mW ≈ 0.84 keV.

WDM models reduce the maximum circular velocity considerably:
vmax ≈ 30 km s−1.

For WDM we do not model the effect of a possible core, and so
for fair comparison we show the axion model with both a cored and
NFW profile. The effect of the core in the axion model is small,
so that the assumption of core formation does not affect an axion
solution to MFP.

6 H I G H - R E D S H I F T O B J E C T S

We now move on to discuss the collapse redshift of objects to
see whether ULAs can accommodate observations of high-redshift
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Figure 14. Total collapsed mass fraction, equation (29), with
Mmin = 106 h−1 M� with varying axion mass. We ignore scale-dependent
growth and take the axions to make up all of the DM.

galaxies. We consider collapse with �CDM growth given by D(z),
ignoring for the moment the scale-dependent growth, which will
only serve to amplify effects below the characteristic mass. All the
effects of axions therefore come in the variance, σ (M). For the large
axion fractions relevant for core formation in the two-component
halo of Section 4.3 the effects of CDM on the variance are virtually
negligible, so in our examples we take �a/�d = 1 and investigate
only the effects of varying axion mass.

The total fraction of objects collapsed with M > Mmin at redshift
z is

F (M > Mmin, z) = erfc

(
δc,EdSD(zcoll)−1

√
2σ (Mmin)

)
. (29)

We plot this assuming �CDM growth for Mmin = 106 h−1 M� in
Fig. 14. For our benchmark mass ma = 10−22 eV the collapsed mass
fraction F(z � 6) � 0.01 putting such a light axion in considerable
tension with observations of high-redshift galaxies.

Using the scale-dependent growth to assign a mass-dependent
critical density for collapse as in equation (16) provided a good
working model for the cut-off in the HMF; however, we cannot
naively apply such a prescription for δc into equation (29): such
a cut-off would make the collapsed mass fraction non-monotonic.
The ansatz of equation (16) applies only in the HMF and takes the
HMF as fundamental, so the analogue of equation (29) is properly
defined in this framework as the integral of the HMF. The redshift
dependence of such an integral requires us to know the full function
D(k, z). Alternatively one could make a fit for the HMF with the
ansatz that the cut-off remains always a fixed geometric distance
between Mm and MJ as they evolve with redshift. We do not explore
this effect of the cut-off on the collapsed mass fraction as a function
of redshift, but the qualitative effects are obvious: scale-dependent
growth should amplify the effects we have seen already in Fig. 14.

Knowing the HMF at z = 10 allowed the authors of Pacucci,
Mesinger & Haiman (2013) to place constraints on a WDM thermal
relic of mW > 0.9 keV using high redshift observations. Using our
mass scale conversions of Section 2.2 we might expect such obser-
vations to constrain ma � few × 10−22 eV, as the simple argument
based on collapsed mass fraction with �CDM growth given above
anticipates.

Suppression of galaxy formation at high redshift has been invoked
as a possible solution to another problem of structure formation in
�CDM: the discrepancy in the evolution of the stellar mass func-
tion between observations and models, highlighted in Weinmann
et al. (2012). ULAs were invoked, along with WDM, by these au-
thors as a solution. Again, as with Lyman α constraints, access
to hydrodynamical simulations with WDM allowed for a detailed
comparison of models to observations, and showed a WDM solu-
tion to most likely be unviable. Do ULAs remain a viable solution?
We have shown in previous sections that there are enough differ-
ences between ULAs and WDM that this is possible, but without
simulations one cannot quantify this. However, in this section we
have confirmed the suppression of halo formation at high redshift
necessary for ULAs to be an interesting candidate for further study
in this regard.

7 SU M M A RY A N D D I S C U S S I O N

By studying large-scale structure, we have probed ULAs with
masses in the range 10−24 ≤ ma ≤ 10−20 eV. Across a fair portion
of this range, such ultralight fields can evade large-scale structure
constraints while still being different enough from standard CDM
on scales relevant to three main problems of structure formation:
the MSP, the CCP, and the MFP. We have primarily studied a bench-
mark ULA of mass ma = 10−22 eV and shown that it is able to solve
the MSP, CCP and MFP, avoiding the so-called Catch 22 of a WDM
solution. If this axion constitutes all of the DM, however, then it
may come into tension with observations of the Lyman α flux power
spectrum (which constrains WDM at masses mW � 3.3 keV), high-
redshift galaxies (at z � 6) and the existence of very low mass dwarf
galaxies (M � 5 × 107 h−1 M�). These tensions can be relieved
in two ways: by introducing a fraction of CDM or increasing the
axion mass. Introducing a fraction of CDM retains adequate solu-
tions to all problems, but cores may yield to cusps at unacceptably
large radii. We advocate a higher mass axion of ma � 10−21 eV as
potentially the best solution.

If all the DM is constituted of an axion or other light scalar of
mass ma = 10−22 eV then in the linear power spectrum structure
formation is suppressed below some characteristic scale (Fig. 1).
The half-mode for this suppression is the same as the half-mode
for a WDM particle of mass mW ≈ 0.84 keV, just on the edge
of the bounds coming from Lyman α forest flux power spectrum
constraints (Fig. 3). By considering scale-dependent growth it has
been shown that such an axion will cut off the HMF for M �
108 h−1 M�. Introducing a fraction of CDM, fc = �c/�d, the cut-
off is made less severe, disappearing completely and leaving only a
small suppression to dwarf galaxy formation when fc ≈ 0.5 (Fig. 6).
This mixed dark matter model, aMDM, may therefore be relevant to
the MSP. Such a mix of DM may be natural given certain theoretical
priors (Aguirre & Tegmark 2005; Tegmark et al. 2006; Bousso &
Hall 2013), or in non-thermal cosmologies expected after moduli
stabilization (e.g. Acharya et al. 2010; Acharya, Kane & Kuflik
2012).

If the axion linear Jeans scale can be considered to scale into
non-linear environments as the fourth root of the relative density
contrast (equations 6, 18), requiring coherence of field oscillations
to be maintained, then ultralight axions can give cores to dwarf
galaxy density profiles (Hu et al. 2000). By considering a sim-
ple cored profile given by an external NFW profile outside the
Jeans scale, it was shown that in such a scenario no haloes are
formed below the linear Jeans mass, MJ. Axions in the mass range
10−22 eV ≤ ma ≤ 10−20 eV can give kiloparsec scale cores to dwarf
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galaxies of mass M = 5 × 108 h−1 M�, and are thus relevant to the
CCP of CDM halo density profiles (Figs 8, 9). Since the HMF is
only cut off below the dwarf mass, and axions in this mass range are
allowed by large-scale structure constraints, we can conclude that
in this simple model ultralight axions, or other FCDM candidates,
do not suffer from the Catch 22 that might affect WDM (Maccio’
et al. 2012a).

For an axion mass at the low end of the range allowed by large-
scale structure constraints, ma ≈ 10−22 eV, to form lighter dwarf
galaxies of M � 5 × 107 h−1 M�, however, the mixed aMDM is
necessary. By considering a two-component density profile below
the axion Jeans scale it was shown that an admixture of fc ≈ 13 per
cent will significantly increase the mass function for light dwarves
(Fig. 7), while still allowing for a core on scales greater than a
kiloparsec (Figs 10 and 11), although such a core may in fact be too
large.

The flattened variance in aMDM (Fig. 4) in the NFW formal-
ism leads to later formation times and consequently lower con-
centrations for low mass haloes compared to CDM (Fig. 12).
This, combined with maximum circular velocity remaining low,
vmax < 40 kms−1, in typical dwarves (Fig. 13), also suggests that
ULAs may, just like WDM, play a role in the resolution of the MFP
(Boylan-Kolchin et al. 2011).

While avoiding the Catch 22 in an axion cusp-core and miss-
ing satellites resolution an axion mass as low as ma = 10−22 eV
comes into tension with high-redshift observations since the col-
lapsed mass fraction becomes very small at z � 6 (Fig. 14). A
heavier axion of mass ma � 10−21 eV would be in less tension with
observations of high-redshift galaxies (and more recent Lyman α

forest constraints to WDM) and could still introduce a kiloparsec
scale core to dwarf galaxies and significantly lower the concen-
tration of these galaxies. The formation of dwarves would still be
significant, yet also reduced relative to �CDM, so that such heavier
axions remain relevant to the cusp-core, missing satellites, and ‘too
big to fail’ problems of CDM. Suppression of galaxy formation
at high redshift relative to �CDM may also be a factor in resolv-
ing conflicts between models and observations of the stellar mass
function (Weinmann et al. 2012).

With large axion fractions, Marsh et al. (2013) showed that isocur-
vature constraints imply such a model would be falsified by any de-
tection of tensor modes at the percent level in the CMB by Planck.
Axions lighter than those we study are well constrained as com-
ponents of the DM by observations of the CMB and the linear
matter power spectrum (Amendola & Barbieri 2006, Marsh et al.,
in preparation), while heavier axions are probed, and in some cases
ruled, out by the spins of supermassive black holes (Arvanitaki &
Dubovsky 2011; Pani et al. 2012), and terrestrial axion searches
(Jaeckel & Ringwald 2010; Ringwald 2012a).

We have not discussed the role of baryons in this model, the
knowledge of this role being incomplete in even the most state of
the art simulations. We have preferred to focus on simple and ideal-
ized DM only models where the relevant physics is well understood.
The baryonic disc has only a modest effect on the rotation curve,
with DM haloes still necessary. Adiabatic contraction of baryons
may lead to the enhancement of DM cusps, and thus more need for
a core-forming component (Zemp et al. 2012). On the other hand,
baryonic feedback is a process driven by supernova explosions driv-
ing outflows of gas, which can remove DM cusps in dwarf galaxies
while leaving a thick stellar disc (Governato et al. 2012). Baryons
may also transfer angular momentum to the halo and modestly ef-
fect the spin-up of a massive halo. In massive galaxies, it is unlikely
that baryons have a significant effect on the DM halo profile. None

of these effects, most notably feedback, solve the excess baryon
problems of the MSP and MFP.

It will be important to investigate this model further in the future
with numerical N-body and other non-linear studies in order to
verify whether our simple predictions stand up to detailed scrutiny
both theoretically and observationally. It is possible that non-linear
effects such as oscillons (see e.g. Gleiser & Sicilia 2009) may play
a role. Also, at non-linear order additional terms in the effective
fluid description of the axion will be generated, such as anisotropic
stresses Hertzberg (2012), which could alter the simple picture of
structure formation with a sound speed and Jeans scale dominating
effects at short distances.

Furthermore, Lyman α constraints play a key role in determining
the validity of WDM models to resolve small-scale crises in CDM,
the constraints of Viel et al. (2013) appearing to all but rule out
WDM in this regard. Applying such constraints reliably to ULAs
will require developing hydrodynamical simulations with them. Fi-
nally, a thorough development of the halo model with ULAs build-
ing on the groundwork laid here (as was done for WDM by Smith
& Markovic 2011) will be invaluable in understanding weak lens-
ing constraints to ULAs obtainable with future surveys (Amendola
et al. 2012; Marsh et al. 2012).
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Macciò A. V., Paduroiu S., Anderhalden D., Schneider A., Moore B., 2012c,

MNRAS, 424, 1105
Marsh D. J. E., Ferreira P. G., 2010, Phys. Rev. D, 82, 103528
Marsh D. J. E., Macaulay E., Trebitsch M., Ferreira P. G., 2012, Phys. Rev.

D, 85, 103514
Marsh D. J. E., Grin D., Hlozek R., Ferreira P. G., 2013, Phys. Rev. D, 87,

121701
Matos T., Urena-Lopez L. A., 2000, Phys. Rev. D, 63, 063506
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A P P E N D I X A : D E TA I L S O F T H E MI X E D DA R K
MATTER PROFI LE

In Section 4.2, we discussed the simple cored profile. The two-
component profile of Section 4.3 is given by

ρaMDM(M, r, fc) = θ (r − rJ,h(Ms))ρNFW(Ms, r)

+ θ (rJ,h(Ms) − r)[(1 − fc)ρNFW(Ms, rJ,h(Ms))

+ ρNFW(M�(Ms, fc), r)] , (A1)

where θ (x) is the Heaviside function and fc = �c/�d. Ms 	= M200

is the mass of the external NFW profile, the ‘scale mass’. The scale
mass of the internal NFW profile for the CDM, M�(Ms, fc), is fixed
by continuity and the requirement that at the halo Jeans scale the
ULAs and CDM are in their relative cosmic abundance

ρNFW(M�(Ms, fc), rJ,h(Ms)) = fcρNFW(Ms, rJ,h(Ms)) . (A2)

The CDM NFW profile inside the axion Jeans scale must be assigned
a concentration, which must be computed from the variance in a
given cosmology. We take the appropriate variance to be the one
for the cosmology as a whole. This assumes that, with hierarchical
structure formation, this CDM inner region will be made from a
lighter halo itself formed earlier in cosmic history.

To find the size of the cored region for a given CDM fraction fc

we simply find the radius rcore that solves

(1 − fc)ρNFW(Ms, rJ,h(Ms)) = ρNFW(M�(Ms, fc), rcore) . (A3)

As fc → 1, rcore → rJ,h(Ms), the cored region disappears and equation
(A1) goes to the standard NFW case.
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