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ABSTRACT

There are several issues to do with dwarf galaxy predictions in the standard A cold dark matter
(ACDM) cosmology that have suscitated much recent debate about the possible modification
of the nature of dark matter as providing a solution. We explore a novel solution involving
ultralight axions that can potentially resolve the missing satellites problem, the cusp-core
problem and the ‘too big to fail’ problem. We discuss approximations to non-linear structure
formation in dark matter models containing a component of ultralight axions across four
orders of magnitude in mass, 1072* <m, < 1072 eV, a range too heavy to be well constrained
by linear cosmological probes such as the cosmic microwave background and matter power
spectrum, and too light/non-interacting for other astrophysical or terrestrial axion searches.
We find that an axion of mass m, &~ 107! eV contributing approximately 85 per cent of the
total dark matter can introduce a significant kpc scale core in a typical Milky Way satellite
galaxy in sharp contrast to a thermal relic with a transfer function cut off at the same scale,
while still allowing such galaxies to form in significant number. Therefore, ultralight axions
do not suffer from the Catch 22 that applies to using a warm dark matter as a solution to the
small-scale problems of CDM. Our model simultaneously allows formation of enough high-
redshift galaxies to allow reconciliation with observational constraints, and also reduces the
maximum circular velocities of massive dwarfs so that baryonic feedback may more plausibly
resolve the predicted overproduction of massive Milky Way Galaxy dwarf satellites.

Key words: elementary particles — galaxies: dwarf — galaxies: halo — cosmology: theory —dark

matter — large-scale structure of Universe.

1 INTRODUCTION

There are three outstanding problems in the dwarf galaxy astro-
physics of the standard A cold dark matter (ACDM) cosmology.
The controversies on small scales may be summarized as (a) the
missing satellites problem (MSP), (b) the cusp-core problem (CCP)
and (c) the ‘too big to fail’ problem (which we refer to here as the
massive failures problem, MFP), all reviewed in Weinberg et al.
(2013).

The MSP and CCP with CDM structure formation can both be
solved by introducing a length-scale into the DM. This can be ther-
mal, coming from free streaming of warm dark matter (WDM),
or, as we will discuss below, non-thermal, coming from coherent
oscillations of a light scalar field. The thermal solution may suf-
fer from a Catch 22 issue, whereby galaxy formation occurs too
late (Maccio et al. 2012¢). We show here that the non-thermal
solution both avoids this dilemma and also augurs well for a
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particle-orientated solution of MFP, a problem for which a feedback
solution seems questionable (Boylan-Kolchin, Bullock & Kapling-
hat 2012; Garrison-Kimmel et al. 2013b), although not all agree
(Brooks et al. 2013).

The paper is organized as follows. We introduce ultralight scalar
dark matter and compare the linear theory to WDM in Section 2. In
Section 3, we compute the halo mass function (HMF) and model a
cut-off in it. In Section 4, we discuss the halo-density profile and
core formation. In Section 5, we discuss the relevance of our model
for MFP, and in Section 6 we discuss implications for high-redshift
galaxy formation. The casual reader can skip to Section 7 where we
summarize and discuss our main results, and provide a guide to the
relevant figures. Appendix A provides details of our two-component
density profile model.

2 ULTRALIGHT SCALAR DARK MATTER

A coherently oscillating scalar field, ¢, in a quadratic potential
V =m2¢$?/2, has an energy density that scales as a~> and thus
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can behave in cosmology as DM (Turner 1983, 1986).! The relic
density contains a non-thermal component produced by vacuum
realignment, which depends on the initial field displacement ¢;.
The Klein—Gordon equation is

é+3Hp+m2p=0, 1)

where the Hubble rate H = a/a. When H > m,, the field is
frozen by Hubble friction and behaves as a contribution to the
cosmological constant (which is negligible for sub-Planckian field
values). Therefore, in order to contribute to DM we must have
my 2 Hy ~ 10733 eV. Once the mass overcomes the Hubble fric-
tion at m, ~ 3 H (a.s), the field begins to coherently oscillate. The
relic density is then an environmental variable set by the initial field
displacement: 2, = Q,(my, ¢;) ~ B1G /3HF)dose (M) m2$? /2.

As we will discuss below there is a length-scale, which depends
on the inverse mass, below which perturbations in the scalar field
energy density will not cluster. Therefore, the clustering of light
scalar DM is observationally analogous to that of thermal relic dark
matter. In the range 10733 eV < m, < 10728 eV, the clustering scale
is analogous to hot (H)DM, for example composed of thermal relic
neutrinos of mass m, < leV (Amendola & Barbieri 2006; Marsh
etal. 2012). In this section, we will discuss how scalar masses in the
range 1072%eV < m, < 1072 eV lead to structure formation that
is analogous to WDM in an observationally relevant mass range.
Related aspects of structure formation for axion/scalar dark mat-
ter in this mass range have been studied in, e.g. Hu, Barkana &
Gruzinov 2000; Matos & Urena-Lopez 2000; Arbey, Lesgourgues
& Salati 2001, 2003; Bernal & Guzman 2006; Lee & Lim 2009;
Park, Hwang & Noh 2012.

While the signatures of thermal relics and ultralight scalars
are similar in large-scale structure, there are distinct signatures
in the adiabatic and isocurvature cosmic microwave background
(CMB) spectra (Marsh et al. 2012, 2013), and future measure-
ments of weak lensing tomography can further break degeneracies
(Amendola et al. 2012). For the range of axion masses, we consider
Qose X (m,/eV)~1/? and the redshift zq. is in the range 10° < 7o
< 107. If the axion field is coupled to photons, the rolling field from
¢ = ¢; to ¢ = 0 at z,, can further affect the CMB. For axions
with mass m, < 10728 eV that roll after recombination this leads
to rotation of CMB polarization (see e.g. Komatsu et al. 2009). For
heavier axions rolling at z ~ 10%, photon production in primor-
dial magnetic fields may lead to CMB spectral distortions (Mirizzi,
Redondo & Sigl 2009). It is necessary to understand the observa-
tional signatures of the parameters m, and 2, if we are to make in-
ferences about the nature of the DM from cosmological constraints,
and in particular if hints from the CMB and large-scale structure
are pointing to a hot, warm or ultralight scalar component to the
DM. In the rest of this paper, we will explore in detail structure for-
mation with ultralight scalars, and similarities and differences with
thermal DM.

Such ultralight scalars might arise in a string theory context. It is
well known that string theory compactified on sufficiently compli-
cated six-dimensional manifolds contains many axion like particles
(ALPs) (Witten 1984; Svrcek & Witten 2006). In Arvanitaki et al.
(2010), it was pointed out that since the masses of such axions
depend exponentially on the areas of the cycles in the compact

! Exponential potentials can also be relevant in the tracking solution Ferreira
& Joyce (1997, 1998). Light fields as DM with various potentials have had
their background evolution studied in e.g. Matos, Vazquez-Gonzdlez &
Magaiia (2009).
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manifold, one should expect a uniform distribution of axion masses
on a logarithmic scale spanning many orders of magnitude. This
phenomenon was dubbed the ‘String Axiverse’. Explicit construc-
tions of the axiverse have been made in M-theory (Acharya, Bobkov
& Kumar 2010) and Type IIB theory (Cicoli, Goodsell & Ringwald
2012).

The string axiverse has the potential to provide an elegant solu-
tion to the MSP, CCP and possibly MFP, by leading us to expect as
natural an axion mixed DM (aMDM) model with many axionic com-
ponents populating hierarchically different mass regimes. Since the
relic density produced via vacuum misalignment is environmental,
it can be taken as a free parameter to be constrained observation-
ally, although theoretical priors can be considered (e.g. Aguirre &
Tegmark 2005; Tegmark et al. 2006). A component of CDM in the
aMDM model from the axiverse arises naturally in the form of the
Quantum chromodynamics (QCD) axion (Peccei & Quinn 1977;
Weinberg 1978; Wise, Georgi & Glashow 1981; Preskill, Wise &
Wilczek 1983; Berezhiani, Sakharov & Khlopov 1992). The mass
of the QCD axion is fixed by the pion mass and decay constant, and
the axion decay constant f,. For stringy values of f, ~ 10'° GeV,
the QCD axion has a mass around 10~'%eV. This is light, but not
so light that the sound speed (see below) plays a cosmological role.
The requirement that the QCD axion remains light enough, barring
accidents, coincidences or fine-tuning, to solve the strong CP prob-
lem is what guarantees the lightness of the other axions, and as such
one should always expect some CDM component alongside the ul-
tralight ALPs (ULAs). Axion mixed dark matter with a QCD axion
and supersymmetric neutralino is also expected in many models of
beyond the standard model particle physics (see, e.g. Bae, Baer &
Lessa 2013).

2.1 Transfer functions

The ULA perturbations, 8¢, do not behave as CDM: they have a
non-zero sound speed” ¢2 = § P /8p, which is scale-dependent and
given by (Hu et al. 2000; Hwang & Noh 2009; Marsh & Ferreira
2010):

K2 ;
—— ifk < 2mya,
C2 — 4m3a2 (2)
1 if k > 2mg,a.

One finds that in a cosmology where axions make up a fraction
of the DM, f,. = 2./ 24, that this causes suppression of the matter
power spectrum relative to the case where the DM is pure CDM.
Suppression occurs for those modes k that entered the horizon when
the sound speed was large. The suppression is centred around a scale
k., which depends on the mass, and takes the power spectrum down
to some value S, which depends on £2,, times its value in the CDM
case.

We compute the transfer functions and matter power spectrum
in cosmologies containing CDM plus a ULA component using a
modified version of the publicly available Boltzmann code camB
(Lewis 2000; Lewis, Challinor & Lasenby 2000). The modification,
which makes use of the fluid treatment of axion perturbations, is
described in Marsh et al. (in preparation). The transfer function is
defined as

0.5
Pavipm(k) ) 3)

Tull) = (PACDM(k)

2 This is in the cosmological frame, e.g. synchronous or Newtonian gauge,
where §¢ # 0.
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Figure 1. The transfer function, equation (3) for aMDM with
m, = 10722 eV and varying axion fractions to total DM. For comparison, we
also plot the FCDM transfer function of Hu et al. (2000) and the WDM trans-
fer function (equation 4) with my ~ 0.84 keV chosen to match the transfer
function half-mode, k,, (equation 5). With this choice and ©,/24 = 1 the
axion transfer function at k,, is much steeper than its WDM counterpart.

We compare to the WDM transfer function (in the case where all
the DM is warm)

Twom(k) = (1 4 (@k)*) =/, “

where u = 1.12 (Bode, Ostriker & Turok 2001). The mixed
C+WDM case is discussed in more detail in e.g. Anderhalden
et al. (2013). A well-defined characteristic scale to assign to any
such step-like transfer function is the ‘half-mode’

T(ky) =0.5(1 = T(k — 00)), 5)

where T(k — 00) > 0 is the constant plateau value of the trans-
fer function on small scales. This is not the Jeans scale where all
structure is suppressed. The Jeans scale is found analytically to be
(Hu et al. 2000)

k; = (161G p,)"*m,/* . (6)

The p'/* scaling follows from balancing the growing and oscillating
modes in " where '’ = 4G p — (k*/2m)?, with k*/2m coming
from the oscillation frequency of the free field.

In Fig. 1, we plot the linear theory aMDM transfer function for a
variety of aMDM models, all with m, = 1072?>eV which gives
k(10722 eV) = 6.7 hMpc~!. We compare to equation (4) with
a ~ 0.065h! Mpc chosen to give the same k,,. Taking Quh? =
0.112, Qph? = 0.0226, h = 0.7 as our benchmark cosmology, An-
gulo, Hahn & Abel (2013) gives « in terms of the WDM mass as

—1.15
@ = 0.052 (;{%) h~" Mpc. %

Therefore, the matching of half-mode scales gives my ~ 0.83keV
as equivalent to m, = 10722 eV.

The logarithmic slope, dln 7(k)/dIn k, evaluated at k = k,,, is much
steeper for the pure axion model than for the pure WDM model, in
agreement with the transfer function of Hu et al. (2000) for ‘Fuzzy’
(F)CDM, also shown in Fig. 1.

With decreasing fraction of DM in ULAs the slope becomes
shallower, and k,, moves out to larger values. The steeper slope
for ULAs compared to WDM means that models with the same
half-mode will not have k; = kgg (where krg is the WDM free-
streaming scale, which some authors define differently), and vice
versa. Matching Jeans and free-streaming scales, axions will have

more power on larger scales relative to WDM; matching the half-
mode, axions will have less power on small scales relative to WDM.
We choose always to match the transfer function half-mode, since
it is well defined for both models.

2.2 Mass scales

We associate characteristic masses to scales k through the mass
enclosed within a sphere of radius the half wavelength A /2 = 7t/k:

M—4 1)’ 8
—§7T<5> £0 5 (8

where pg is the matter density.

In particular, using k = k, we can expect suppression of the
formation of haloes below M,, caused by the decrease in linear
power on these scales. We have shown the effects in the transfer
function with low axion fraction for illustration, but as we will
see in Section 4 the only axion fractions relevant for producing
cored density profiles are large, 2,/ 2, 2 0.85, and so the charac-
teristic scales will be very close to their values for the pure ULA
DM case. Mass scales relevant for halo formation cover axions in
the range 107 eV < m, < 1072 eV. Axions lighter than this are
well probed by the CMB and the linear matter power spectrum
(Amendola & Barbieri 2006, Marsh et al., in preparation), while
those heavier are probed by supermassive black holes (Arvanitaki
& Dubovsky 2011; Pani et al. 2012) and terrestrial experiments
(Jaeckel & Ringwald 2010; Ringwald 2012a,b). In Fig. 2, we plot
M,,(m,) for the pure ULA cosmology and find it to be fitted well
by a power law M,, oc m_ " with y ~ 1.35 by least squares over the
range of interest. This is very close to the value y = 4/3 using the
fit of Hu et al. (2000).

In Fig. 2, we also show the Jeans mass, Mj, which is lower by
more than two orders of magnitude than M,,. The axion Jeans scale
is analogous to the WDM free-streaming scale, where My is also
some orders of magnitude lower than M,, (Angulo et al. 2013).

Solving equation (4) for the half-mode with WDM and using the
fit with y = 1.35 to match M,,(my) to M,,(m,), we plot my(m,) in
Fig. 3. The power law relating them is my oc m23°. Our matching
to WDM mass applies to thermal relics like gravitinos, and in Fig. 3
we show the constraint on thermal relics of my > 0.55keV from
Lyman o forest data reported in Viel et al. (2005). This translates to

10

-21 -20

107 107 1077 10 10
me [eV]

Figure 2. The characteristic mass associated with the half-mode, &,,, of the
transfer function as a function of axion mass, M,,(m,), found from equations
(5) and (8). It is well fitted by a power law M,, o m,” with y ~ 1.35. We
also show the mass associated with the Jeans scale of equation (6), which is
lower by two to three orders of magnitude.
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Figure 3. Thermal relic warm dark matter mass in keV chosen to give
the same transfer function half-mode, k,, (equation 5), as a ULA, as a
function of ULA mass in eV. We also show the Lyman « forest constraints
my > 0.55keV of Viel et al. (2005) corresponding to m, > 5 x 10723 eV,
consistent with Amendola & Barbieri (20006).

a constraint on axion mass of m, > 5 x 10723 eV, which is consistent
with the Lyman « constraints on ULAs reported in Amendola &
Barbieri (2006). The more recent Lyman « constraints to WDM,
such as Viel et al. (2013) (my 2 3.3keV) are much stronger, but
there is no corresponding constraint to axions using this data to
compare to.

Lyman o constraints are sensitive to the exact shape of the trans-
fer function: since mass goes as radius cubed, small differences
between the transfer functions of ULA and WDM models will be
amplified to larger differences in the associated mass scales. Lyman
o constraints also require careful calibration with hydrodynamical
simulations (as done in e.g. Viel et al. 2013). Such simulations are
available for CDM and WDM models, but not for ULAs, making
the simple comparison of constraints by mass scale perhaps too
naive.

The variance of the power spectrum, o (M), is computed by
smoothing the power spectrum using a spherical top-hat window
function of size R, and is done within cAmB:

(R = / N G}(—"f’(k)W(km)Z, ©)
0
3
W(k|R) = W(smkR —kRcoskR). (10)

In Fig. 4, we show the variance associated with the same models as
in Fig. 1. The variance for the aMDM models varies little when the
fraction is changed between 2,/ Q4 = 1 and 2,/ Q4 = 0.5, and is
comparable to the associated WDM variance.

In the sections that follow, we investigate the suppression of halo
formation at and below M,, in axion models in more detail.

3 THE HALO MASS FUNCTION

The MSP arises with CDM due to a larger expected number of low
mass haloes than the number of low mass satellites observed in the
Local Group (see e.g. Primack 2009, for a review).

To quantify this problem in various models, we adopt the Press—
Schechter (PS) approach (Press & Schechter 1974) to compute
the abundance of haloes of a given mass: the HMF. In the usual
formalism this gives

dn 1 po dlno?
=—=—f) ,
dinM 2M dinM

an
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Figure 4. Variance o (M) for ACDM, and aMDM with various 2,42 at
fixed total Qg¢h2 = 0.112 and axion mass m, = 10722 eV.

S
v=—, (12)
o
where dn = n(M)dM is the abundance of haloes within a mass
interval dM. For the function f(v), we use the model of Sheth &

Tormen (1999) (ST):

2 5 qv?
fw)y=A ;\/ﬁv(l—k(\/ﬁu) Pyexp [—T} (13)

with parameters {A = 0.3222, p = 0.3, ¢ = 0.707}. The remaining
ingredient in this approach is the critical overdensity, é., and what
to do on mass scales M < M,,, both of which we now discuss.

3.1 Mass-dependent critical density from scale-dependent
growth

In the case where all of the DM is made up of ULAs, as we saw
in Fig. 1, there is no structure formed below k;, and so we should
expect no peaks in the density field, and thus no haloes, below
the mass scale M;. However, applying the PS formalism described
above with a constant barrier 8, leads to a non-zero mass function
for M < M;. In the case of WDM, this discrepancy is modelled
in Smith & Markovic (2011) by the addition of a smooth step in
dn/dlogM at M = My. In the analytical results of Benson et al.
(2012), a much sharper cut-off was seen, and was attributed in part
to a strong mass dependence in §., which was seen to increase
rapidly below M. A shallower cut-off was seen in the numerical
results of Angulo et al. (2013). In the recent work of Schneider,
Smith & Reed (2013) the cut-off due to free-streaming in WDM
was investigated, and also found to be shallower than Benson et al.
(2012). Schneider et al. (2013) advocate a sharp k-space window
function to match simulations and remove spurious structure thus
providing the source of the cut-off: investigating different cut-offs
and mass functions in aMDM will be the subject of a future work.

In the absence of numerical simulations for ULA DM, or an
existing treatment of the excursion set and spherical collapse in these
models, one does not know what form the cut-off in the HMF near
Mj should take. In addition, for mixed dark matter models where
the small-scale power is not entirely erased but only suppressed,
one does not know how much (additional, ad hoc) suppression
to introduce. In this sub-section, we make a physically motivated
argument for a mass-dependent increase in 8. at low M that should
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account in some way for additional suppression in the HMF for
M<M,,.

Since we use results from cams, we take the overdensity § to
evolve with redshift, and in an Einstein-de Sitter (EdS) universe,
take the critical overdensity to be fixed, §, = dgqs = 1.686. Alter-
natively, one can view the overdensity as being fixed, and take 8,
to evolve with redshift as 8.(z) = Dydgas/D(z) (Percival, Miller
& Peacock 2000; Percival 2005), which accounts for the growth
between z and z = 0. The growth factor D(z) is given by

a ’
D(z) = 5Qm / da '
2H(z) Jo (a'H(a")/Hp)®

In the aMDM model, there is scale-dependent growth (see e.g.
Acquaviva & Gawiser 2010; Marsh et al. 2012), and we use this to
model the change in §. with scale. For the relatively heavy axions,
we consider here the growth at the pivot scale ky = 0.002 AMpc ™!
is the same as in ACDM, while it is much smaller at k > k,,. We take
8.(k) at z = 0 to be altered by an amount D(k,)/D(k), and normalize
by the same ratio in ACDM (to take account of the small amount
of scale-dependent growth there). In the interests of simplicity, we
will only be concerned with examples of the HMF at z = 0 and take
8:(z =0, k = ko) = 8gas, which is good to within a few per cent for
ACDM (Percival 2005).3 At redshift z = 0 our model takes

(14)

8c(k) = G(k)dkas (15)
D(k)acpm

k) = ———. 16

9@ D(k)avpm (16)

Two, not entirely unrelated, issues arise with this model when
trying to extract the growth from a Boltzmann code. The first is
that to use this model we must disentangle growth from transfer
function, which is by definition somewhat problematic in the case
of scale-dependent growth. Defining the transfer function as the
piece which depends solely on k this can only be done with the
logarithmic derivative dlog §/dloga = dlog D/ loga, which does
not give us the absolute value at z = 0 that we seek. We take a more
practical definition suited to numerical computation. In ACDM,
the transfer function freezes in somewhere around the decoupling
epoch (Eisenstein & Hu 1997), when matter domination is total.
This provides a definition of the scale-dependent growth at z = 0
which is easily accessible from a numerical solution for §(k, z),
normalized such that D(k = ky) = 1:

D) 8k, 0) 8(ko, z1)
Dy "~ 8k, zn) 8(ko, 0)

where z;, is chosen so that in ACDM the transfer function has frozen
in, and kg < k,, is the pivot scale. Using cams, we find z;, =~ 300
works well. We then use exactly the same definition to set the scale
of D(k) in the aMDM case.

Scale-dependent growth causes the mass-dependent critical den-
sity to increase below M ~ M,,. Fig. 5 shows G(M) for these mod-
els. There is the obvious trend that G(M) decreases with increasing
CDM fraction.

The second issue is that if the axions completely dominate the
matter density then the overdensity will become vanishingly small
for k > k,, even at high redshift, and so we are faced with the prob-
lem of dividing zero by zero to set the scale of D(k). This is a numer-

a7

3 A more advanced treatment of spherical collapse in coupled quintessence
cosmologies in Tarrant et al. (2012) found that even in ACDM §.(z = 0)
can differ from dggs by more than this amount.

0.5

0.4

0.3

Qe/Qa

0.2

10° 10° 10" 10"
M [h M)

Figure 5. The mass-dependent critical density from scale-dependent
growth, equation (16), is given by 8.(M) = G(M)Sgqs. We show G(M)
for aMDM with various €2/ €24 at fixed total Qqh? = 0.112 and axion mass
m, = 10722 eV. The spikes at low fraction are due to BAO distortions and
numerical instability defining scale-dependent growth via a ratio.

ical precision problem and, when combined with Baryon Acoustic
Oscillations (BAO) distortions, leads to the spikey/oscillatory be-
haviour of G(M) for Q./ 4 < 0.01 in Fig. 5.

3.2 HMF results

InFig. 6, we plot the HMF with a fixed axion mass of m, = 1072? eV
for a variety of values of the axion density, with fixed total
Q4 h* = 0.112. We see suppression of the mass function beginning
at M,,,, with the amount of suppression increasing and the asymptotic
slope of the mass function decreasing as we raise the axion density.
We show results taking §. fixed, and those with mass-dependent
8.(M), modelled for as above.

The introduction of scale-dependent growth via G(M) in Fig. 6
causes the HMF to be sharply cut off at around M ~ 10° h~' M
~ 0.01M,, with large axion fraction. This is in agreement with the

o' K ‘ ‘ ‘ —ACDM)| s
045
. 0.4
10' 1
- 035
S 03
ERU - ] S
= N 025
- e}
=
§ 5]0—3 ] 0.2
=
0.15
107°F 1 po-1
005
_7
10 : : 0
10° ) 10" 10"
M [h™ Mg

Figure 6. Halo mass function computed directly from cams for ACDM,
and aMDM with various f, = Q./Qq at fixed total Q44> =0.112 and
axion mass m, = 10722 eV. Solid lines have 8.(M) while dashed lines have
8. = Ogas. At fo = 0.5 the cut-off is no longer present in the mass range
shown, the difference between dggs and 8.(M) having largely vanished. The
spikes at low fraction are due to BAO distortions and numerical instability
defining scale-dependent growth via a ratio.
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Figure 7. The HMF evaluated at M = 1 X 108 p7! Mg ~ 0.01M,,, and
M=08x 108h"! M@ for aMDM as a function of f, = Q./q at fixed
total §24 2 = 0.112 and axion mass m, = 10722 eV. The HMF decreases
rapidly below the cut-off, at around 1 per cent of the half-mode mass. Varying
the CDM fraction between 1 and 15 per cent can change the value of the
HMF at the cut-off by two orders of magnitude.

cut-off of Smith & Markovic (2011) and the numerical results of
Angulo et al. (2013) for WDM: the HMF falls below its ACDM
value at the half-mode mass, but only cuts off completely at a
lower mass, intermediate between the Jeans (free-streaming for
WDM) mass and the half-mode mass. By considering fragmentation
of proto-halo objects formed in WDM cosmologies Angulo et al.
(2013) found a smoother cut-off in the HMF than the sharp cut-
off of Benson et al. (2012) coming from analytic results. By the
time we reach the Jeans scale of M; ~ 1.1 x 10’ h~' M the mass
function for 2,/ 24 = 1is vanishingly small, more than eight orders
of magnitude below its ACDM value.

In Fig. 7, we plot the HMF evaluated at various masses near
M = 0.01M,, as a function of f. = Q./ 2, at low f, to investigate
the effect of a small admixture of CDM on the value of the mass
function at the cut-off. Varying f. between 1 and 15 per cent can
change the value of the HMF near the cut-off by two orders of
magnitude. The small admixture of CDM can help an aMDM model
form dwarf haloes near the HMF cut-off.

The low values of f. < 0.13, as we will see in Section 4.3, are
those relevant for core formation with aMDM. At larger values of
f- approaching the equally mixed DM f. = 0.5, the sharp cut-off
in the HMF has vanished, although it is still significantly reduced
compared to ACDM. The large admixture of CDM, if the need for
cores is foregone, still remains relevant to the MSP and introduces
no potentially problematic cut-off in the HMF.

Scale-dependent growth in aMDM induces a cut-off in the HMF
similar to the cut-off observed in numerical simulations of WDM.
In Angulo et al. (2013), the cut-off in WDM simulations could
be fit by introducing non-spherical filtering to compute o (R). By
assigning masses to radii differently for WDM compared to CDM
after accounting for formation of haloes by fragmentation this cut-
off was made less severe. In order to discuss the assignment of
masses to haloes in aMDM, we now move on to model the halo
density profile and its normalization.

4 HALO DENSITY PROFILE

The Catch 22 (Maccio’ et al. 2012a) of solving the CCP with
WDM is that the WDM particle mass required to introduce a core
of sufficient size in a dwarf galaxy serves to cut off the HMF
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at exactly the mass of the dwarf, so that it is never formed. At the
same time, WDM allowed by constraints from Large Scale Structure
(LSS) does not form cores of relevant (kiloparsec) size. In order to
ascertain whether the Catch 22 applies to aMDM, or indeed to the
case of pure axion DM, we must model the expected core size.

We follow Hu et al. (2000) and associate a core size to the Jeans
scale within the halo, 7, ,, below which the density will be assumed
constant.* The Jeans scale within the halo is related to the linear
Jeans scale, r,, by scaling the energy density in equation (6)

L0 1/4
h = . 18
o (p(m)) " (15

Thus, we can determine the linear Jeans scale (and so the ULA
mass) necessary to provide a given core size inside a dwarf halo,
if we know the external profile p(r). The assumption inherent in
equation (18) is that the coherent effects in the scalar field giving
rise to the Jeans scale survive in the non-linear regime when mode
mixing becomes important and the linear derivation of the sound
speed in equation (2) may break down. N-body/lattice simulations
of the axion field are needed to test this assumption.

Assuming that collapse occurs as in ACDM, Hu et al. (2000)
computed po/p(r;;) and found that a core of size r;;, ~ 3.4kpc is
obtained in a dwarf halo of mass 10'° M, for an axion of mass
my = 1072 eV. As we have seen, the HMF for such a ULA is only
cut-off for M < 108 h~! M suggesting that axions do not suffer
the Catch 22 of WDM.

In the following section, we address this is in a more detailed
model of aMDM. First, we compute halo parameters with the pure
ULA variance, normalize our cored halo profile, and find the rela-
tionship between ULA mass and core size in a representative Milky
Way satellite. The picture that emerges is qualitatively the same as
Hu et al. (2000), but quantitatively different. Secondly, we extend
this picture to a two-component profile and ask whether cores can
be maintained as a small admixture of CDM is added.

4.1 The NFW Profile

For the external profile, p(r), outside of the Jeans scale where the
ULA behaves as CDM, we use the universal radial density profile
of Navarro, Frenk & White (1997) (hereafter, NFW):

@ — ‘Schar
Lo (r/rs)(l‘l'r/rs)z’

where the scale radius rg = ryg/c, with ryg the virial radius, c the
concentration parameter and §¢p,, the characteristic density.

The characteristic density is assumed to be proportional to the
density of matter in the Universe at the collapse redshift of the halo,
Zeoll- The definition of z.o;(M) is fixed for NFW and follows from
PS (see also Lacey & Cole 1993) :

Seras(D(zeo)™ — 1) 1
f - =—, 20
o ( V2002 (fM) - az(M») 2 20

The NFW profile is fitted with f = 0.01. As above we work in the
convention where §. is constant but the overdensities themselves

19

4 See also Arbey et al. (2001) and Arbey et al. (2003) who studied the
effect of scalar DM of mass m, ~ 10723 eV on galaxy rotation curves in the
presence of baryons, and core formation in the Bose condensate. Yet another
model of cores is considered by Bernal, Matos & Nunez (2003). None of
these models consider the altered cosmology and structure formation.
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evolve with linear growth factor D(z). The characteristic density is
then

Schar = CQm(1 + Zcoll)3 i (21)

where C = 3.4 x 10° fits the cosmologies of NFW. This constant
varies with the power spectrum, and we find for our Wilkinson
Microwave Anisotropy Probe 7 cosmology that

C =1.24 x 10*, (22)

gives the correct normalization such that M in the definition of z..y
matches M»q from the virial radius.

The virial radius is defined as the radius at which the average
enclosed density is 200 times the mean density, in terms of the halo
mass M at redshift z = 0 it is given by

4 13 2 ~1/3
M,z) = (200~m "
a2 ( 3> (hzkpC’SMc))

My \' )
—_— h™ kpc. 23
) (h” M@) P @y

For the NFW profile, the concentration and scale radius, with the
correct choice of C, are defined such that M = M,. For the cored
profile that we discuss below, the scale radius of the external NFW
profile does not have the same relationship with the true virial radius,
and we normalize separately for M.

Finally, the concentration is defined from the characteristic den-
Sity, Schar, DY

200 I
3 n(l4+c¢)—c/(0+¢)°

The definition of z.oy in equation (20), and hence the concentra-
tion defined from it will go to zero for a variance that flattens out at
low masses, as is the case for aMDM with small CDM fraction. The
lower concentration of low mass haloes in comparison to ACDM
will be relevant for MFP, which we discuss in Section 5. Since z.q
is also lower, in Section 6 we discuss the collapsed mass fraction
and potential conflicts with observations of high-redshift galaxies.

Schar = (24)

4.2 Halo jeans scale for pure axion DM

In this sub-section, we consider the core size and normalization
of haloes in a pure ULA dark matter model. We assume collapse
occurs as in ACDM, with D(z), but use the axion variance, o (M).

For definiteness, we consider haloes with the simplest possible
cored profile

pcore(M’ r)= 9(}’ - r].h(M))pNFW(M7 r)

+ 00w (M) — r)pnew (M, rp(M)) (25)

where 6(x) is the Heaviside function, although much of what we say
below will apply to any cored profile with core radius r, = r;, fixed
by equation (18).° In particular, the choice of a Heaviside function
introduces sharp transitions into the density profile, and as such is
only for illustration. The external NFW profile is consistent with
what is observed in the WDM simulations of Maccio’ et al. (2012a).

In order to find the Jeans scale within a halo we must solve
equation (18) for an NFW profile with external profile normalization
fixed at M, (the ‘scale mass’), and shape fixed by scale radius

3 Other cored profiles are studied in e.g. Zavala, Vogelsberger & Walker
(2013) for self-interacting DM.
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Figure 8. Halo profiles of equation (25) (solid lines) with various M»go
compared to their parent NFW profiles of mass My ~ My (dot—dashed
lines). The axion mass is m, = 10722 eV and we show the linear Jeans scale,
ry =31.2 h~ " kpc (vertical dashed line). As long as halo becomes overdense
outside of r; it can continue to be overdense inside until it reaches the
halo Jeans scale, ry, satisfying equation (18). More massive haloes are
more dense at r; and the halo Jeans scale is smaller. No profiles form with
M < Moy when the NFW parent has not become overdense outside of r;
(although they may form by fragmentation).

r(My) = ra00(My)/c(M) to find 7y, (M;). This is not the Jeans scale
within a halo of mass M = M,: the mass M, is the mass that an
equivalent NFW profile would ha