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We present a framework to study generic neutron-star binaries in scalar-tensor theories of gravity. Our
formalism achieves this goal by suitably interfacing a post-Newtonian orbital evolution (described by a set
of ordinary differential equations) with a set of nonlinear algebraic equations, which provide a description
of the scalar charge of each binargomponent along the evolution in terms of isolated-star data. We
validate this semianalytical procedure by comparing its results to those of fully general-relativistic
simulations, and use it to investigate the behavior of binary systems in large portions of the parameter space
of scalar-tensor theories. This allows us to shed further light on the phenomémynaimical
scalarizatiori, which we uncovered in [E. Barausee al, Phys. Rev. D87, 081506(R) (2013)] and
which takes place in tight binaries, even for stars that have exactly zero scalar charge in isolation. We also
employ our formalism to study representative binary systems, obtain their gravitational-wave signals and
discuss the extent to which deviations from general relativity can be detected. The insights gained by this
framework allow us to additionally show that eccentric binaries can undergo scalarization/descalarization

phenomena.
DOI: 10.1103/PhysRevD.89.044024 PACS numbers: 04.25.-g, 04.25.D-, 04.30.-w
[. INTRODUCTION later rediscovered by Brans and Dicjg, hence it is

usually called Fierz-Jordan-Brans-Dicke (FJBD) theory.

Scalar-tensor theories of gravif}~6] are among the : .
oldest and most natural alternatives to general relativi%hIS theory truncates the effective coupiilat the lowest

(GR). In addition to the usual spin-2 graviton of GR, thes rder, i.e. it assumes¥ 0 and neglects the higher-order

. I~ ; - .08~ ~P terms. Because gravity behaves very much as
theories present an additional spin-0 graviton polarizatiory, ~ . © i . .
i.e. gravity is encoded not only by the metric, but also by é)redlcted by GR in the Solar System, the effective coupling

gravitational scalar field. Possible candidates for this scalQI FJBD theory is then co_nstraln_ed to very small_vglugs by
field include, for instance, the dilaton field of string theory.SOIar'SyS,tem tests, and in particular the Cassini mission
This scalar field couples nonminimally to the metric, but 10l Wh'Ch requires o > 40,000 Und_er such a t'g.ht .
does not couple directly to matter (because if it did, it woul§*Perimental constraint, FIBD theory is essentially indis-
introduce a fifth force in the interactions of matter, which idinguishable from GR as far as astrophysical tests are
not observed experimentally). Nevertheless, because th@ncerned (except perhaps with space-based gravitational-
scalar couples nonminimally to the metric, which in turn igvave detectors such as eLI$-14]). _

coupled to matter through gravity, an effective coupling 'tiS important to stress that solar-iystem experiments are
appears between the scalar field and matter. Being mediatgitfracterized by velocities 2 x 10 “c, and weak gravi-

by gravity, however, this coupling is generally weak andational fields yew=c* 10 °. Thus they do not constrain
only important in suitable astrophysical contexts. Thighe strong-field, very relativistic regime where the most
effective coupling depends, for generic scalar-tensor th€UrPrising predictions of GR, such as black holes (BHs) and
ories, on the local value of the scalar field, i.e. the effectiv@eutron stars (NSs), arise. In this regime, the FJBD
(dimensionless) coupling constand~P can be Taylor assumption of retaining only the first term in the expansion

expanded around the Minkowski vacuurg ¥ const of (1) is not necessarily justified from an effective field theory
the (dimensionless) scalar fietdas[7-9] point of view. Furthermore, the second term in that

expansion has been shown to produce dramatic effects
1 _ in strong-field regimes such as the interior structure of NSs
oP P 3p 2 , o~ oPPOS- B (1) [8,9] (see also Ref$§15,16]for the rotating NS case). More
specifically, if = is sufficiently negative and for NS
where , and ~are dimensionless constants. compactnesses above a critical value, the trivial vacuum
The simplest theory in the class of scalar-tensor theorieg the scalar field becomes unstable. It then becomes
was proposed in the 1950s by Figtk and Jordaf5], and  energetically favorable for the scalar field to settle on a
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nontrivial configuration inside the NSspontaneous sca- genuine phase transition of the full, initially nonscalarized
larizatior?). This new nontrivial vacuum not only affects system, i.e. adynamical scalarizationDS). While the

the relation between the NS mass and its radius, but also timterpretation of IS is quite straightforward, the physical
orbital evolution of binary NS systems. Such behavioprocess at play in DS is less obvious. Expanding on our
arises because scalarization enhances the gravitatiod@cussionin Ref26], we show thatthe DS phase transition
attraction between the bind&ycomponents, and triggers generalizes thepontaneous scalarizationf Refs. [8,9].

the emission of dipolar scalar radiatiph17,18] These Indeed, spontaneous scalarization takes place when an
effects allowed constraints to be placed on the constantisolated NS has a compactn&®§=8Rc?b (whereM and
using binary-pulsar data[9,19-21], which require R are the stellar mass and radius) above a certain critical
~> 45. It has also been suggested that negative valugsreshold, while we argue that DS occurs when a suitably
of ~might produce significant effects in supernova explodefined effective compactness of the binary rises above a
sions and in inflationary scenarif®?], as well as affect certain critical value in the last stages of the post-Newtonian
the gravitational-wave spectrum of vibrating scalarizedPN) inspiral*® Note that DS thus allows for a richer
NSs[23,24] phenomenology enabling scalarization of stars unable to

All these results, however, probe the strong-fieitllly  scalarize in isolation, stronger scalarization of compact
relativistic regime, because they involve either statichinaries as their orbit shrinks, and eventransient
stationary configurations or velocities much smaller thadynamical scalarizatiorin (close) eccentric encounters.
the speed of light (e.g. binary pulsars have velocitiegll these phenomena produce strong deviations away from
v 10 3c). The first investigations of the strong-field the GR behavior, which may be observable with electro-
relativistic regime of scalar-tensor theories were performaglagnetic or gravitational probes.
by Ref.[25] for a close binary system of BHs, and by To obtain the generic behavior of NS binaries prior to
ourselves in Ref[26] for close binary NS systems. Not merger in an efficient, semianalytical form, we present a
surprisingly, the behavior of binary BH systems turns out tdormalism that describes the orbital evolution within an
be essentially indistinguishable from @&F], as expected improved version of the PN dynamics for scalar-tensor
from results obtained in isolated Bf25,28]and for binary  theories. More specifically, we modify the PN equations of
BH systems in the weak-field, mildly relativistic regime motion for binary system@9] to account for the changes
[7,18,29] On the other hand, the strong effects andn the starsscalar charges produced by IS and DS. Also, we
deviations discussed in R¢26] were unanticipated from unify the treatment of these two phenomena, and describe
the intuition drawn from weak-field, mildly relativistic their effects by a system of nonlinear algebraic equations,
analysis. which we solve at each step of the orbital evolution to

In particular, we showei@6] that the second term in the compute the scalar charges. For simplicity, we restrict here
expansion(1) can have strong consequences in the late polytropic equations of state, but our method can be
stages of the evolution of NS binaries, even in cases wheggraightforwardly modified to consider more general equa-
no effects are observed in the weak-field, mildly relativistidzions of state. This approach, besides highlighting the
regime. (See also Rg80] for later exploration and further physical origin of the deviations from GR, provides an
evidence of this result). In fact, we observe large deviationsfficient and inexpensive way to compute gravitational-
away from the GR behavior at separations much smallevave templates for Advanced LIGO/VIRGO. These can be
than those probed by binary pulsars, providing signals thatsed to devise strategies to detect these effects once signals
are at least in principle observable with existing gravitafrom NS binaries are detected, a problem which will be the
tional-wave detectors such as Advanced LIGO/VIRGOsubject of future work.

These facilities are expected to detect (from several to Throughout this work we set%z 1, but reinstate powers
hundreds) NS binaries per year of operafgti, and are  Of ¢ to keep track of the various PN orders when needed.
sensitive from tens of Hz up to a kHz range. While the

plunge and merger of binary NSs is outside Advanced ||. MOTION IN SCALAR-TENSOR THEORIES
LIGO/VIRGO's sensitivity band in GR, our result26]
show that negative values otan trigger earlier plunges in p
tscalar—tenso_r theories, thus moving the_ pl_unge and mergergy, 4y g R dbp bSu4 : : (2

o frequencies of about 56600 Hz, within the detec-

tors reach.

In this paper, we provide a deeper insight into the physicavhere %28 G, R andg are respectively the Ricci scalar
origin of these earlier plunges. We show that according to tred the determinant of the metric,is the gravitational
binary systers parameters, they can either be triggeregcalar field, 8 pis a function that characterizes the theory,
by the induced scalarizatior(IS) of one (initially non-
scalarized) star under the influence of ‘tagterndl scalar IA closely related effect has been recently presented in the
field produced by the other (initially scalarized) star, or by @ontext of BH systems interacting with matfg2].

Letgs consider a scalar-tensor theory with action
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and we denote the degrees of freedom of matter collectively L of )
by . As can be seen, the matter fields are not coupled T % 795 ' (8)
directly to to avoid producing a scaldfifth force; as
discussed earlier. We stress that B).is not the most Wwhile the relation to théphysical matter stress-energy
generic action for scalar-tensor theories with second-ordégnsor (i.e. the one in the Jordan frame) is given by
field equations (because for instance the scalar field mae %T 3, TE T 1
have a potential, or there may be Galileon-type terms in the From Eq.(5), it is clear that a coupling appears between
action [33,34), but is general enough to highlight the the Einstein-frame scalar fieldor the Jordan-frame scalar
physics of spontaneous scalarization, DS and IS. field ) and matter. First, this implies that in vacuum (i.e. in
The action(2) is often referred to as tlidordan-framie  the absence of matter) the scalar field is not excited, hence
action. An alternative form for the action (usually calledthe vacuum solutions of GR (e.g. Minkowski, BHs, etc.) are
“Einstein-frame actid can be obtained by introducing a still solutions, with %2 %2 const. Second, because in the
new metricgf , conformally related to the Jordan-frameoriginal Jordan-frame actiof2) the scalar field does not
metricbygfF ¥ g ,and anew scalar fielddefined (upto ~ couple to matter directly, it is clear that this coupling simply

integration constants) lilog =d B %2 =@p 2 § p.  appears because the scalar field couples nonminimally to
In terms of these variables the act{@hbecomes the Jordan-frame metric, which is in turn coupled to matter

via gravity (i.e. by the Einstein equations). In fact, &].
RE 1 F can alsp be derive(_d from thg Jordan-frame a_ction,. by
5 2% b Su 3 b combining the equation of motion for the scalar field with
the trace of the Einstein equations. Introducing a dimen-
(3)  sionless scalar field-¥s 3 GB , we can characterize
this gravity-mediated effective coupling by the dimension-
Note thatthe matter fieldsstill couple to the physical metric |less coupling constant

Z p
SY, d% of

g YagF = ,i.e.weaklygravitating bodies follow geodesics
of the physical metric anabtthe ones of the Einstein-frame _ ldlog Y5 1 . 9)
metric. The advantage of using Einstein-frame variables is 2 d~ v 3p2 o 5}

that in vacuum the metrigt and the scalar field couple
minimally, as can be seen fromthe acti®nThismeansthat Comparing this equation to E(L) we obtain

at the linear level (on a flat background) the Einstein-frame

metric and the scalar field decouple, i.e. the Einstein-frame Vaexpz 2p O8 o ; (10)
metric represents the spin-2 graviton polarizations, while the ]

scalar field represents the spin-0 polarization. The spin-2 a¥{1ere have defined 24 G~ and

spin-0 polarizations are instead mixed in the Jordan-frame

metric. o Ya 286 B? (11)
Variation of the action(3) yields the following field Bp 2 B
equations:
is to be interpreted as the asymptotic value of the scalar
GE v T pTEBR (4) field at spatial infinity. In what follows, and as done e.qg.
also in Ref[26], we will therefore neglect the higher-order
1dlo terms and consider scalar-tensor theories with
E v, = g Te: (5)
4 E»
2 Viexpd 2P (12)
e 1_ dlog [correspondingto & b¥% 3=2 =34 log H, with the
Te s STe—(% (6)  additional requirement that the scalar fieldpproach

far from the system under consideration (i.e. the role of the

where indices are raised/lowered with the EinsteinEJBD Parameter o is played by the value o of the

frame metric. AlsoTe Te¢F, and the stress-energy Einstein-frame scalar field near spatial infinity). Because

tensors for matter and the scalar field in the Einstein fram%ssentle}lly of qull)' and since solar-system tests bound
o> 40,000,  is constrained to be very close to zero,

are defined as while % =4 Gb 4.5 because of binary-pulsar mea-

2 s, surement$19-21].
Te 1/4{9_E_E (7 In Ref. [26] we performed an exact integration (up to
g numerical errors) of the field equatio@—6) for close
binary NS systems. In this paper, we seek instead an
and approximate and further elucidating physical description of
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such systems, hence it is natural to resort to PN theory, i.As we will see, in the last stages of the evolution of NS

to expand the field equations in ordersvet, wherev is  binaries or close transient encounters, DS and IS produce

the binarys velocity. PN theory describes extended bodiescalar charges that aré for NSs, evenin the limit, 0

(i.e. NSsin our case) with a point-particle model,andinGRi.e. , p ), and that corresponds to diverging

the masses of these particles are constant, as one woskhsitivities.

intuitively expect. However, the description of analog Modeling therefore a binary system with point particles

systems in scalar-tensor theories is more complicated. having masses that depend on the local value of the scalar
As can be seen from the acti¢®), the scalar field field, and performing a PN expansion of the field equations

multiplies the Ricci scalar, which in GR is only multiplied in the ratio between the binasyelocity and the speed of

by 1=616 Gk Therefore, it is not surprising that in scalar-light, one finds, after laborious calculations, the PN

tensor theories the measured value of the gravitationafuations of motion for each bin&y component

constant depends on the local value of the scalar figld [7,18,29] In particular, in terms of the bindsyseparation

i.e. the local gravitational consta® measured by a x ¥%x; x,, the equations of motions through 2.5PN

Cavendish-type experiment is related to the Gaa@pear- order take the schematic fori@9]

ing in the action by[3-6]

dx GetM GetM A A
ARV eff eff PN PN
Gy 1/4i4IO 2 9. (13) dt? e np r? c? b c*
0 oP3p 2 o

This in turns implies that the binding energy of a body c2 c? 5 3

being proportional to the gravitational constant depends on A A _ B B

the value of , which in general changes with position. As a @p @ i @p @ v

c c c c

result, when representing strongly gravitating bodies (such
as NSs and BHSs), for which the binding energy provides a (17)
significant portion of the gravitational mass, the masses of
the point particlesng, where the index characterizes the whereM Y2 m; p m, is the total mass of the systemya
particle) cannot be assumed to be constant in scalar-tengai; m,=M? is the symmetric mass ratio¥s jxj, n ¥4 x=r,
theories. More precisely, the dependence of the massesw®,v, v, is the relative velocity of the system, and
the scalar field is parametrized by tisensitivities, which ¢ 1/, dr=dt. The first term on the right-hand side is the
are defined by17] Newtonian acceleration, but the effective gravitational
constantGg¢ that appears in it is related to the local

5 1/4mD : (14)  gravitational constar®y by
n
2 2s,pPd 2s,P
where the derivative is taken while keeping the (Jordan-  Ggt % Gy ig > 0 b a 485 3 %2
0 0

frame) baryonic mass,,, fixed. For FIBD, the sensitiv-

ities scale roughly as the binding energy per unit mass; 1

thus, they are negligible for stars like the San (0 ) 76y 1p 1 2p O ] (18)

and white dwarfsg 10 4). However, they are significant

for NSs 6 0.2) and for BHs ¢ ¥4 1=2) [17]. i.e. the scalar charges tend to enhance the gravitational pull
In the context of the scalar-tensor theories that weetween the two stars. The second group of terms is the

consider in this work, it is convenient to introduce also(conservative) 1PN and 2PN corrections to the Newtonian

the scalar charges [7], which are defined as dynamics, and the third group of terms are the dissipative
corrections that account of the backreaction of gravita-
1, InmF3 P, (15) tional-wave emission. Note that dissipative effects appear

| )

~ already at 1.5PN order in the equation of motion, while
p they only appear at 2.5PN order in GR. This is because the

wheremYam;= 8 bis the mass in the Einstein frame, sensitivities actually source the emission of dipolar scalar

and where the derivative is again taken while keeping thgdiation with energy flux

Jordan-frame baryonic massg,, fixed. (Note also that our

i differs from the scalar charge used in R§Ts9] by a : Gy  Gegmym, 2 1
minus sign.) From this definition, one can show that the Edipole 1/4@ Tz 3, FpO S ; (19)
scalar charges are related to the sensitivitieR8)B5]

which is potentially larger than the usual quadrupolar

[ Va 923'71 (16) emission of GR. The explicit expressions for the coef-
3p 2 ficientsApn, Bpns Azpns Bopny A sy Bispn, Azspy and
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B,spny Can be found in Ref[29], and depend on the approaches such as those of R¢¥$18-21,29] which
sensitivities of the two stars. It should be noted, howevegssume constant or mildly varying scalar charges/sensitiv-
that the expressions presented in [29] also depend on ities and thus do not account for the effects of DS and IS at
the first and second derivatives of the sensitivities and of small binary separations.

with respect to the scalar field evaluated at the asymptotic

value o. Those terms appear because 4] expresses ||| DYNAMICAL SCALARIZATION IN BINARY

the scalar charges evaluated at the local value of the scalar NEUTRON STAR SYSTEMS

field as a Taylor expansion around the scalar figjcat ) ) ,
spatial infinity. In fact, it is possible to write the Lagrangian AS already mentioned, in scalar-tensor theories where

regulating the motion of binary systems in scalar-tensdf Sufficiently negative, a nontrivial vacuum for the scalar
theories simply in terms of the scalar chargdsp field develops inside sufficiently compact isolated NSs,

evaluated at the local scalar fig@5]. Because, as we i.e. the scalar field undergoes'ghase transitidnthat is
will explain in the next section, the formalism that weknown as spontaneous scalariza{igj9]. This phenome-

present in this paper provides directly the scalar charg@9n can be studied in detail by solving the generalized
3 B we need to use that information in the equationd °/Mman-Oppenheimer-Volkoff (TOV) equations governing
of motion expressed in terms o balone, i.e. without the structure of isolated NSs in these theof&s]. In

performing the Taylor expansion of REZ9]. Because, as Particular, as proven in Refiz] (Appendix A), the scalar

far as we are aware, the equations of motion in terms &"arge of a NS [formally defined by EGL5) can be

& bhave not been derived explicitly through 2.5PN orderextracted from the behavior of the scalar field near spatial

we reconstruct them by setting to zero all the term&fiNity, i.e.
depending on derivatives of the sensitivities and ah

the expressions for the coefficiedtsy, Bpn, Apn: Bopn, Ya ob —2p O 12 : (20)
A1 spn, Bisen, Azspy andBaspy presented by Ref29].” r '
Because the motion of a binary system depends on the . . .
sensitivities/scalar charges, which are nonzero for stronghfFind the following expressidii]
gravitating objects (i.e. ones for which the binding energy p 1
is not negligible with respect to the gravitational mass) and Va 4 Gi—; (21)

: ; : ) e’
are in general different for different bodies, the strong- E

equivalence principle is violated in scalar-tensor theoriegyhere | £ is a length scale defined by the asymptotic
We recall that the equivalence principle states the UniVeéfxpansiorgE Yy 1p 2l g=rp (i.e.1 ¢ is proportional
sality of free fall for strongly gravitating bodies (in its to the mass of the star in the Einstein frame). One can
strong version) or for weakly gravitating ones (in its weaknherefore obtain the scalar chargas a function of, the
Version). Clearly, free fall is not universal in Scalar-ten50§symptotic Va|ueo of the scalar field, and the compactness
theories due to the presence of the sensitivities/scalary, | =R of the star, where the length schlis defined by
charges in the equations of motion (this effect is knowRhe asymptotic expansiog, ¥4 1p 2l =rp of the
as the “Nordtvedt effect [17,36,37] and takes place jordan-frame metric near spatial infinity. Note that the
generically in the presence of gravitational degrees Qjravitational massn of the star [which is related tb
freedom coupled nonminimally to the metric, see e.gthroughl ¥4 Gyt s=5 op 2Pm [18]] and its radiuR
Refs.[38-40]). However, the weak version of the equiv- arenotindependent, once an equation of state for the NS
alence principle is satisfied because the sensitivities go faaterial has been chosen. Here, for concreteness, we adopt
zero for weakly gravitating bodies. the same polytropic equation of state as in [R2#], i.e.

In the rest of this paper, we will devise a formalismye choosek ¥2123G3M?2 =c® and %42, which yields a
to calculate the scalar charges/sensitivities for a closfaximum massn 1.8M both in GR and in the scalar-
binary NS system, simply by solving a system of algebraigensor theories we consider, and which provides a reason-
equations, and use them in the PN equations of m{iion  able approximation for the equation of state of cold NSs.
As we will show, our framework allows us to take into (Nevertheless we stress that the procedure outlined in our
account the changes in the scalar charges during thgodelis general, and can be easily extended to any relevant
systers evolution due to the DS and IS, which wereequation of state.)
discovered with fully relativistic simulations in RE26]. Results for the scalar charge are shown in Eign the
Therefore, our formalism generalizes purely PNop panel, as an illustration, we consider a theory with

~¥, 4.5and various values ofy, as a function of the NS

. compactness. As can be seen, fpi/a 0 a sharp disconti-
e stress, however, that the results and conclusions presen dmp o7 P

ted. : o
in this paper remain qualitatively unchanged if the terms depenﬁu'ty_ (corresponding to the spontan_e_ous scalarization
ing on derivatives of the sensitivities and ofare kept in the Mentioned above) develops at a critical compactness

expressions of Ref29]. C 0.21 This sharp transition gets increasingly blurred
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as gincreases, in agreement with the results of R&f3].

Note that the maximumj allowed by solar-system tests is 0.8 . cY%= 10° |
given by Eq(11)with % 40;000 and thatfor- 4.5 ’ 2 a4
the bound is even tight¢t9-21]. However, as we pointed | oG =10
out in Ref.[26], the effective o relevant for stars ina & %4 |--  G"%=10° T
binary system can be much larger then the solar-8 | 12_
system limit. S 015 [ o G = .
We also stress that fory %20, there are actually two g I
families of solutions. The first corresponds to nonscalarized® 0.1 N
stars whose structure is the same as in GR and which have
% 0. Solutions in this family exist for arbitrary compact- 0.05(- .
nesse£, but become unstable f&r> C , where a second —
branch of solutions appears, corresponding to the scalarized = gl bm-l--»------"x """" = ‘ ‘~0L'3"----

stars with 0 shown in Fig.1 (in the top panel). These

other solutions are stable (at least until they become too
compact and collapse to BHs, which takes place at [ ‘ ‘
compactnessés 0.25). For 5 0, instead, the GR-like

-1
%, 0 solutions still exist for arbitrary compactnessks 107
but they are always unstable, while a second branch of

scalarized solutions shown in Fig(in the top panel) exists &

for arbitrary compactnesses (unlike in thg¥a0 case, & 102t

where they are only present f6r> C ). These solutions g :
are again stable at least for 0.25 The bottom panel of g
(%]

Fig. 1 shows the scalar charge as a functiorraind the .
stellar compactness, for a fixed value g6 ¥4 10 5. As 107
can be seen, spontaneous scalarization is important only for
45, a value almost ruled out by binary-pulsar LN
observations. [Note that the precise lowest allowed value 4k ‘ ! ‘ -
for ~depends on the equation of state assumed to describe 0.1 0.2 0.3
NSs (see e.g. RgB0]). In this work, we will take™ 4.5 c

for concreteness, in order to describe general properties

blr:lry systems dwlthlﬁ scalar—tensor theor[es.] o6 a function of compactness, for different values giwith fixed
s mentioned in the previous section, in Reb] we ~Y 45 (top) and for different values of™ with fixed

uncovered, through numerical evidence and analytical argu- G121, 10 5" (bottom). As the top panel indicates, sponta-
ments, that a phase transition akin to spontaneous scalarigaous scalarization occurs @t 0.21 for ~ 4.5,

tion takes place in dynamical contexts. In particular, we
showed that in binary NS systems (which are brought to . . -
sufficiently small separations by the loss of energy an rows with g, even for stars with negligible scalar charge

angular momentum through gravitational waves), a fee or o ; ObAtr) |er|1;portant ?rt])servatllon IS fhﬁt tr:j's riroce.?ls'ls
back mechanism appears that can induce scalarizationJi"\Perturbativebecause the newly scalarized star wiil n

one or both stars. We refer to this process as dynamicﬁrn induce a growth in the s_calar chargg ofits companion.
scalarization, and subsequent numerical confirmation of i other words, a dynamical interplay arises because either

existence has been recently brought forward by [36]. §ar (say star 1) is not only sensitive to the asymptotic value

As we discuss next. DS is similar to spontaneougf the scalar field far away from the binary, but also to the

scalarization, but is regulated by the effective value o(‘;ontrlbutlon due to its companion (say star 2), hence

the background scalar field felt by each star in the binary, as [

well by the effective compactness of the system. The apy, ! 0 Bbpb o 1 (22)
former case (i.e. DS regulated by the effective value of B 0 r re’

the scalar field) is most relevant in binaries consisting of a

scalarized star and a nonscalarized one. In this case, Were gp(i %1, 2) is thebackgrounti value of the scalar
amounts to a nonlinear version of [&,41] where the field in which stari is immersed, and we recall that the
nonscalarized star is immersed in an increasingly largepefficient "fpa gpb[defined by the asymptotic expansion
scalar-field background produced by the scalarized stgR0)] is proportional to the scalar charge [cf. E2{l)], and
Therefore, the unscalarized star acquires a scalar chargethins a function of the scalar-field background in which the
agreement with the top panel of Figwhich shows that  star is immersed (cf. Fid., top panel). Clearly, a similar

f . .
IQIG. 1 (color online). The scalar charge for an isolated NS, as
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equation will describe the interaction of star 2 with the the scalar field is set to the valuegD of the
background scalar field produced by star 1 background scalar field. (Note thatis fixed.) In
practice, to speed up this step, we produce data for
. flﬂpa gl"b 1 1 as a function of the baryonic mass and asymptotic
B /4 ob ———p O e (23) scalar field value, and fit them in the neighborhood

of the target values® and 3°

The system(22) and (23) then describes the feedback (3) Next, we update the background scalar field value
mechanism alluded to abovén practice, we model the via Egs.(22) and(23). o

functions i"’a 8% (i v41, 2) with a fit to data for ; (4) Steps 13 are iterated until the solutl%n is found, e.g.
coming from solutions to the generalized-TOV equations ~ until the relative difference _betweeﬁ at consecu-

[8] describing an isolated NS, for various values of the _live steps drops below a given tolerance. _
scalar field o at spatial infinity. Equation§22) and (23) (5) The scalar charges can be obtained from the final
then become a system of (nonlinear) algebraic equations ~ Values of ; "with Eq.(21)using the TOV code (or a
which one can easily solve numerically. For concreteness, _ fit 10 its results) to computee. .
one method of solving this system is to look iteratively fora Convergence of this method requires that the ratio
fixed point. At the first iteration, this method thereforebetween the variations ofy” at iterationn p 1 andn be
yields the same results as the IS described e.g. byRgf. 1. Itis easy to show (see the Appendix for details) that
but at the following ones the feedback mechanisnihis condition is satisfied if

described above becomes important. Therefore, 1S quali- Y

tatively accounts for the scalarization of nonscalarized stars 1f flflp ?2'9

that get close to scalarized ones, but fails to describe for the T s 3 L (24)
nonperturbative feedback exerted by the newly scalarized B B

star on its companion. . . . . .
We monitor this condition as the iterations proceed and

In principle, the iteration may not converge to a fixed L ,
point, or even worse the systé#?) and(23) may not have confirm it is typically well below the bountiNote that
solve the syst@h) and(23)[again,

any real solutions. It is straightforward, however, to shovltérmnatively one can

. . ap . /
that the fixed-point method indeed converges to a solutiofith the functions ;= obtained as fits to TOV data]
Let us consider a scalar-tensor theory with givemd o, directly, with a two-dimensional Newton-Raphson method.

and two stars with (Jordan-frame) baryonic mas$@sat This method leads to the same solution as the fixed-point

separation. (Note that the Jordan-frame baryonic massed€thod. , _
are conserved, see e.g. REZ6]). Our algorithm then A situation where the feedback mechanism described by

proceeds as follows: Eqgs.(22)and(23)is particularly important is that involving
(1) At the initial iteration, we setgp YVa o if the stars two stars that have exactly zero scalar charge in isolation.

are widely separated, or to a better guess. FoThiS would be the case, for instance, for a theory with

example, if the gp have been already calculated “01/40 and for stars withC <C  (cf. Fig. 1). In the
for a nearby separation (e.g. at a previous closePerturbative picture of IS, no scalar charges should

instance of the dynamics), we may assume thosgevelop in such a situation. That would indeed correspond

.. TS .
values as the starting point of our iteration. Similarly,1© the trivial solution g% 0 (i %1, 2) for the systen(22)

starting from the second iteration, we sg'f’to the and(23). However, in Ref[26] we showed with fully
values produced by the previous iteration. relativistic numerical simulations that even in such a

(2) For each star, we use a code solving the generalizedituation the NSs scalarize, when the birsaseparation
TOV equationg8] to find the parameterlpfor an shrlnl_<s toa sufficiently small value. Wha_t he}ppens_ physi-
isolated NS with given baryonic mass™ in a cally is similar to the spontaneous scalarlz.atlon of isolated
scalar-tensor theory where the asymptotic value gitars, i.e. because of the feedback mentioned above, the

systerr§22) and(23)develops a nontrivial solution [i.e. one
— ) 5 , with Bp 0] when the effective'compactnessof the
%We stress that the uncontrolled remain@&is=r?pPappearing J)inary defined a<C ¥ GyE=r (WhereE,y is the total

in Egs.(22)and(23) can be safely neglected, as we have verifie fth tepincluding the t dri
explicitly that extracting them from our TOV isolated-star sol-SN€rgYy Of the Systerminciuding the two massesandr 1S

utions and including them in Eq&22) and(23) has a negligible  the separation) reaches a critical threshold.

effect on our results. One can easily make sense of why that mustResults for scalar charge obtained by solving E22)

be the case. In fact, tf@dl=r’pterms introduce a correction of and(23)in one such case, namely for an equal-mass binary
3%-4%on the value of at the separations of 560 km where

the plunge takes place. At smaller separation the correction willbe———

larger, but (i) the effect of the scalar charges is negligible during the “Interestingly, we find that the only separatioat which this

plunge, since that happens on the dynamical timescale, amaund is approached (but never violated) is the one marking the

(ii) even at the closest separation 2R, where the two stars onset of DS, i.e. the one corresponding to the critical effective

merge, the effect of those terms on the valueisonly 7%-8% compactnes€ defined later in this section.
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0.8F 3 agreement with the isolated-star case, the sy&&jand
0 G =10 | (23) still allows the trivial solution | % , %0, but that

Y%= 104 solution is only stable fory 40 andC < C .

0.6 P The behavior of the scalar charge as a functiof isf

- oG =10 illustrated in the bottom panel of Fi@. As can be
| | observed, the maximum value of the scalar charge is not
very sensitive td, unlike in the spontaneous scalarization
of isolated stars, where decreases gsj decreases (cf.
bottom panel of Figl). However, the critical compactness
C at which DS switches on increasesjdsdecreases.
Thus, smaller separations are required for the scalar charges
to grow. Of course, when the stars touch each other, DS
effects will be subleading relative to strong material
interactions driven by the merger process.

We stress that Fi@.is produced by solving Eq&2)and
(23). While this system is a purely algebraic one, and thus
straightforward to solve numerically, it neglects the time
delay needed for one star‘tfeel’ the change in the scalar
field background produced by the other one as it moves,
i.e. Egs.(22) and (23) assume an instantaneous feedback
between the two stars. We will show in the next section that
those equations can be coupled to the PN equations of
motion to account for the finite propagation speed of the
interaction, but the deviations from tHestantaneous
results obtained by solving the simple algebraic sys2@n
and(23)alone scale as-c. Consequently they are negligible
during the quasiadiabatic inspiral of the NS binary, when the
separation varies slowly as a function of time.

Because DS provides an efficient and robust mechanism
for scalarization-i.e. it forces generic NS binaries to
scalarize at some stage of their orbital evolution, even if
the individual stars are not compact enough to scalarize
spontaneously in isolation, and amplifies the effects of IS in
X N 2. 5 Systems in which at least one component is scalarized in

4.5 (top) and for different values ofwith fixed oG™ %210 isolation—it is expected to produce significant deviations
(bottom). Note that DS occurs for any valug gf although the  fom GR in the orbital evolution. These deviations are
critical compactness is shifted to higher values g decreases.  §riven by the ensuing enhancement of the gravitational

pull between the stars [cf. E(L8)] and the emission of

my ¥am, ¥41.5IM made of stars that do not scalarizedipolar scalar waves [cf. E19). As was shown in
spontaneously in isolation, are shown in Fgfor scalar- Ref.[26] (and later confirmed by Ref30]), these effects
tensor theories with various valuesoénd . The scalar trigger earlier plunges in NS binaries relative to GR,
charge is plotted as a function of the effective compactne¥#ich could potentially be observable with ground-based
of the binary calculated @3 Y4 GyEpn=r (WhereEpy is ~ gravitational-wave detectors.
the total binary energy at 1PN orde®]). Figure 3 illustrates this effect by plotting the scalar
The top panel, in particular, shows the caseé 4.5for  charge resulting from solution of the syst¢d)(23), for
various values of ;. As can be seen, for, ¥ 0, the scalar equal-mass NS binaries as a function of the quasicircular
charges are exactly zero at large separations, because @feital frequency computed at 2PN order by imposing
stars have insufficierftindividual’ compactnes€ Y41 =R r %r %0 in Eq. (17). The top panel considers several
to undergo spontaneous scalarization in isolation. Howevenasses for the bindg/components and assumes. 4.5
when the effective binary compactne8s/s GyEjpn=r and oG¥2 %10 5, while the lower panel considers
reaches a critical valu®@  0.75, the system does display m; ¥am, % 1.51IM , (G2 %10 ® and various values
a phase transition to nonzero charges, i.e. a DS. Thi ~. As expected from the previous figures, the onset of DS
behavior clearly mirrors closely that in Figfor a star in  (which, as we will show in the next section and as expected
isolation, and as in that case the DS transition get§om the arguments above, roughly marks the beginning of
increasingly blurred as o increases. Also, again in the plunge) moves to larger frequencieg aslecreases or

0.4+

scalar charge
o

0.2

scalar charge

FIG. 2 (color online).  Scalar charge as a function of the bisary
compactnes< ¥4 GyEp\=r, for an equal-mass system with
my ¥am, ¥, 1.51IM , for different values of o with fixed ~va
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ot _ captures (within a maximum error of 15%) the critical
081 __...---"/‘;': frequency for the polytropic equation of state with 2
T andK ¥4 123G3M? =c® that we use in this paper. Note that
7 the regime™< 4.5 is ruled out by binary-pulsar obser-
S 04k e | vations[19-21], while for => 3.5 the critical frequency
_‘E‘: ' 7 results too high to be reached before the NSs merge.
d
= / 4
§ . /. [F m=m=140M IV. ORBITAL DYNAMICS
02 - ,’/ - m=m=151M 1 As mentioned above, the solution of the algebraic system
/ - m=m=164M (22) and (23) provides a good description of the scalar
/ m =m,=174M charge as a function of orbital frequency during the
ol L J L adiabatic inspiral phase of the NS binary, but this approxi-
0 1000 2000 3000 4000 5000 mation (i) breaks down when the binary plunges and
orp [rad’s] (if) does not allow one to calculate self-consistently the

impact of the scalar charges on the orbital evolution. In
order to address both limitations, in this section we describe
how to complement the algebraic sysi@®)and(23)with

a set of ordinary differential equations describing a bisary
motion at 2.5 PN order.

The equations of motion to 2.5 PN order for scalar-tensor
theories given schematically in EG.7) have been derived
recently in Ref.[29]. These equations were derived
adopting nonspinning stars and assumed sensitivities
(and thus scalar charges) that evolve only mildly during
the systers evolution®> The first assumption is a natural
one for NSs, which typically have small spin (see[@2]),
and can be relaxed by including spin-orbit and spin-spin
interactions in the PN equations. The second assumption
however, fails to account for the effects of DS which, as
described, produces large scalar charges that vary rapidly
with frequency (and therefore time) along the evolution.

) . _ Our model accounts for this effect by dynamically adjust-
FIG. 3 (color onllne_). Scalar charge as a function pf the orblta]-lng the scalar charges along the evolution, according to the
frequency of the binary (computed at 2PN order in the quas, o o ) mechanism described in the previous section
C|rcul_ar approximation) for different equal-mass binaries Wlﬂhowever instead of solving Ed@2)and(23 di '
0G*¥v410 > and~% 4.5 (top panel) and for an equal-mass ' 9 C(. )and(23), we modify .
binarym, ¥am, ¥ 1.51M for different values of* (bottom).  (€m to account for the retardation effects due to the motion
of the binary, i.e. at each time step we solve the system

0.6 B

0.4r

scalar charge

s

O — N I e

1 L 1 L
0 1000 2000 3000 4000 5000
oplradss]

as the NS masses decrease. (We recall that in GR as well as apy, b ?Zpa f;ﬁpbb o i . @7)
in scalar-tensor theories, lower NS masses correspond to B 0P T P 2’
lower compactness&3 ¥l =R.)
The critical orbital frequency marking the onset of by dlh, 1
DS can be easily fitted as a functionmof, m, and ™. (The 78 rlTBr'E b O 2 (28)

dependence ony is very weak for values allowed by solar-
system tests.) For instance, for %24.5; 3.75 and

=M 1£.40,1.74 the simple expression Physically, this system of equations means that at each

time t, the background scalar fieldelt” by one star is
given by the scalar field exerted by the other star at an

Yadss Va A % m % m ; (25) earliertimet r, when the separation of the binary was

where °As mentioned previously, Ref29] allows the sensitivities/
scalar charges to depend on the local value of the scalar field, but
expands this dependence in a Taylor series around the asymptotic

A %/2690656p 336637 p 426214? scalar field o. This makes it impossible to account for strong
m ¥44.0512p 05123 (26) Ega}gggﬁgfljtgé sensitivities/scalar charges such as those produced
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r& rb rabPd rPk Here,asinthe previous section, we
model the functions?bé gpb(i Y4 1, 2) with fits to data for

1 coming from solutions to the generalized-TOV equa-
tions[8] describing an isolated NS, for various values of the
asymptotic scalar field, and fixed Jordan-frame baryonic
masses. (Note that the Jordan-frame baryonic masses are
conserved during the evolution, see e.g. R28]). The <,
derivative of the binarg separationis instead evaluated at
each step with the PN equations of motfar). Clearly, in
the inspiralf 1, so the systen27) and(28) reduces to
Egs.(22) and (23).

At a formal level, our model can be thought of as | ""Tteeeee_ e
supplementing the PN equations of mot{ai) with two 4| T
extra equations B B e T T

r [km]

e full nonlinear

-- 25PN with IS
2.5 PN with D$

= QCO with DS

Y

i a
d' ddrd g°

it 4—d gp—dl’ f (29)

FIG. 4 (color online). Central value of the scalar fie@f)%
fpas a function of the binary separation for the equal-mass case

. . m; ¥am, ¥%415IM  with “¥% 45 and G %10 5. The
describing the evolution of each stascalar charge. In different curves correspond to results obtained with a nonlinear

the_se equa“‘?”S’ the last term is Qetermlned by the St,ag?mulation (dotted line), a 2.5 PN evolution accounting for DS
trajectories (i.e. by the PN equations of motion), whilgsojig line), and a 2.5 PN evolution accounting only for IS

d =d g andd g=dr are determined respectively using the(dashed line). For reference, we also include results (squares)
solutions to the generalized TOV equations for isolatedbtained in the instantaneous quasicircular orbit (QCO) approxi-
stars and by Eqg27) and (28). mation to DS described in Sell..

V. RESULTS growth of the scalar field. It is also clear that our approach

In this section, we summarize the results obtained berowdes a good approximation up to close separations.

. ) . For another illustration of the behavior displayed by
evol\_/lng _the 2.5 PN equations of motion for_scalar-tenSO{he system-and the way our model successfully captures
grawt)_/ with dynamical scalar charges._Forthls purpose WF?—Fig. 5 shows the results for an unequal-mass binary
have implemented the method described in the previous
section, and integrated the evolution equations by a fourth-
order Runge-Kutta solver. This code has been validated
through exhaustive self-consistency tests as well by direct
comparison to known results in the GR limit. Additionally,
we can compare with our own recent, fully nonlinear
simulations for binary NS systems in scalar-tensor theories
[26]. For these tests, it is cleanest to compare the value of
the scalar field 2” at the center of each star. This value is_ 6x10°°]
directly related to the scalar charge. Figdralisplays —~ © ’

glp% ?:ZD for an equal-mass binary wittn; ¥Yam, ¥

15IM , in a theory with~% 4.5 and (G*2 %10 °. I ]
The black dots correspond to the values calculated with a ax102f ]
full nonlinear evolution from an initial separation of 70 km ]
[26]. Additionally, to extend the reach of this test, we have
also evolved two larger separations (80 and 100 km) and E
extracted the central value of the scalar field after one orbit 40 60 80 100 120
lie. P14 Z¥is measured after the initial data have r [km]

relaxed and a quasistationary solution is reached]. We also _ ,
include in this figure the results obtained with the 2.5 PN < 3 (color online). Central values of the scalar fieldas a

. . . unction of the binary separation for the unequal-massmage
equations of motions allowing only for IS (by not account- 64M M, Y174 with s 4.5and oGY2Y410 5. Results

ing for the DS feedback mechanism described previouslyyytained with full nonlinear simulations are represented by circles
as well as DS. As can be seen, the results obtained with Qd squares, while those obtained with 2.5 PN evolutions

are in good agreement with the full nonlinear solutionaccounting for DS are represented with solid lines. (Note that
while the ones including only IS clearly underestimate théhe vertical scale is linear, not logarithmic as in Biy.

1 .
c( )fuII nonlinear

8x107? .
[N . C(Z) full nonlinear
V2.5 PN with DS

2 2.5 PN with DS
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with massesn; % 1.64M andm, ¥ 1.74M . This sys- 1;‘ ottt
tem was studied until merger from an initial separation of N

— =-45
70 km with a fully nonlinear simulation in R¢R26]. Here, Y =42
we also show three additional larger separations, at which 0.1 —. T =0 E
the system is evolved for about one orbit in order to extracg, - \ - T-235
the central value of the scalar field after the relaxation of thes Fo ~
initial data. Note that for this binary, one of the stars is® o0.01 ! =-30
compact enough to scalarize spontaneously in isolatiorg : \
which leads to a strong DS of the other star. The agreemer?ﬁ RN ]
obtained with the model that we introduced in this paper 0_001;‘\. \\\ d
provides evidence that DS is able to correctly, and EoSe T T e E

efficiently, capture the overall behavior of the system. [T ]
With a validated model, we are then in a position to I |
explore the physical parameter space of NS binaries and %%~ "5 60 80 100 120 140 160 180
examine their phenomenology in scalar-tensor theories. separation [km]
We adopt an asymptotic value for the scalar field
oG v, 10 5 and examine several cases varying thé!G. 6 (color opline). Scalar charge of gach star in an equal-
individual masses of the binasycomponents as well a5~ Mass binary withm; ¥am, ¥21.51IM , at different separations
We recall that based on the discussion of the preViOL@qd for different valges of. As the orbital separation decreases,
sections, the results are not expected to be very sensitivelfi§ Scalar charges increase.
o (as long as one restricts attention to viable values only),
and that we consider 4.5. To characterize the wave- represented in F|97, for different values Oﬁ together
strain produced by the systems under study, we consider thgth the result expected in GR. This case shows little
projection of the gravitational wave onto thé: 2, %22 gifference from the GR behavior, for 4.2 This is
spin-weighteds ¥z 2 spherical harmonic and normalize it clearly illustrated in Fig.8, which plots the Fourier
with respect to the obsenedistance and total mass from spectrum of the gravitational mob& m ¥4 2 as measured
the system, at a distance of 50 Mpc. Only for the most extreme case
R ~Y, 45 do differences arise at high frequencies. For
hy, —hh, ihy; 2Y gl : (30) reference, the plot (as well as analog ones for the other
M cases) also includes the estimated noise power spectrum of

The strain is calculated at leading order (i.e. using thédvanced LIGO43].
standard quadrupole formula) with the trajectories obtained
by evolving the 2.5 PN equations of motion. We stress that

the dipolar scalar mode couples weakly to a gravitational- 0'2;‘ SR I 037“‘ R
wave detector far from the source (indeed, as showed in 015" - 953 75 N : b
Ref.[26], the coupling to the detector vanishes gs 0), — |~ 025 E b
and is therefore not observable directly. However, the =’ I =40 02k E N
dipole channel still carries energy and angular momentum i T 42 T g
away from the source, thus backreacting on the bisary 0.05- =45 3157 3158 3159.--°" |
trajectory and on its leading-order quadrupolar emission. 2000 ;'f';'; b
s 2000 E
A. Equal-mass binaries - % 1500k ] !
We first concentrate on equal-mass binaries. Figure 53 1000~ ; ] .
illustrates the value of the scalar charge for a binary with.© 500; 10000 ‘ E L
masses); ¥am, ¥ 1.51IM as a function of separation, for : 3157 3158 3159 I
different values of". As discussed earlier, the scalar charge | R AR il el iy BRI P
grows due to DS as the orbit shrinks. For 4 the scalar 0 500 1000 1500 2000 2500 3000
charge grows te> 0.1 near the coalescence regime, and time [ms]

reaches those values earlier-ais reduced. For instance

the orbital frequency at which ¥4 0.1 is reached is frequency for an equal-mass binary (with vam, ¥ 1.41IM )
1557radss for "% 4.5and 4l40radss for ™% 4. 49 3 function of time, for different values BfAll cases display
As another example, the (renormalized) wavestrain angksentially the same quantitative behavior, with small departures
the frequency of the gravitational wave produced by &om GR at the onset of the plunge, as can be appreciated in the
binary with equal massesn; ¥Yam, % 1.41IM are insets and in Fig8.

" FIG. 7 (color online). Normalized gravitational-wave strain and
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