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We present a framework to study generic neutron-star binaries in scalar-tensor theories of gravity. Our
formalism achieves this goal by suitably interfacing a post-Newtonian orbital evolution (described by a set
of ordinary differential equations) with a set of nonlinear algebraic equations, which provide a description
of the scalar charge of each binary’s component along the evolution in terms of isolated-star data. We
validate this semianalytical procedure by comparing its results to those of fully general-relativistic
simulations, and use it to investigate the behavior of binary systems in large portions of the parameter space
of scalar-tensor theories. This allows us to shed further light on the phenomena of“dynamical
scalarization,” which we uncovered in [E. Barausseet al., Phys. Rev. D87, 081506(R) (2013)] and
which takes place in tight binaries, even for stars that have exactly zero scalar charge in isolation. We also
employ our formalism to study representative binary systems, obtain their gravitational-wave signals and
discuss the extent to which deviations from general relativity can be detected. The insights gained by this
framework allow us to additionally show that eccentric binaries can undergo scalarization/descalarization
phenomena.
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I. INTRODUCTION

Scalar-tensor theories of gravity[1–6] are among the
oldest and most natural alternatives to general relativity
(GR). In addition to the usual spin-2 graviton of GR, these
theories present an additional spin-0 graviton polarization,
i.e. gravity is encoded not only by the metric, but also by a
gravitational scalar field. Possible candidates for this scalar
field include, for instance, the dilaton field of string theory.
This scalar field couples nonminimally to the metric, but
does not couple directly to matter (because if it did, it would
introduce a fifth force in the interactions of matter, which is
not observed experimentally). Nevertheless, because the
scalar couples nonminimally to the metric, which in turn is
coupled to matter through gravity, an effective coupling
appears between the scalar field and matter. Being mediated
by gravity, however, this coupling is generally weak and
only important in suitable astrophysical contexts. This
effective coupling depends, for generic scalar-tensor the-
ories, on the local value of the scalar field, i.e. the effective
(dimensionless) coupling constant~� ð~� Þ can be Taylor
expanded around the Minkowski vacuum~� 0 ¼ const of
the (dimensionless) scalar field~� as [7–9]

~� ð~� Þ�
1

����������������
3 þ 2� 0

p � ~� ð~� � ~� 0Þ þ Oð~� � ~� 0Þ2; (1)

where� 0 and ~� are dimensionless constants.
The simplest theory in the class of scalar-tensor theories

was proposed in the 1950s by Fierz[4] and Jordan[5], and

later rediscovered by Brans and Dicke[6], hence it is
usually called Fierz-Jordan-Brans-Dicke (FJBD) theory.
This theory truncates the effective coupling(1)at the lowest
order, i.e. it assumes~� ¼ 0 and neglects the higher-order
Oð~� � ~� 0Þ2 terms. Because gravity behaves very much as
predicted by GR in the Solar System, the effective coupling
of FJBD theory is then constrained to very small values by
solar-system tests, and in particular the Cassini mission
[10], which requires� 0 > 40; 000. Under such a tight
experimental constraint, FJBD theory is essentially indis-
tinguishable from GR as far as astrophysical tests are
concerned (except perhaps with space-based gravitational-
wave detectors such as eLISA[11–14]).

It is important to stress that solar-system experiments are
characterized by velocitiesv � 2 × 10� 4c, and weak gravi-
tational fields� Newt=c2 � 10� 6. Thus they do not constrain
the strong-field, very relativistic regime where the most
surprising predictions of GR, such as black holes (BHs) and
neutron stars (NSs), arise. In this regime, the FJBD
assumption of retaining only the first term in the expansion
(1) is not necessarily justified from an effective field theory
point of view. Furthermore, the second term in that
expansion has been shown to produce dramatic effects
in strong-field regimes such as the interior structure of NSs
[8,9] (see also Refs.[15,16]for the rotating NS case). More
specifically, if ~� is sufficiently negative and for NS
compactnesses above a critical value, the trivial vacuum
of the scalar field becomes unstable. It then becomes
energetically favorable for the scalar field to settle on a
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nontrivial configuration inside the NS (“spontaneous sca-
larization”). This new nontrivial vacuum not only affects
the relation between the NS mass and its radius, but also the
orbital evolution of binary NS systems. Such behavior
arises because scalarization enhances the gravitational
attraction between the binary’s components, and triggers
the emission of dipolar scalar radiation[7,17,18]. These
effects allowed constraints to be placed on the constant~�
using binary-pulsar data[9,19–21], which require
~� > � 4.5. It has also been suggested that negative values
of ~� might produce significant effects in supernova explo-
sions and in inflationary scenarios[22], as well as affect
the gravitational-wave spectrum of vibrating scalarized
NSs[23,24].

All these results, however, probe the strong-fieldmildly
relativistic regime, because they involve either static/
stationary configurations or velocities much smaller than
the speed of light (e.g. binary pulsars have velocities
v � 10� 3c). The first investigations of the strong-field
relativistic regime of scalar-tensor theories were performed
by Ref. [25] for a close binary system of BHs, and by
ourselves in Ref.[26] for close binary NS systems. Not
surprisingly, the behavior of binary BH systems turns out to
be essentially indistinguishable from GR[25], as expected
from results obtained in isolated BHs[27,28]and for binary
BH systems in the weak-field, mildly relativistic regime
[7,18,29]. On the other hand, the strong effects and
deviations discussed in Ref.[26] were unanticipated from
the intuition drawn from weak-field, mildly relativistic
analysis.

In particular, we showed[26] that the second term in the
expansion(1) can have strong consequences in the late
stages of the evolution of NS binaries, even in cases where
no effects are observed in the weak-field, mildly relativistic
regime. (See also Ref.[30] for later exploration and further
evidence of this result). In fact, we observe large deviations
away from the GR behavior at separations much smaller
than those probed by binary pulsars, providing signals that
are at least in principle observable with existing gravita-
tional-wave detectors such as Advanced LIGO/VIRGO.
These facilities are expected to detect (from several to
hundreds) NS binaries per year of operation[31], and are
sensitive from tens of Hz up to a kHz range. While the
plunge and merger of binary NSs is outside Advanced
LIGO/VIRGO’s sensitivity band in GR, our results[26]
show that negative values of~� can trigger earlier plunges in
scalar-tensor theories, thus moving the plunge and merger
to frequencies of about 500–600 Hz, within the detec-
tors’ reach.

In this paper, we provide a deeper insight into the physical
origin of these earlier plunges. We show that according to the
binary system’s parameters, they can either be triggered
by the induced scalarization(IS) of one (initially non-
scalarized) star under the influence of the“external” scalar
field produced by the other (initially scalarized) star, or by a

genuine phase transition of the full, initially nonscalarized
system, i.e. adynamical scalarization(DS). While the
interpretation of IS is quite straightforward, the physical
process at play in DS is less obvious. Expanding on our
discussion in Ref.[26], we show that the DS phase transition
generalizes thespontaneous scalarizationof Refs. [8,9].
Indeed, spontaneous scalarization takes place when an
isolated NS has a compactnessGM=ðRc2Þ(whereM and
R are the stellar mass and radius) above a certain critical
threshold, while we argue that DS occurs when a suitably
defined effective compactness of the binary rises above a
certain critical value in the last stages of the post-Newtonian
(PN) inspiral.1 Note that DS thus allows for a richer
phenomenology enabling scalarization of stars unable to
scalarize in isolation, stronger scalarization of compact
binaries as their orbit shrinks, and even atransient
dynamical scalarizationin (close) eccentric encounters.
All these phenomena produce strong deviations away from
the GR behavior, which may be observable with electro-
magnetic or gravitational probes.

To obtain the generic behavior of NS binaries prior to
merger in an efficient, semianalytical form, we present a
formalism that describes the orbital evolution within an
improved version of the PN dynamics for scalar-tensor
theories. More specifically, we modify the PN equations of
motion for binary systems[29] to account for the changes
in the stars’ scalar charges produced by IS and DS. Also, we
unify the treatment of these two phenomena, and describe
their effects by a system of nonlinear algebraic equations,
which we solve at each step of the orbital evolution to
compute the scalar charges. For simplicity, we restrict here
to polytropic equations of state, but our method can be
straightforwardly modified to consider more general equa-
tions of state. This approach, besides highlighting the
physical origin of the deviations from GR, provides an
efficient and inexpensive way to compute gravitational-
wave templates for Advanced LIGO/VIRGO. These can be
used to devise strategies to detect these effects once signals
from NS binaries are detected, a problem which will be the
subject of future work.

Throughout this work we setc ¼ 1, but reinstate powers
of c to keep track of the various PN orders when needed.

II. MOTION IN SCALAR-TENSOR THEORIES

Let us consider a scalar-tensor theory with action

S¼
Z

d4x
������
� g

p

2�

�
� R�

� ð� Þ
�

� � � � � �
�

þ SM½g�� ; 	 �; (2)

where� ¼ 8
 G, R andg are respectively the Ricci scalar
and the determinant of the metric,� is the gravitational
scalar field,� ð� Þis a function that characterizes the theory,

1A closely related effect has been recently presented in the
context of BH systems interacting with matter[32].
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and we denote the degrees of freedom of matter collectively
by 	 . As can be seen, the matter fields are not coupled
directly to � to avoid producing a scalar“ fifth force,” as
discussed earlier. We stress that Eq.(2) is not the most
generic action for scalar-tensor theories with second-order
field equations (because for instance the scalar field may
have a potential, or there may be Galileon-type terms in the
action [33,34]), but is general enough to highlight the
physics of spontaneous scalarization, DS and IS.

The action(2) is often referred to as the“Jordan-frame”
action. An alternative form for the action (usually called
“Einstein-frame action”) can be obtained by introducing a
new metricgE

�� , conformally related to the Jordan-frame
metric bygE

�� ¼ � g�� , and a new scalar field� defined (up to
integration constants) byðd log� =d� Þ2 ¼ 2� =½3 þ 2� ð� Þ�.
In terms of these variables the action(2) becomes

S ¼
Z

d4x
���������
� gE

p �
RE

2�
�

1
2

g��
E � � � � � �

�
þ SM

�
gE

��

� ð� Þ
; 	

�
:

(3)

Note that thematter fields	 still couple to thephysicalmetric
g�� ¼ gE

�� =� , i.e. weakly gravitating bodies follow geodesics
of the physical metric andnotthe ones of the Einstein-frame
metric. The advantage of using Einstein-frame variables is
that in vacuum the metricgE

�� and the scalar field couple
minimally, as canbeseen fromtheaction(3).Thismeans that
at the linear level (on a flat background) the Einstein-frame
metric and the scalar field decouple, i.e. the Einstein-frame
metric represents the spin-2 graviton polarizations, while the
scalar field represents the spin-0 polarization. The spin-2 and
spin-0 polarizations are instead mixed in the Jordan-frame
metric.

Variation of the action(3) yields the following field
equations:

GE
�� ¼ � ðT�

�� þ TE
�� Þ; (4)

� E� ¼
1
2

d log�
d�

TE; (5)

� E
� T��

E ¼ �
1
2

TE
d log�

d�
g��

E � � � ; (6)

where indices are raised/lowered with the Einstein-
frame metric. Also,TE � T��

E gE
�� , and the stress-energy

tensors for matter and the scalar field in the Einstein frame
are defined as

T��
E ¼

2
���������
� gE

p
� SM

� gE
��

(7)

and

T�
�� ¼ � � � � � � �

gE
��

2
g��

E � � � � � � ; (8)

while the relation to the“physical” matter stress-energy
tensor (i.e. the one in the Jordan frame) is given by
T��

E ¼ T�� � � 3 , TE
�� ¼ T�� � � 1

From Eq.(5), it is clear that a coupling appears between
the Einstein-frame scalar field� (or the Jordan-frame scalar
field � ) and matter. First, this implies that in vacuum (i.e. in
the absence of matter) the scalar field is not excited, hence
the vacuum solutions of GR (e.g. Minkowski, BHs, etc.) are
still solutions, with� ¼ � 0 ¼ const. Second, because in the
original Jordan-frame action(2) the scalar field does not
couple to matter directly, it is clear that this coupling simply
appears because the scalar field couples nonminimally to
the Jordan-frame metric, which is in turn coupled to matter
via gravity (i.e. by the Einstein equations). In fact, Eq.(5)
can also be derived from the Jordan-frame action, by
combining the equation of motion for the scalar field with
the trace of the Einstein equations. Introducing a dimen-
sionless scalar field~� ¼ ð4
 GÞ1=2� , we can characterize
this gravity-mediated effective coupling by the dimension-
less coupling constant

~� �
1
2

d log�
d~�

¼
1

���������������������
3 þ 2� ð� Þ

p : (9)

Comparing this equation to Eq.(1) we obtain

� ¼ exp½� �� 2 þ Oð� � � 0Þ3�; (10)

where have defined� ¼ 4
 G~� and

� 0 ¼ �
2ðG
 Þ1=2

� ð3 þ 2� 0Þ1=2 (11)

is to be interpreted as the asymptotic value of the scalar
field at spatial infinity. In what follows, and as done e.g.
also in Ref.[26], we will therefore neglect the higher-order
terms and consider scalar-tensor theories with

� ¼ expð� �� 2Þ (12)

[corresponding to� ð� Þ ¼� 3=2 � � =ð4� log� Þ], with the
additional requirement that the scalar field� approach� 0
far from the system under consideration (i.e. the role of the
FJBD parameter� 0 is played by the value� 0 of the
Einstein-frame scalar field near spatial infinity). Because
essentially of Eq.(11), and since solar-system tests bound
� 0 > 40; 000, � 0 is constrained to be very close to zero,
while ~� ¼ � =ð4
 GÞ� � 4.5 because of binary-pulsar mea-
surements[19–21].

In Ref. [26] we performed an exact integration (up to
numerical errors) of the field equations(4)–(6) for close
binary NS systems. In this paper, we seek instead an
approximate and further elucidating physical description of
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such systems, hence it is natural to resort to PN theory, i.e.
to expand the field equations in orders ofv=c, wherev is
the binary’s velocity. PN theory describes extended bodies
(i.e. NSs in our case) with a point-particle model, and in GR
the masses of these particles are constant, as one would
intuitively expect. However, the description of analog
systems in scalar-tensor theories is more complicated.

As can be seen from the action(2), the scalar field�
multiplies the Ricci scalar, which in GR is only multiplied
by 1=ð16
 GÞ. Therefore, it is not surprising that in scalar-
tensor theories the measured value of the gravitational
constant depends on the local value of the scalar field� ,
i.e. the local gravitational constantGN measured by a
Cavendish-type experiment is related to the bareG appear-
ing in the action by[3–6]

GN ¼
G

� ð� 0Þ
4 þ 2� 0

3 þ 2� 0
: (13)

This in turns implies that the binding energy of a body
being proportional to the gravitational constant depends on
the value of� , which in general changes with position. As a
result, when representing strongly gravitating bodies (such
as NSs and BHs), for which the binding energy provides a
significant portion of the gravitational mass, the masses of
the point particles (mi , where the indexi characterizes the
particle) cannot be assumed to be constant in scalar-tensor
theories. More precisely, the dependence of the masses on
the scalar field is parametrized by the“sensitivities,” which
are defined by[17]

si ¼
� ln mi ð� Þ

� ln �
; (14)

where the derivative is taken while keeping the (Jordan-
frame) baryonic massmbar fixed. For FJBD, the sensitiv-
ities scale roughly as the binding energy per unit mass;
thus, they are negligible for stars like the Sun (s � 10� 6)
and white dwarfs (s � 10� 4). However, they are significant
for NSs (s � 0.2) and for BHs (s ¼ 1=2) [17].

In the context of the scalar-tensor theories that we
consider in this work, it is convenient to introduce also
the scalar charges� i [7], which are defined as

� i ¼ �
� ln mE

i ð� Þ
� ~�

; (15)

wheremE
i ¼ mi =

����������
� ð� Þ

p
is the mass in the Einstein frame,

and where the derivative is again taken while keeping the
Jordan-frame baryonic massmbar fixed. (Note also that our
� i differs from the scalar charge used in Refs.[7–9] by a
minus sign.) From this definition, one can show that the
scalar charges are related to the sensitivities by[29,35]

� i ¼ �
2si � 1
����������������
3 þ 2� 0

p : (16)

As we will see, in the last stages of the evolution of NS
binaries or close transient encounters, DS and IS produce
scalar charges that are� 1 for NSs, even in the limit� 0 � 0
(i.e. � 0 � þ � ), and that corresponds to diverging
sensitivities.

Modeling therefore a binary system with point particles
having masses that depend on the local value of the scalar
field, and performing a PN expansion of the field equations
in the ratio between the binary’s velocity and the speed of
light, one finds, after laborious calculations, the PN
equations of motion for each binary’s component
[7,18,29]. In particular, in terms of the binary’s separation
x ¼ x1 � x2, the equations of motions through 2.5PN
order take the schematic form[29]

d2x
dt2

¼ �
GeffM

r2 n þ
GeffM

r2

��
A PN

c2 þ
A 2PN

c4

�
n

þ
�

BPN

c2 þ
B2PN

c4

�
r
:
v
�

þ
8
5

�
ðGeffMÞ2

r3

×
��

A 1.5PN

c3 þ
A 2.5PN

c5

�
r
:
n�

�
B1.5PN

c3 þ
B2.5PN

c5

�
v
�
;

(17)

whereM ¼ m1 þ m2 is the total mass of the system,� ¼
ðm1m2Þ=M2 is the symmetric mass ratio,r ¼ jxj, n ¼ x=r,
v ¼ v1 � v2 is the relative velocity of the system, and
r
:

¼ dr=dt. The first term on the right-hand side is the
Newtonian acceleration, but the effective gravitational
constantGeff that appears in it is related to the local
gravitational constantGN by

Geff ¼ GN

�
3 þ 2� 0

4 þ 2� 0
þ

ð1 � 2s1Þð1 � 2s2Þ
4 þ 2� 0

�

¼ GN

�
1 þ � 1� 2 þ O

�
1

� 0

��
; (18)

i.e. the scalar charges tend to enhance the gravitational pull
between the two stars. The second group of terms is the
(conservative) 1PN and 2PN corrections to the Newtonian
dynamics, and the third group of terms are the dissipative
corrections that account of the backreaction of gravita-
tional-wave emission. Note that dissipative effects appear
already at 1.5PN order in the equation of motion, while
they only appear at 2.5PN order in GR. This is because the
sensitivities actually source the emission of dipolar scalar
radiation with energy flux

E
:

dipole ¼
GN

3c3

�
Geffm1m2

r2

�
2
ð� 1 � � 2Þ2 þ O

�
1

� 0

�
; (19)

which is potentially larger than the usual quadrupolar
emission of GR. The explicit expressions for the coef-
ficientsA PN, BPN, A 2PN, B2PN, A 1.5PN, B1.5PN, A 2.5PN and
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B2.5PN can be found in Ref.[29], and depend on the
sensitivities of the two stars. It should be noted, however,
that the expressions presented in Ref.[29] also depend on
the first and second derivatives of the sensitivities and of�
with respect to the scalar field evaluated at the asymptotic
value� 0. Those terms appear because Ref.[29] expresses
the scalar charges evaluated at the local value of the scalar
field as a Taylor expansion around the scalar field� 0 at
spatial infinity. In fact, it is possible to write the Lagrangian
regulating the motion of binary systems in scalar-tensor
theories simply in terms of the scalar charges� ð� Þ
evaluated at the local scalar field[35]. Because, as we
will explain in the next section, the formalism that we
present in this paper provides directly the scalar charges
� ð� Þ, we need to use that information in the equations
of motion expressed in terms of� ð� Þalone, i.e. without
performing the Taylor expansion of Ref.[29]. Because, as
far as we are aware, the equations of motion in terms of
� ð� Þhave not been derived explicitly through 2.5PN order,
we reconstruct them by setting to zero all the terms
depending on derivatives of the sensitivities and of� in
the expressions for the coefficientsA PN, BPN, A 2PN, B2PN,
A 1.5PN, B1.5PN, A 2.5PN andB2.5PN presented by Ref.[29].2

Because the motion of a binary system depends on the
sensitivities/scalar charges, which are nonzero for strongly
gravitating objects (i.e. ones for which the binding energy
is not negligible with respect to the gravitational mass) and
are in general different for different bodies, the strong-
equivalence principle is violated in scalar-tensor theories.
We recall that the equivalence principle states the univer-
sality of free fall for strongly gravitating bodies (in its
strong version) or for weakly gravitating ones (in its weak
version). Clearly, free fall is not universal in scalar-tensor
theories due to the presence of the sensitivities/scalar
charges in the equations of motion (this effect is known
as the “Nordtvedt effect” [17,36,37], and takes place
generically in the presence of gravitational degrees of
freedom coupled nonminimally to the metric, see e.g.
Refs. [38–40]). However, the weak version of the equiv-
alence principle is satisfied because the sensitivities go to
zero for weakly gravitating bodies.

In the rest of this paper, we will devise a formalism
to calculate the scalar charges/sensitivities for a close
binary NS system, simply by solving a system of algebraic
equations, and use them in the PN equations of motion(17).
As we will show, our framework allows us to take into
account the changes in the scalar charges during the
system’s evolution due to the DS and IS, which were
discovered with fully relativistic simulations in Ref.[26].
Therefore, our formalism generalizes purely PN

approaches such as those of Refs.[7,18–21,29], which
assume constant or mildly varying scalar charges/sensitiv-
ities and thus do not account for the effects of DS and IS at
small binary separations.

III. DYNAMICAL SCALARIZATION IN BINARY
NEUTRON STAR SYSTEMS

As already mentioned, in scalar-tensor theories where~�
is sufficiently negative, a nontrivial vacuum for the scalar
field develops inside sufficiently compact isolated NSs,
i.e. the scalar field undergoes a“phase transition” that is
known as spontaneous scalarization[8,9]. This phenome-
non can be studied in detail by solving the generalized
Tolman-Oppenheimer-Volkoff (TOV) equations governing
the structure of isolated NSs in these theories[8,9]. In
particular, as proven in Ref.[7] (Appendix A), the scalar
charge of a NS [formally defined by Eq.(15)] can be
extracted from the behavior of the scalar field near spatial
infinity, i.e.

� ¼ � 0 þ
� 1

r
þ O

�
1
r2

�
; (20)

using the following expression[7]

� ¼
���������
4
 G

p � 1

l E
; (21)

where l E is a length scale defined by the asymptotic
expansiongE

tt ¼ � 1 þ 2l E=r þ � � � (i.e. l E is proportional
to the mass of the star in the Einstein frame). One can
therefore obtain the scalar charge� as a function of~� , the
asymptotic value� 0 of the scalar field, and the compactness
C ¼ l =Rof the star, where the length scalel is defined by
the asymptotic expansiongtt ¼ � 1 þ 2l =r þ � � � of the
Jordan-frame metric near spatial infinity. Note that the
gravitational massm of the star [which is related tol
throughl ¼ GN½1 � s=ð� 0 þ 2Þ�m [18]] and its radiusR
arenot independent, once an equation of state for the NS
material has been chosen. Here, for concreteness, we adopt
the same polytropic equation of state as in Ref.[26], i.e.
we chooseK ¼ 123G3M2

� =c6 and � ¼ 2, which yields a
maximum massm � 1.8M� both in GR and in the scalar-
tensor theories we consider, and which provides a reason-
able approximation for the equation of state of cold NSs.
(Nevertheless we stress that the procedure outlined in our
model is general, and can be easily extended to any relevant
equation of state.)

Results for the scalar charge are shown in Fig.1. In the
top panel, as an illustration, we consider a theory with
~� ¼ � 4.5 and various values of� 0, as a function of the NS
compactness. As can be seen, for� 0 ¼ 0 a sharp disconti-
nuity (corresponding to the spontaneous scalarization
mentioned above) develops at a critical compactness
C� � 0.21. This sharp transition gets increasingly blurred

2We stress, however, that the results and conclusions presented
in this paper remain qualitatively unchanged if the terms depend-
ing on derivatives of the sensitivities and of� are kept in the
expressions of Ref.[29].
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as� 0 increases, in agreement with the results of Refs.[8,9].
Note that the maximum� 0 allowed by solar-system tests is
given by Eq.(11)with � 0 ¼ 40; 000, and that for~� � � 4.5
the bound is even tighter[19–21]. However, as we pointed
out in Ref. [26], the effective� 0 relevant for stars in a
binary system can be much larger then the solar-
system limit.

We also stress that for� 0 ¼ 0, there are actually two
families of solutions. The first corresponds to nonscalarized
stars whose structure is the same as in GR and which have
� ¼ 0. Solutions in this family exist for arbitrary compact-
nessesC, but become unstable forC > C� , where a second
branch of solutions appears, corresponding to the scalarized
stars with� � 0 shown in Fig.1 (in the top panel). These
other solutions are stable (at least until they become too
compact and collapse to BHs, which takes place at
compactnessesC � 0.25). For� 0 � 0, instead, the GR-like
� ¼ 0 solutions still exist for arbitrary compactnessesC,
but they are always unstable, while a second branch of
scalarized solutions shown in Fig.1 (in the top panel) exists
for arbitrary compactnesses (unlike in the� 0 ¼ 0 case,
where they are only present forC > C� ). These solutions
are again stable at least forC � 0.25. The bottom panel of
Fig. 1 shows the scalar charge as a function of~� and the
stellar compactness, for a fixed value of� 0G1=2 ¼ 10� 5. As
can be seen, spontaneous scalarization is important only for
~� � � 4.5, a value almost ruled out by binary-pulsar
observations. [Note that the precise lowest allowed value
for ~� depends on the equation of state assumed to describe
NSs (see e.g. Ref.[30]). In this work, we will take~� � � 4.5
for concreteness, in order to describe general properties of
binary systems within scalar-tensor theories.]

As mentioned in the previous section, in Ref.[26] we
uncovered, through numerical evidence and analytical argu-
ments, that a phase transition akin to spontaneous scalariza-
tion takes place in dynamical contexts. In particular, we
showed that in binary NS systems (which are brought to
sufficiently small separations by the loss of energy and
angular momentum through gravitational waves), a feed-
back mechanism appears that can induce scalarization in
one or both stars. We refer to this process as dynamical
scalarization, and subsequent numerical confirmation of its
existence has been recently brought forward by Ref.[30].

As we discuss next, DS is similar to spontaneous
scalarization, but is regulated by the effective value of
the background scalar field felt by each star in the binary, as
well by the effective compactness of the system. The
former case (i.e. DS regulated by the effective value of
the scalar field) is most relevant in binaries consisting of a
scalarized star and a nonscalarized one. In this case, DS
amounts to a nonlinear version of IS[26,41], where the
nonscalarized star is immersed in an increasingly large
scalar-field background produced by the scalarized star.
Therefore, the unscalarized star acquires a scalar charge, in
agreement with the top panel of Fig.1, which shows that�

grows with� 0, even for stars with negligible scalar charge
for � 0 � 0. An important observation is that this process is
nonperturbativebecause the newly scalarized star will in
turn induce a growth in the scalar charge of its companion.
In other words, a dynamical interplay arises because either
star (say star 1) is not only sensitive to the asymptotic value
of the scalar field far away from the binary, but also to the
contribution due to its companion (say star 2), hence

� ð1Þ
B ¼ � 0 þ

� ð2Þ
1 ð� ð2Þ

B Þ
r

þ O
�

1
r2

�
; (22)

where� ðiÞ
B (i ¼ 1, 2) is the“background” value of the scalar

field in which stari is immersed, and we recall that the
coefficient� ðj Þ

1 ð� ðj Þ
B Þ[defined by the asymptotic expansion

(20)] is proportional to the scalar charge [cf. Eq.(21)], and
thus a function of the scalar-field background in which the
star is immersed (cf. Fig.1, top panel). Clearly, a similar
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FIG. 1 (color online). The scalar charge for an isolated NS, as
a function of compactness, for different values of� 0 with fixed
~� ¼ � 4.5 (top) and for different values of~� with fixed
� 0G1=2 ¼ 10� 5 (bottom). As the top panel indicates, sponta-
neous scalarization occurs atC � 0.21 for ~� � � 4.5.
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equation will describe the interaction of star 2 with the
background scalar field produced by star 1

� ð2Þ
B ¼ � 0 þ

� ð1Þ
1 ð� ð1Þ

B Þ
r

þ O
�

1
r2

�
: (23)

The system(22) and (23) then describes the feedback
mechanism alluded to above.3 In practice, we model the
functions � ðiÞ

1 ð� ðiÞ
B Þ (i ¼ 1, 2) with a fit to data for� 1

coming from solutions to the generalized-TOV equations
[8] describing an isolated NS, for various values of the
scalar field� 0 at spatial infinity. Equations(22) and(23)
then become a system of (nonlinear) algebraic equations
which one can easily solve numerically. For concreteness,
one method of solving this system is to look iteratively for a
fixed point. At the first iteration, this method therefore
yields the same results as the IS described e.g. by Ref.[41],
but at the following ones the feedback mechanism
described above becomes important. Therefore, IS quali-
tatively accounts for the scalarization of nonscalarized stars
that get close to scalarized ones, but fails to describe for the
nonperturbative feedback exerted by the newly scalarized
star on its companion.

In principle, the iteration may not converge to a fixed
point, or even worse the system(22)and(23)may not have
any real solutions. It is straightforward, however, to show
that the fixed-point method indeed converges to a solution.
Let us consider a scalar-tensor theory with given~� and� 0,
and two stars with (Jordan-frame) baryonic massesmbar

i at
separationr . (Note that the Jordan-frame baryonic masses
are conserved, see e.g. Ref.[26]). Our algorithm then
proceeds as follows:

(1) At the initial iteration, we set� ðiÞ
B ¼ � 0 if the stars

are widely separated, or to a better guess. For
example, if the� ðiÞ

B have been already calculated
for a nearby separation (e.g. at a previous close
instance of the dynamics), we may assume those
values as the starting point of our iteration. Similarly,
starting from the second iteration, we set� ðiÞ

B to the
values produced by the previous iteration.

(2) For each star, we use a code solving the generalized-
TOV equations[8] to find the parameter� ðiÞ

1 for an
isolated NS with given baryonic massmbar

i in a
scalar-tensor theory where the asymptotic value of

the scalar field is set to the value� ðiÞ
B of the

background scalar field. (Note that~� is fixed.) In
practice, to speed up this step, we produce data for
� 1 as a function of the baryonic mass and asymptotic
scalar field value, and fit them in the neighborhood
of the target valuesmbar

i and� ðiÞ
B .

(3) Next, we update the background scalar field value
via Eqs.(22) and(23).

(4) Steps 1–3 are iterated until the solution is found, e.g.
until the relative difference between� ðiÞ

B at consecu-
tive steps drops below a given tolerance.

(5) The scalar charges can be obtained from the final
values of� ðiÞ

1 with Eq.(21)using the TOV code (or a
fit to its results) to computel E.

Convergence of this method requires that the ratio
between the variations of� ðiÞ

B at iterationn þ 1 andn be
� 1. It is easy to show (see the Appendix for details) that
this condition is satisfied if

1
r

����������������������
� � ð1Þ

1

� � ð1Þ
B

� � ð2Þ
1

� � ð2Þ
B

vu
u
t � 1: (24)

We monitor this condition as the iterations proceed and
confirm it is typically well below the bound.4 Note that
alternatively one can solve the system(22)and(23) [again,
with the functions� ðiÞ

1 obtained as fits to TOV data]
directly, with a two-dimensional Newton-Raphson method.
This method leads to the same solution as the fixed-point
method.

A situation where the feedback mechanism described by
Eqs.(22)and(23)is particularly important is that involving
two stars that have exactly zero scalar charge in isolation.
This would be the case, for instance, for a theory with
� 0 ¼ 0 and for stars withC < C� (cf. Fig. 1). In the
“perturbative” picture of IS, no scalar charges should
develop in such a situation. That would indeed correspond
to the trivial solution� ðiÞ

B ¼ 0 (i ¼ 1, 2) for the system(22)
and (23). However, in Ref.[26] we showed with fully
relativistic numerical simulations that even in such a
situation the NSs scalarize, when the binary’s separation
shrinks to a sufficiently small value. What happens physi-
cally is similar to the spontaneous scalarization of isolated
stars, i.e. because of the feedback mentioned above, the
system(22)and(23)develops a nontrivial solution [i.e. one
with � ðiÞ

B � 0] when the effective“compactness” of the
binary defined as̄C ¼ GNEtot=r (whereEtot is the total
energy of the system—including the two masses—andr is
the separation) reaches a critical threshold.

Results for scalar charge obtained by solving Eqs.(22)
and(23)in one such case, namely for an equal-mass binary

3We stress that the uncontrolled remaindersOð1=r2Þappearing
in Eqs.(22)and(23)can be safely neglected, as we have verified
explicitly that extracting them from our TOV isolated-star sol-
utions and including them in Eqs.(22) and(23) has a negligible
effect on our results. One can easily make sense of why that must
be the case. In fact, theOð1=r2Þterms introduce a correction of
� 3%–4%on the value of� at the separations of 50–60 km where
the plunge takes place. At smaller separation the correction will be
larger, but (i) the effect of the scalar charges is negligible during the
plunge, since that happens on the dynamical timescale, and
(ii) even at the closest separationr � 2R, where the two stars
merge, the effect of those terms on the value of� is only� 7%–8%.

4Interestingly, we find that the only separationr at which this
bound is approached (but never violated) is the one marking the
onset of DS, i.e. the one corresponding to the critical effective
compactness̄C� defined later in this section.
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m1 ¼ m2 ¼ 1.51M� made of stars that do not scalarize
spontaneously in isolation, are shown in Fig.2, for scalar-
tensor theories with various values of~� and� 0. The scalar
charge is plotted as a function of the effective compactness
of the binary calculated as̄C ¼ GNE1PN=r (whereE1PN is
the total binary energy at 1PN order[29]).

The top panel, in particular, shows the case~� ¼ � 4.5 for
various values of� 0. As can be seen, for� 0 ¼ 0, the scalar
charges are exactly zero at large separations, because the
stars have insufficient“ individual” compactnessC ¼ l =R
to undergo spontaneous scalarization in isolation. However,
when the effective binary compactnessC̄ ¼ GNE1PN=r
reaches a critical valuēC� � 0.75, the system does display
a phase transition to nonzero charges, i.e. a DS. This
behavior clearly mirrors closely that in Fig.1 for a star in
isolation, and as in that case the DS transition gets
increasingly blurred as� 0 increases. Also, again in

agreement with the isolated-star case, the system(22) and
(23) still allows the trivial solution� 1 ¼ � 2 ¼ 0, but that
solution is only stable for� 0 ¼ 0 andC̄ < C̄� .

The behavior of the scalar charge as a function of~� is
illustrated in the bottom panel of Fig.2. As can be
observed, the maximum value of the scalar charge is not
very sensitive to~� , unlike in the spontaneous scalarization
of isolated stars, where� decreases asj ~� j decreases (cf.
bottom panel of Fig.1). However, the critical compactness
C̄� at which DS switches on increases asj ~� j decreases.
Thus, smaller separations are required for the scalar charges
to grow. Of course, when the stars touch each other, DS
effects will be subleading relative to strong material
interactions driven by the merger process.

We stress that Fig.2 is produced by solving Eqs.(22)and
(23). While this system is a purely algebraic one, and thus
straightforward to solve numerically, it neglects the time
delay needed for one star to“ feel” the change in the scalar
field background produced by the other one as it moves,
i.e. Eqs.(22) and(23) assume an instantaneous feedback
between the two stars. We will show in the next section that
those equations can be coupled to the PN equations of
motion to account for the finite propagation speed of the
interaction, but the deviations from the“ instantaneous”
results obtained by solving the simple algebraic system(22)
and(23)alone scale asr

:
=c. Consequently they are negligible

during the quasiadiabatic inspiral of the NS binary, when the
separation varies slowly as a function of time.

Because DS provides an efficient and robust mechanism
for scalarization—i.e. it forces generic NS binaries to
scalarize at some stage of their orbital evolution, even if
the individual stars are not compact enough to scalarize
spontaneously in isolation, and amplifies the effects of IS in
systems in which at least one component is scalarized in
isolation—it is expected to produce significant deviations
from GR in the orbital evolution. These deviations are
driven by the ensuing enhancement of the gravitational
pull between the stars [cf. Eq.(18)] and the emission of
dipolar scalar waves [cf. Eq.(19)]. As was shown in
Ref. [26] (and later confirmed by Ref.[30]), these effects
trigger earlier plunges in NS binaries relative to GR,
which could potentially be observable with ground-based
gravitational-wave detectors.

Figure 3 illustrates this effect by plotting the scalar
charge resulting from solution of the system(22)–(23), for
equal-mass NS binaries as a function of the quasicircular
orbital frequency computed at 2PN order by imposing
_r ¼ �r ¼ 0 in Eq. (17). The top panel considers several
masses for the binary’s components and assumes~� ¼ � 4.5
and � 0G1=2 ¼ 10� 5, while the lower panel considers
m1 ¼ m2 ¼ 1.51M� , � 0G1=2 ¼ 10� 5 and various values
of ~� . As expected from the previous figures, the onset of DS
(which, as we will show in the next section and as expected
from the arguments above, roughly marks the beginning of
the plunge) moves to larger frequencies asj ~� j decreases or
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FIG. 2 (color online). Scalar charge as a function of the binary’s
compactness̄C ¼ GNE1PN=r, for an equal-mass system with
m1 ¼ m2 ¼ 1.51M� , for different values of� 0 with fixed ~� ¼
� 4.5 (top) and for different values of~� with fixed� 0G1=2 ¼ 10� 5

(bottom). Note that DS occurs for any value ofj ~� j, although the
critical compactness̄C� is shifted to higher values asj ~� j decreases.
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as the NS masses decrease. (We recall that in GR as well as
in scalar-tensor theories, lower NS masses correspond to
lower compactnessesC ¼ l =R.)

The critical orbital frequency� � marking the onset of
DS can be easily fitted as a function ofm1, m2 and~� . (The
dependence on� 0 is very weak for values allowed by solar-
system tests.) For instance, for~� � ½� 4.5; � 3.75� and
mi =M� � ½1.40; 1.74� the simple expression

� � ½rad=s� ¼ A
�

m1

M�
� m�

��
m2

M�
� m�

�
; (25)

where

A ¼ 690656þ 336637~� þ 42621~� 2;

m� ¼ 4.0512þ 0.5123~� (26)

captures (within a maximum error of 15%) the critical
frequency for the polytropic equation of state with� ¼ 2
andK ¼ 123G3M2

� =c6 that we use in this paper. Note that
the regime~� < � 4.5 is ruled out by binary-pulsar obser-
vations[19–21], while for ~� > � 3.5 the critical frequency
results too high to be reached before the NSs merge.

IV. ORBITAL DYNAMICS

As mentioned above, the solution of the algebraic system
(22) and (23) provides a good description of the scalar
charge as a function of orbital frequency during the
adiabatic inspiral phase of the NS binary, but this approxi-
mation (i) breaks down when the binary plunges and
(ii) does not allow one to calculate self-consistently the
impact of the scalar charges on the orbital evolution. In
order to address both limitations, in this section we describe
how to complement the algebraic system(22)and(23)with
a set of ordinary differential equations describing a binary’s
motion at 2.5 PN order.

The equations of motion to 2.5 PN order for scalar-tensor
theories given schematically in Eq.(17) have been derived
recently in Ref. [29]. These equations were derived
adopting nonspinning stars and assumed sensitivities
(and thus scalar charges) that evolve only mildly during
the system’s evolution.5 The first assumption is a natural
one for NSs, which typically have small spin (see e.g.[42]),
and can be relaxed by including spin-orbit and spin-spin
interactions in the PN equations. The second assumption
however, fails to account for the effects of DS which, as
described, produces large scalar charges that vary rapidly
with frequency (and therefore time) along the evolution.
Our model accounts for this effect by dynamically adjust-
ing the scalar charges along the evolution, according to the
feedback mechanism described in the previous section.
However, instead of solving Eqs.(22)and(23), we modify
them to account for the retardation effects due to the motion
of the binary, i.e. at each time step we solve the system

� ð1Þ
B ¼ � 0 þ

� ð2Þ
1 ð� ð2Þ

B Þ
rð1 � r

:
Þ

þ O
�

1
r2

�
; (27)

� ð2Þ
B ¼ � 0 þ

� ð1Þ
1 ð� ð1Þ

B Þ
rð1 � r

:
Þ

þ O
�

1
r2

�
: (28)

Physically, this system of equations means that at each
time t, the background scalar field“ felt” by one star is
given by the scalar field exerted by the other star at an
earlier time t � r , when the separation of the binary was
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FIG. 3 (color online). Scalar charge as a function of the orbital
frequency of the binary (computed at 2PN order in the quasi-
circular approximation) for different equal-mass binaries with
� 0G1=2 ¼ 10� 5 and ~� ¼ � 4.5 (top panel) and for an equal-mass
binary m1 ¼ m2 ¼ 1.51M� for different values of~� (bottom).

5As mentioned previously, Ref.[29] allows the sensitivities/
scalar charges to depend on the local value of the scalar field, but
expands this dependence in a Taylor series around the asymptotic
scalar field� 0. This makes it impossible to account for strong
changes of the sensitivities/scalar charges such as those produced
by IS and DS.
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rðt � rÞ� rðtÞð1 � r
:
Þ. Here, as in the previous section, we

model the functions� ðiÞ
1 ð� ðiÞ

B Þ(i ¼ 1; 2) with fits to data for
� 1 coming from solutions to the generalized-TOV equa-
tions[8] describing an isolated NS, for various values of the
asymptotic scalar field� 0 and fixed Jordan-frame baryonic
masses. (Note that the Jordan-frame baryonic masses are
conserved during the evolution, see e.g. Ref.[26]). The
derivative of the binary’s separationr

:
is instead evaluated at

each step with the PN equations of motion(17). Clearly, in
the inspiralr

:
� 1, so the system(27) and(28) reduces to

Eqs.(22) and(23).
At a formal level, our model can be thought of as

supplementing the PN equations of motion(17) with two
extra equations

d� i

dt
¼

d� ðiÞ

d� ðiÞ
B

d� ðiÞ
B

dr
r
:

(29)

describing the evolution of each star’s scalar charge. In
these equations, the last term is determined by the stars’
trajectories (i.e. by the PN equations of motion), while
d� =d� B andd� B=dr are determined respectively using the
solutions to the generalized TOV equations for isolated
stars and by Eqs.(27) and(28).

V. RESULTS

In this section, we summarize the results obtained by
evolving the 2.5 PN equations of motion for scalar-tensor
gravity with dynamical scalar charges. For this purpose we
have implemented the method described in the previous
section, and integrated the evolution equations by a fourth-
order Runge-Kutta solver. This code has been validated
through exhaustive self-consistency tests as well by direct
comparison to known results in the GR limit. Additionally,
we can compare with our own recent, fully nonlinear
simulations for binary NS systems in scalar-tensor theories
[26]. For these tests, it is cleanest to compare the value of
the scalar field� ðiÞ

C at the center of each star. This value is
directly related to the scalar charge. Figure4 displays
� ð1Þ

C ¼ � ð2Þ
C for an equal-mass binary withm1 ¼ m2 ¼

1.51M� , in a theory with~� ¼ � 4.5 and � 0G1=2 ¼ 10� 5.
The black dots correspond to the values calculated with a
full nonlinear evolution from an initial separation of 70 km
[26]. Additionally, to extend the reach of this test, we have
also evolved two larger separations (80 and 100 km) and
extracted the central value of the scalar field after one orbit
[i.e. � ð1Þ

C ¼ � ð2Þ
C is measured after the initial data have

relaxed and a quasistationary solution is reached]. We also
include in this figure the results obtained with the 2.5 PN
equations of motions allowing only for IS (by not account-
ing for the DS feedback mechanism described previously),
as well as DS. As can be seen, the results obtained with DS
are in good agreement with the full nonlinear solution,
while the ones including only IS clearly underestimate the

growth of the scalar field. It is also clear that our approach
provides a good approximation up to close separations.

For another illustration of the behavior displayed by
the system—and the way our model successfully captures
it—Fig. 5 shows the results for an unequal-mass binary
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FIG. 4 (color online). Central value of the scalar field� ð1Þ
C ¼

� ð2Þ
C as a function of the binary separation for the equal-mass case

m1 ¼ m2 ¼ 1.51M� with ~� ¼ � 4.5 and � 0G1=2 ¼ 10� 5. The
different curves correspond to results obtained with a nonlinear
simulation (dotted line), a 2.5 PN evolution accounting for DS
(solid line), and a 2.5 PN evolution accounting only for IS
(dashed line). For reference, we also include results (squares)
obtained in the instantaneous quasicircular orbit (QCO) approxi-
mation to DS described in Sec.III .
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FIG. 5 (color online). Central values of the scalar field� ðiÞ
C as a

function of the binary separation for the unequal-mass casem1¼
1.64M� , m2¼1.74M� with ~� ¼� 4.5 and� 0G1=2¼10� 5. Results
obtained with full nonlinear simulations are represented by circles
and squares, while those obtained with 2.5 PN evolutions
accounting for DS are represented with solid lines. (Note that
the vertical scale is linear, not logarithmic as in Fig.4.)
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with massesm1 ¼ 1.64M� andm2 ¼ 1.74M� . This sys-
tem was studied until merger from an initial separation of
70 km with a fully nonlinear simulation in Ref.[26]. Here,
we also show three additional larger separations, at which
the system is evolved for about one orbit in order to extract
the central value of the scalar field after the relaxation of the
initial data. Note that for this binary, one of the stars is
compact enough to scalarize spontaneously in isolation,
which leads to a strong DS of the other star. The agreement
obtained with the model that we introduced in this paper
provides evidence that DS is able to correctly, and
efficiently, capture the overall behavior of the system.

With a validated model, we are then in a position to
explore the physical parameter space of NS binaries and
examine their phenomenology in scalar-tensor theories.
We adopt an asymptotic value for the scalar field
� 0G1=2 ¼ 10� 5, and examine several cases varying the
individual masses of the binary’s components as well as~� .
We recall that based on the discussion of the previous
sections, the results are not expected to be very sensitive to
� 0 (as long as one restricts attention to viable values only),
and that we consider~� � � 4.5. To characterize the wave-
strain produced by the systems under study, we consider the
projection of the gravitational wave onto thel ¼ 2, m ¼ 2
spin-weighteds ¼ � 2 spherical harmonic and normalize it
with respect to the observer’s distance and total mass from
the system,

h22 �
R
M

hhþ � ih× ;� 2 Y2;2i : (30)

The strain is calculated at leading order (i.e. using the
standard quadrupole formula) with the trajectories obtained
by evolving the 2.5 PN equations of motion. We stress that
the dipolar scalar mode couples weakly to a gravitational-
wave detector far from the source (indeed, as showed in
Ref.[26], the coupling to the detector vanishes as� 0 � 0),
and is therefore not observable directly. However, the
dipole channel still carries energy and angular momentum
away from the source, thus backreacting on the binary’s
trajectory and on its leading-order quadrupolar emission.

A. Equal-mass binaries

We first concentrate on equal-mass binaries. Figure6
illustrates the value of the scalar charge for a binary with
massesm1 ¼ m2 ¼ 1.51M� as a function of separation, for
different values of~� . As discussed earlier, the scalar charge
grows due to DS as the orbit shrinks. For~� < � 4 the scalar
charge grows to> 0.1 near the coalescence regime, and
reaches those values earlier as~� is reduced. For instance,
the orbital frequency at which� ¼ 0.1 is reached is
� 1557rad=s for ~� ¼ � 4.5 and� 4140 rad=s for ~� ¼ � 4.

As another example, the (renormalized) wavestrain and
the frequency of the gravitational wave produced by a
binary with equal massesm1 ¼ m2 ¼ 1.41M� are

represented in Fig.7, for different values of~� , together
with the result expected in GR. This case shows little
difference from the GR behavior, for~� � � 4.2. This is
clearly illustrated in Fig.8, which plots the Fourier
spectrum of the gravitational model ¼ m ¼ 2 as measured
at a distance of 50 Mpc. Only for the most extreme case
~� ¼ � 4.5 do differences arise at high frequencies. For
reference, the plot (as well as analog ones for the other
cases) also includes the estimated noise power spectrum of
Advanced LIGO[43].
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FIG. 6 (color online). Scalar charge of each star in an equal-
mass binary withm1 ¼ m2 ¼ 1.51M� , at different separations
and for different values of~� . As the orbital separation decreases,
the scalar charges increase.
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FIG. 7 (color online). Normalized gravitational-wave strain and
frequency for an equal-mass binary (withm1 ¼ m2 ¼ 1.41M� )
as a function of time, for different values of~� . All cases display
essentially the same quantitative behavior, with small departures
from GR at the onset of the plunge, as can be appreciated in the
insets and in Fig.8.
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