HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

Nuclear coups: dynamics of black holes in galaxy mergers

Abstract : We study the dynamical evolution of supermassive black holes (BHs) in merging galaxies on scales of hundreds of kpc to 10 pc, to identify the physical processes that aid or hinder the orbital decay of BHs. We present hydrodynamical simulations of galaxy mergers with a resolution of ≤20 pc, chosen to accurately track the motion of the nuclei and provide a realistic environment for the evolution of the BHs. We find that, during the late stages of the merger, tidal shocks inject energy in the nuclei, causing one or both nuclei to be disrupted and leaving their BH `naked', without any bound gas or stars. In many cases, the nucleus that is ultimately disrupted is that of the larger galaxy (`nuclear coup'), as star formation grows a denser nuclear cusp in the smaller galaxy. We supplement our simulations with an analytical estimate of the orbital-decay time required for the BHs to form a binary at unresolved scales, due to dynamical friction. We find that, when a nuclear coup occurs, the time-scale is much shorter than when the secondary's nucleus is disrupted, as the infalling BH is more massive, and it also finds itself in a denser stellar environment.
Complete list of metadata

https://hal-insu.archives-ouvertes.fr/insu-03645686
Contributor : Hal Sorbonne Université Gestionnaire Connect in order to contact the contributor
Submitted on : Friday, April 22, 2022 - 4:54:04 PM
Last modification on : Thursday, May 12, 2022 - 6:22:03 PM

File

stu024.pdf
Publisher files allowed on an open archive

Identifiers

Citation

Sandor van Wassenhove, Pedro R. Capelo, Marta Volonteri, Massimo Dotti, Jillian M. Bellovary, et al.. Nuclear coups: dynamics of black holes in galaxy mergers. Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2014, 439, pp.474-487. ⟨10.1093/mnras/stu024⟩. ⟨insu-03645686⟩

Share

Metrics

Record views

12

Files downloads

0