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ABSTRACT
The specific star formation rates of galaxies are influenced both by their mass and by their
environment. Moreover, the mass function of groups and clusters serves as a powerful cosmo-
logical tool. It is thus important to quantify the accuracy to which group properties are extracted
from redshift surveys. We test here the Friends-of-Friends (FoF) grouping algorithm, which
depends on two linking lengths (LLs), plane-of-sky and line-of-sight (LOS), normalized to
the mean nearest neighbour separation of field galaxies. We argue, on theoretical grounds, that
LLs should be b⊥ � 0.11, and b‖ ≈ 1.3 to recover 95 per cent of all galaxies with projected
radii within the virial radius r200 and 95 per cent of the galaxies along the LOS. We then predict
that 80 to 90 per cent of the galaxies in FoF groups should lie within their parent real-space
groups (RSGs), defined within their virial spheres. We test the FoF extraction for 16 × 16
pairs of LLs, using subsamples of galaxies, doubly complete in distance and luminosity, of a
flux-limited mock Sloan Digital Sky Survey (SDSS) galaxy catalogue. We find that massive
RSGs are more prone to fragmentation, while the fragments typically have low estimated mass,
with typically 30 per cent of groups of low and intermediate estimated mass being fragments.
Group merging rises drastically with estimated mass. For groups of three or more galaxies,
galaxy completeness and reliability are both typically better than 80 per cent (after discarding
the fragments). Estimated masses of extracted groups are biased low, by up to a factor 4 at low
richness, while the inefficiency of mass estimation improves from 0.85 dex to 0.2 dex when
moving from low to high multiplicity groups. The optimal LLs depend on the scientific goal
for the group catalogue. We propose b⊥ � 0.07, with b‖ � 1.1 for studies of environmental
effects, b‖ � 2.5 for cosmographic studies and b‖ � 5 for followups of individual groups.

Key words: methods: numerical – galaxies: clusters: general – galaxies: groups: general –
dark matter.

1 IN T RO D U C T I O N

Galaxies are very rarely isolated: most live in pairs, groups and
clusters of increasing richness and mass, with mean nearest neigh-
bour separations only one or two orders of magnitude greater than
their sizes (in contrast to stars within galaxies). The properties of
galaxies are thus expected to be affected by their global environ-
ment, the mass of the group in which they reside, and by their local
environment, the position they sit within their group. For example,
their specific star formation rate (SSFR) is expected to be quenched
by tidal stripping of their outer gaseous reservoirs by their group’s
gravitational potential (Larson, Tinsley & Caldwell 1980) and by
ram pressure stripping of these reservoirs and possibly their inter-
stellar gas by the intra-group gas (Gunn & Gott 1972). On the other
hand, galaxy collisions and mergers should trigger bursts of star
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formation (Joseph & Wright 1985), which should later deplete the
galaxies of their gas for subsequent star formation. The respective
roles of these physical processes are still unclear, hence it is impor-
tant to probe the global and local environments of galaxies to which
models of galaxy formation can be confronted.

Analyses of the effects of the group environment on the SSFR
of galaxies have led to somewhat discrepant analyses. Peng et al.
(2010) found that only galaxies of low stellar mass have their SSFR
modulated by the environment, while von der Linden et al. (2010)
find that the SSFR of high stellar mass galaxies are also somewhat
modulated by their environment. The difference between these two
studies is the lack of distinction between local and global environ-
ments by Peng et al.. But since it is notoriously difficult to properly
define environment from redshift-space catalogues (Moore, Frenk
& White 1993), one should strive towards optimal measures of
galaxy groups.

Massive groups (i.e. clusters) are also useful as cosmological
and physics tools. For example, the evolution of the cluster mass
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1764 M. Duarte and G. A. Mamon

function is a powerful diagnostic of cosmological parameters, in-
cluding dark energy (Wang & Steinhardt 1998).

The extraction of group catalogues from redshift-space data is
difficult for several reasons:

(i) It is intrinsically difficult to characterize systems of a few
objects (galaxies).

(ii) The local environment requires an accurate definition of the
group centre,1 which is also difficult for low-multiplicity systems.

(iii) The Hubble flow creates redshift distortions (Jackson 1972)
that cause galaxies within their virial spheres in real space to extend
in redshift space by κη

√
�/2 � 10–20 virial radii along the line

of sight (LOS), where κ � 2–3 is the number of group velocity
dispersions that one is studying, η = σ v/vv � 0.65 (Mauduit &
Mamon 2007; Mamon, Biviano & Boué 2013) is the group velocity
dispersion in units of the circular velocity at the virial radius, and
� � 100–200 is the mean overdensity at the virial radius relative
to the critical density of the Universe (see Eke et al. 2004; Mamon,
Biviano & Murante 2010). Such elongated groups along the LOS
risk being confused with other foreground or background groups
along the same LOS, situated with ±10–20 virial radii, i.e. typically
10–20 Mpc. In other words, different groups in real space risk being
merged, while galaxies found in a group in redshift space may not
lie within the virial sphere of that group in real space, leading to
unreliable galaxy membership.

The most popular, and perhaps simplest algorithm is the Friends-
of-Friends (FoF) percolation method, which, as implied by its name,
puts into a single group all galaxies linked in pairs according to their
separations along the LOS or on the plane-of-sky (POS).

Grouping algorithms are not limited to the FoF technique.
Marinoni et al. (2002) have added Delaunay triangulation to Voronoi
percolation. Moreover, several Bayesian methods have been re-
cently developed, taking into account our a prioris, such as assum-
ing NFW models (Navarro, Frenk & White 1996) for the number
and mass density profiles of groups, to conform with the density
profiles measured in �cold dark matter (�CDM) haloes (Navarro
et al. 1996). For example, Yang et al. (2005, 2007) used an itera-
tive method to select groups, computing a density enhancement to
assign galaxies to groups, starting with seed groups obtained from
the FoF implementation of Eke et al. (2004). Muñoz-Cuartas &
Müller (2012) also used an iterative method that can be compared
to a FoF on dark matter haloes, starting with the assumption that
all galaxies are their own halo (i.e. all groups have a single galaxy
in the initial step). Domı́nguez Romero, Garcı́a Lambas & Muriel
(2012) also started with galaxies being alone in their groups, and
adapted the Yang et al. (2007) algorithm by not directly assign-
ing galaxies to groups, but computing instead probabilities that
galaxies are in a given group, allowing galaxies during the itera-
tive process to ‘move’ between groups; but they assigned galaxies
to groups after the convergence of their iterative method. Finally,
in Duarte & Mamon (in preparation), we have developed MAG-
GIE (Models and Algorithm for Galaxy Groups, Interlopers and
Environment), another Bayesian and fully probabilistic grouping
algorithm, which does not make use of the FoF technique.

Nevertheless, the FoF algorithm is still widely used, because the
aforementioned Bayesian algorithms are not publicly available and
are quite difficult to code on one’s own. Moreover, the FoF algorithm
has the advantage of providing unique group catalogues (in some
other methods, the group catalogue depends on the galaxy one starts

1 The group centre is also essential in all studies where groups are stacked.

with), and makes no assumption on the properties of groups (i.e.
number density profile or three-dimensional shape).

Many catalogues of galaxy groups have been constructed from
redshift-space catalogues,2 using FoF algorithms (Huchra & Geller
1982; Nolthenius & White 1987; Ramella, Geller & Huchra 1989;
Trasarti-Battistoni 1998; Merchán & Zandivarez 2002; Eke et al.
2004; Berlind et al. 2006; Tago et al. 2010; Robotham et al. 2011;
Tempel et al. 2014). Because of the redshift distortions, the physical
linking lengths (LLs) are chosen to be of the order of 10 times longer
for the LOS separations than for the POS ones. Moreover, for flux-
limited galaxy catalogues, the physical LLs are scaled with the
mean three-dimensional separation between neighbouring galaxies,
s � n−1/3, where n is the mean number density of galaxies in the
Universe at a given redshift (Huchra & Geller 1982). In other words,
the FoF algorithm involves two dimensionless LLs :

b⊥ = Max(S⊥)

s
, (1)

b‖ = Max(S‖)

s
, (2)

where S⊥ and S‖ are the POS and LOS nearest neighbour separa-
tions, respectively.

Starting with Nolthenius & White (1987), nearly all FoF group
analyses on redshift-space catalogues were accompanied with tests
on mock galaxy catalogues derived from N-body simulations. How-
ever, not all FoF developers have applied the same tests to calibrate
their LLs. Nolthenius & White (1987) were the first to compute
the accuracy of group masses, as well as radii and velocity dis-
persions, crossing times and mass-to-light ratios. Ramella et al.
(1989) were the first to test the recovered group multiplicity func-
tion. Frederic (1995) was the first to measure the galaxy reliabil-
ity of extracted groups (comparing the FoFs of Huchra & Geller
1982 and Nolthenius & White 1987), as later done by Merchán &
Zandivarez (2002), who also measured group completeness (against
mergers of true groups) and reliability (against fragmentation of true
groups). Eke et al. (2004) also tested the true group completeness
and fragmentation, as well as the accuracy on group sizes and veloc-
ity dispersions. They also considered a quality criterion that amounts
to a combination of galaxy completeness and reliability. Robotham
et al. (2011) also considered a combination of fairly complex mea-
sures of group and galaxy completeness and reliabilities. Berlind
et al. (2006) performed similar tests as Eke et al., with another test
combining galaxy completeness and reliability. Berlind et al. noted
that one cannot simultaneously optimize the accuracies on group
sizes, velocity dispersions and [multiplicity function OR combined
galaxy completeness/reliability].

Unfortunately, none of these studies is fully convincing: many
did not perform the full suite of important tests, which we believe
are true group fragmentation (group reliability) and merging (group
completeness), galaxy completeness and reliability studied sepa-
rately, and mass accuracy. Many have not measured the qualities
of their LLs in terms of group parameters such as estimated mass
and richness. Few studies have optimized the LLs: Eke et al. (2004)
separately optimized b⊥ and b‖. Berlind et al. (2006) jointly op-
timized b⊥ and b‖ on a grid, for groups of 10 or more galaxies,
while Robotham et al. (2011) jointly fit the LLs and their variation
with density contrast and galaxy luminosity for groups of five or

2 Turner & Gott (1976) applied a grouping algorithm in projected space that
turned out to be a Friends-of-Friends algorithm.
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Table 1. Friends-of-Friends LLs and physical parameters.

Authors Sample b⊥ b‖ b‖/b⊥ δn/n κ

Huchra & Geller (1982) CfA 0.23 1.34 6.3 20 5.7
Ramella et al. (1989) CfA2 0.14 1.9 13 80 5.8
Trasarti-Battistoni (1998) PPS2 0.13 1.7 13 108 4.9
Merchán & Zandivarez (2002) 2dFGRS 0.14 1.4 10 80 4.4
Eke et al. (2004) 2dFGRS 0.13 1.43 11 178 3.9
Berlind et al. (2006) SDSS 0.14 0.75 5.4 86 2.3
Tago et al. (2010) SDSS 0.075 0.75 10 565 1.7
Robotham et al. (2011) GAMA 0.060 1.08 18 1100 2.2
Tempel et al. (2014) (Mr < −19) SDSS 0.11 1.1 10 178 3.0
Tempel et al. (2014) (Mr < −21) SDSS 0.066 0.67 10 830 1.4

Notes. The (normalized) LLs of Huchra & Geller (1982), Ramella et al.
(1989), and Trasarti-Battistoni (1998) are derived (using equations 1 and 2)
from their physical LLs at the fiducial distance and from the mean density at
that distance, as derived by integrating the respective luminosity functions
given by these authors. The LLs of Merchán & Zandivarez (2002) are
estimated directly from the overdensity δn/n given by these authors (using
equation 3), those of Tago et al. (2010) are found from the densities deduced
from the numbers of galaxies counted by these authors (again with equations
1 and 2). Eke et al. (2004) provide b⊥ and b‖/b⊥, while Berlind et al. (2006)
and Tempel et al. (2014) provide b⊥ and b‖. When not provided by the
authors, the overdensity δn/n is obtained through equation (3), and should
be multiplied by 1.5 for a more accurate estimation (see text). Finally, the
number of group velocity dispersions along the LOS, κ is obtained with
equation (7) assuming 	m = 0.3.

more galaxies. However, there is no strong agreement between the
optimized LLs of Eke et al., Berlind et al., and Robotham et al. (see
Table 1).

Moreover, we believe that in this era of large redshift surveys
of >105 galaxies, it makes little sense to extract groups from flux-
limited galaxy samples, for which most current implementations of
the FoF algorithm scale the maximum separations proportionally
to the mean separation between neighbouring field galaxies, n−1/3.
Indeed, since the minimum luminosity in flux-limited samples in-
creases with redshift, the mean number density of galaxies decreases
with redshift, and thus the mean separation between neighbouring
galaxies increases with redshift. Therefore, the standard implemen-
tation of the FoF algorithm leads to groups that become increasingly
sparse and with increasingly higher velocity dispersion with red-
shift (while their multiplicity function is preserved). Alternatively,
since the mean neighbour galaxy separation increases with redshift
in flux-limited samples, using a fixed physical LL leads to lower re-
liability at low redshift and lower completeness at higher redshifts.
Moreover, grouping algorithms on flux-limited samples must eval-
uate the luminosity incompleteness as a function of redshift, which
is difficult and imprecise (e.g. Marinoni et al. 2002; Yang et al.
2007). It is therefore much safer to consider subsamples that are
complete in both distance and galaxy luminosity (as done for FoF
grouping by Berlind et al. 2006, Tago et al. 2010 and Tempel et al.
2014). Admittedly, one recovers at best of order of one-quarter of the
galaxies of the flux-limited sample, but one then avoids extracting
a heterogeneous sample of groups (see Tempel et al. 2014) whose
sizes and velocity dispersions stretch with redshift (when scaling
the physical LLs with n−1/3) or whose completeness and reliability
vary with redshift (when adopting fixed physical LLs).

In the present work, we shall provide the first optimization of
group LLs for doubly complete subsamples of galaxies, for six
measures of the quality of the FoF grouping algorithm: minimal
fragmentation and merging of true groups, maximum completeness
and reliability of the galaxies of the extracted groups, and minimum

bias and inefficiency in the recovered group masses. These tests
are performed on a wide grid of over 250 pairs of LLs. We have
applied them to several doubly complete subsamples of galaxies cut
from a mock flux-limited, Sloan Digital Sky Survey (SDSS)-like,
sample of galaxies, and we analyse our results in terms of both true
and estimated masses of the groups, as well as of their estimated
richness.

We present the FoF algorithm in Section 2 and make predictions
on its optimal parameters. In Section 3, we describe our mock real-
space galaxy and group catalogues, and explain how we extract
our mock redshift-space group catalogues. We define our tests in
Section 4. In Section 5, we present the results of our tests, comparing
to various grouping methods, and suggest an optimal set of LLs.
Finally, we summarize and discuss our results in Section 6.

2 FR I E N D S - O F - F R I E N D S A L G O R I T H M

2.1 Predicted linking lengths and galaxy reliability

One can relate the choice of b⊥ to the minimum galaxy overdensity
(in number) of the groups with

δn

n
= 3

4πb3
⊥

− 1 , (3)

(from Huchra & Geller 1982). If galaxies are unbiased tracers of
mass, i.e. δn/n = �/	m, where 	m is the cosmological density
parameter, then equation (3) easily leads to

b⊥ =
(

3/(4π)

�/	m + 1

)1/3

. (4)

According to equation (4), if one desires to have virialized groups
of overdensity (relative to critical) � = 200, one requires b⊥ � 0.07
(for 0.24 < 	m < 0.35). On the other hand, given 	m = 0.279
or 0.317, respectively obtained with the 9th-year release of the
Wilkinson Microwave Anisotropy Probe (Bennett et al. 2013) and
the Planck mission (Planck Collaboration et al. 2013), one deduces
δn/n = 352 and 326 from Bryan & Norman’s (1998) approximation
for � at the virial radius, leading to b⊥ � 0.09 in both cases,
according to equation (3).

One can also estimate the ratio of LOS to transverse LLs, as
the ratio of LOS to POS group sizes caused by redshift distor-
tions: if the LOS velocities span ±κ group velocity dispersions,
the inferred LOS spread of distances in redshift space will be
±ηκ v200/H0 = ±ηκ

√
�/2 r200 (see Mamon et al. 2010), where

η = σ v/vv � 0.65 for an NFW model with realistic concentration
and velocity anisotropy (Mamon et al. 2013), and where we used
equation (3). Therefore,

b‖
b⊥

= η κ

√
�

2
(5)

= η κ

√
	m

2

(
δn

n

)
. (6)

Combining equations (4) and (5), one easily deduces

κ =
√

8π

3
η−1 	−1/2

m

√
b⊥ b‖ . (7)

For example, according to equation (5), probing galaxies along
the LOS to ±1.65 σ v (encompassing 95 per cent of the galaxies
for Maxwellian LOS velocity distributions), for � = 200, leads to
b‖/b⊥ = 11, hence with b⊥ = 0.07, one finds b‖ = 0.7 (the values
are rounded off).
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1766 M. Duarte and G. A. Mamon

These theoretical LLs assume that groups are spherical and that
all but one galaxy is in the centre. In fact, galaxies are distributed in
a more continuous fashion (especially in rich groups and clusters).
One can more accurately estimate the value of the transverse LL by
writing

b⊥ = Max(S⊥)

n−1/3
,

= Max(S⊥)

rvir

rvir

n
−1/3
vir

(
1 + δn

n

)−1/3

,

=
(

3/(4π)

�/	m + 1

)1/3 Max(S⊥)

rvir
N1/3

vir , (8)

where one recognizes the previous estimate of b⊥ (equation 4) in
the first term of the right-hand side of equation (8).

We estimated the value of the second term of the right-hand side
of equation (8) by running Monte Carlo simulations of cylindrical
groups of unit virial radius with surface density profiles obeying the
(projected) NFW model of scale radius of 0.2 (i.e. concentration 5).
With 10 000 realizations each for N = 2, 4, 8, 16, 32 and 64 galaxies
within the maximum projected radius allowed for the galaxies in the
simulated groups, Rmax = r200 = 1, we found that the 95th percentile
for the maximum – for all galaxies of the group – distance to the
nearest neighbour is Max(S⊥) � 1.48 N−0.25 in units of the virial
radius. Inserting this value of Max(S⊥)/rvir into equation (8), with
� = 200 and 	m = 0.25, we predict that to obtain a completeness
of 0.95, we require

b⊥ � 0.09 N0.08 , (9)

where we took into account that, for our adopted NFW model,
the ratio of the number of galaxies within the virial sphere to that
within the virial cylinder is Nvir/N � 0.80. Equation (9) predicts
b⊥ = 0.10 for N = 4 and b⊥ = 0.12 for N = 40, i.e. b‖ = 1.1
for N = 4 and b‖ = 1.3 for N = 40, given b‖/b⊥ = 11 found
above. In other words, equation (3) underestimates δn/n by a factor
Max(S⊥)/rvir N

1/3
vir � 1.4 N0.08, i.e. by 1.5 for N = 4 and 1.8 for

N = 40. The slight increase of b⊥ with richness suggests that fixing
b⊥ will lead to the fragmentation of rich groups.

Adopting instead the virial δn/n = �/	m = 326 (Planck, see
above) would lead to b⊥ = 0.14 for N = 4 and b⊥ = 0.17 for
N = 40. Since, at constant �, b⊥ ∝ 	1/3

m (equation 4), moving
from 	m = 0.25 to 	m = 0.3 (a compromise between WMAP
and Planck), keeping � = 200, yields b⊥ = 0.11 (N = 4) or 0.13
(N = 40). According to equation (5), b‖/b⊥ does not vary with 	m

at fixed �, hence we now obtain b‖ = 1.3.
Had we taken a maximum projected radius that is much smaller

than r200, we would obtain a much smaller value for b⊥. Indeed, our
Monte Carlo simulations indicate that with Rmax and scale radius
both equal to 0.2 r200, we find Max(S⊥) � 1.85 N−0.33 in units of
Rmax , hence Max(S⊥)/r200 � 0.37 N−0.33. Inserting this ratio into
equation (8), we now obtain b⊥ = 0.023, independent of N. Thus, to
first order, b⊥ scales with Rmax /r200. Turning the argument around,
a low b⊥ leads to selecting galaxies in groups with projected radii
limited to a small fraction of the virial radius.

We can also predict the reliability of the galaxy membership in
groups, as follows. The expected number of interlopers from the
extracted group out to a LOS distance of ±b‖n−1/3 is

Nint ≈ 2
N

200

b‖
b⊥

, (10)

where we simply stretched the group by a factor of b‖/b⊥ along the
LOS, and where N is the number of galaxies in the real-space group
(RSG). For b‖/b⊥ = 11, equation (10) yields Nint = 0.44 for N = 4
and Nint = 4 for N = 40. Thus, the fraction of interlopers should
roughly be independent of the richness hence mass of the RSG. For
b⊥ � 0.1, corresponding to groups with overdensity 200 relative
to critical sampled at 95 per cent completeness, and sampling the
LOS with 95 per cent completeness (leading to b‖/b⊥ = 11), one
then expects Nint/N = 0.11. One then infers a galaxy reliability of
R = (N/Nint)/[1 + (N/Nint)] = 90 per cent.

Equation (10) assumes that the Universe is made of spherical
groups that are truncated at their virial radii. In fact, galaxy clus-
tering brings galaxies close to groups, in a fashion that the radial
number density profile pursues a gradual decrease beyond the virial
radius. For NFW models of concentration of 5, the projected num-
ber of galaxies within the virial radius is 1/0.80 = 1.25 times the
number within the virial sphere. Hence the numbers of interlopers
to the virial sphere should satisfy Nint/N = 0.25. Then, one expects
a reliability of R = (N/Nint)/[1 + (N/Nint)] = 80 per cent.

2.2 Previous implementations

Table 1 lists the dimensionless LLs for the different group FoF
analyses. The values of δn/n and κ of different FoF analyses, in-
ferred from their LLs according to equations (3) and (6), are listed
in Table 1. One sees that five of the nine previous studies advocate
b⊥ = 0.13 or 0.14, and two (Eke et al. 2004 and Tempel et al. 2014 for
Mr < −19) have pairs of LLs close to our predicted values of (b⊥,
b‖) ≈ (0.11, 1.3). The two greatest outliers are Huchra & Geller
(1982), whose transverse LL appears too large and Robotham et al.
(2011), both of whose LLs appear too small. We will check these
conclusions in Sections 5 and 6 using our analysis of mock galaxy
and group catalogues.

2.3 Practical implementation of the FoF algorithm

There are two issues that need to be optimally handled when writing
an FoF algorithm: rapidly extracting the separations in redshift space
and properly estimating the mean density.

We followed the Huchra & Geller (1982) algorithm, used in most
FoF implementations. Huchra & Geller write that two galaxies with
redshifts zi and zj and an angular separation in θ ij are linked using
criteria that amount to(

c

H0

) (
zi + zj

)
sin

(
θij

2

)
≤ b⊥ n−1/3, (11)

(
c

H0

) ∣∣zi − zj

∣∣ ≤ b‖ n−1/3. (12)

We generalized3 equations (11) and (12) to4

dcomov(z1) + dcomov(z2)

2
θ ≤ b⊥ n−1/3 , (13)

|dcomov(z1) − dcomov(z2)| ≤ b‖ n−1/3 . (14)

3 The comoving distance, dcomov(z) = c
∫

dz/H(z), in equation (13) should
really be the proper motion distance dpm(z) = dlum(z)/(1 + z) =
(1 + z) dang(z), but for flat cosmologies, dpm(z) = dcomov(z).
4 Equation (13) is similar to the relation used by Zandivarez et al. (2014),
with the exception of a minor difference in projected sizes given angle.
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Table 2. Doubly complete mock galaxy subsamples.

ID Mmax
r Lmin

r /L∗ zmax Number n n−1/3 Fraction
(Mpc−3) (Mpc) split

1 −18.5 0.09 0.042 47158 0.0125 4.32 0.053
2 −19.0 0.14 0.053 72510 0.0099 4.66 0.061
3 −19.5 0.22 0.066 112629 0.0078 5.05 0.066
4 −20.0 0.36 0.082 166899 0.0058 5.56 0.074
5 −20.5 0.56 0.102 213546 0.0040 6.29 0.086
6 −21.0 0.90 0.126 245821 0.0025 7.40 0.099

Notes. Columns are: sample, maximum r-band absolute magnitude, min-
imum luminosity in units of L∗ (adopting M∗ = −20.44 + 5 log h in the
SDSS r band from Blanton et al. 2003), maximum redshift, sample size,
mean density n, proxy for the mean separation to the closest neighbour,
n−1/3, and the percentage of true groups that are flagged because they are
split during the simulation box transformations. The minimum redshift of
each subsample is z = 0.01.

Thus, Huchra & Geller (1982) (also Berlind et al. 2006) neglected
cosmological effects. For our deepest mock SDSS catalogue, at
z = zmax = 0.125 (Catalogue 6, see Table 2), dcomov/(cz/H0) = 0.97.
So, the formula d = cz/H0 leads to slightly too large distances, hence
to slightly too strict choices of angles and differences in redshifts.

One could argue that, since groups are virialized, one ought to
use the cosmological angular distance, dang(z) = dcomov(z)/(1 + z)
for the distances with which one computes the physical transverse
separation in terms of the angular separation. But one should then
also compress the LOS distances accordingly, and we are not aware
of any work doing such a compression. Hence, we chose to stick
with equations (13) and (14).

Since we are working with samples that are complete in luminos-
ity, and since they are shallow enough that evolutionary effects are
small, observers can estimate the mean number density of galaxies
directly from the data.

Finally, for each galaxy, we computed the maximal angular dis-
tance to define the region in which potential neighbours could be
found for the given transverse LL. With the celestial sphere grid that
we have constructed (see Appendix A), we searched for galaxies
obeying the criterion of equation (13), and then searched for galax-
ies meeting equation (14). The linked galaxies were then placed in
a tree structure according to the Union-Find method (Tarjan & van
Leeuwen 1984). Once all galaxies were analysed, we compressed
the trees constructed with linked galaxies by replacing, in each
group, the links of links with links to a single galaxy, giving us
the identity of the group to which galaxies belong to. This imple-
mentation allows for a fast computation of galaxy groups for large
samples of galaxies.

3 MO C K C ATA L O G U E S

We wish to check if galaxy groups extracted with FoF algorithms
are optimally selected. So our goal is to compare the extracted
groups (EGs) in redshift space with the true groups (TGs) in real
space. Since real space information is not directly accessible, we
need to simulate it. The best way is to use mock galaxy catalogues
constructed from the outputs of realistic galaxy simulations. These
should include real space galaxy positions, comoving velocities,
stellar masses and r-band luminosities, and the galaxies should be
assembled in (real-space) groups with realistic density profiles and
obeying the observed scaling relations. We then need to construct a
redshift-space catalogue of groups from the real space catalogue of
galaxies and groups.

3.1 Construction of mock real-space galaxy
and group catalogues

There are two basic methods to build a mock catalogue of galaxies
in real space.

(i) In the Halo Occupation Distribution method (Martı́nez & Saar
2002; Berlind & Weinberg 2002), the number of galaxies per halo
is drawn from a probability distribution function that depends on
the halo mass, or better, the galaxy luminosities or stellar masses
are drawn from conditional luminosity (stellar mass) functions that
depend on halo mass (Yang, Mo & van den Bosch 2003). The galaxy
distribution is assumed to be spherically symmetric, and follows that
of the dark matter particles in the haloes of �CDM cosmological
simulations (e.g. NFW), the velocities are drawn from Maxwellian
distributions (see Beraldo et al. 2014 for the limitations of this
assumption), with radial and tangential velocity dispersions derived
from the Jeans equation of local dynamical equilibrium, assuming
some form for the radial variation of the velocity anisotropy.

(ii) In Semi-Analytical Models (SAMs; e.g. Roukema et al. 1997;
Kauffmann et al. 1999), galaxy properties (in particular stellar mass
and r-band luminosity) are painted on the haloes and subhaloes
of cosmological N-body simulations across cosmic time, following
well-defined recipes for star formation and galaxy feedback. This
procedure produces galaxies that follow relatively well the observed
properties and scaling relations.

We have chosen the second approach, because the recent SAM
by Guo et al. (2011), run on the Millennium-II simulation (Boylan-
Kolchin et al. 2009), fits well the z = 0 observations (as shown by
Guo et al.). The Millennium-II simulation involved 21603 particles
in a box of comoving size 137 Mpc, running with cosmological
parameters 	m = 0.25, 	� = 0.75, h = 0.73, and σ 8 = 0.9. The
particle mass was thus 9.5 × 106 M�.

We extracted the SAM output of Guo et al. (2011) from the
Guo2010a data base on the German Astrophysical Virtual Obser-
vatory website.5 The real-space TGs were extracted by Guo et al.
using the FoF technique applied to the particle data, with over 105

particles for groups of mass >1012 M�. The data base includes the
mass within the sphere of radius r200, where the mean mass density
is � = 200 times the critical density of the Universe, centred on
the particle in Millennium-II simulation, within the largest subhalo,
with the most negative gravitational potential (Boylan-Kolchin et al.
2009). We slightly modified the membership of the TGs by consid-
ering only the galaxies within r200.6

3.2 Construction of mock redshift-space group catalogues

We now describe the construction of the mock SDSS redshift-space
galaxy catalogue. We first note that our simulation box is not large
enough to produce a deep enough redshift-space group catalogue.
Indeed, the simulation box size limits the view to z = 0.034 from one
corner to the next, or to z = 0.058 along the longest diagonal. We
therefore replicated the simulation boxes along the three Cartesian
coordinates to reach our desired maximum radius, thus creating a
superbox. Moreover, since the SDSS survey is wider than π/2 sr
(our mock SDSS has a solid angle of 2.2 sr), we could not place
the observer at the corner of the superbox. Instead, we placed the

5 http://gavo.mpa-garching.mpg.de/Millennium/Help, see Lemson & the
Virgo Consortium (2006).
6 We kept the galaxies outside the sphere of radius r200 as possible
interlopers.
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1768 M. Duarte and G. A. Mamon

Figure 1. A representation of the full mock galaxy catalogue. Each small
box is a 137 Mpc long cube. The observer is at the large black point in the
middle of one of the square sides of the superbox.

observer at the middle of one of the sides of the superbox. Then, the
size of the superbox must be double the proper distance of 505 Mpc
to the highest redshift that we wish to sample, z = 0.126 (Table 2),
along two directions, and 505 Mpc in the third (LOS) direction.
One thus requires replicating the simulation cubes for a total of
4 × 8 × 8 = 256 simulation cubes in our superbox (see Fig. 1).
Because the redshifts are small, we only made use of the z = 0
simulation box, thus neglecting the small late evolution of group
properties.

As pointed by Blaizot et al. (2005), this procedure of replicating
can cause structures to appear periodically along the LOS. To avoid
this feature, we followed Blaizot et al., applying random transfor-
mations on the boxes: ±π/2 rotations around the three Cartesian
axes, random periodic translations and random mirror reflections
along a given axis. These transformations were applied to the phase
space coordinates of galaxies.

We derived the coordinates of the galaxies on the sky, using
standard formulae of spherical trigonometry. Absolute magnitudes
were converted to apparent magnitudes, and the flux limit of the
primary spectroscopic sample of the SDSS, r < 17.77, was applied.
We assumed here that the observer knows how to correct his sample
for Galactic and internal extinction, as well as k-correction, hence
no backward corrections were applied to our mock galaxies.

From this flux-limited sample, we constructed subsamples that
are doubly complete in distance and luminosity.7

We added the Hubble flow corresponding to the value of the
Hubble constant used in the Millennium-II (h = 0.73). For this, we
did not immediately compute LOS velocities. Instead, we derived
the galaxy redshifts, z, by first solving for the redshift zcos that a
galaxy would have with zero peculiar velocity:

dcomov(zcos) = d , (15)

(where d is the Euclidean distance to the observer in the superbox)
and then by determining the redshift given the galaxy’s LOS peculiar
velocity, vLOS

p = vp · d/d , with (Harrison & Noonan 1979)

1 + z =
√

1 + vLOS
p /c

1 − vLOS
p /c

(1 + zcos) . (16)

7 This step of flux-limited sample can be avoided, but serves to show that
our doubly complete subsamples are taken from the same parent sample.

We did not consider the SDSS limit on surface brightness, as it
only affects a small fraction of the galaxies and surface brightness
is not very well defined in the outputs of the SAM.

EG catalogues constructed as described above have two sets of
unavoidable artefacts: 1. TGs that lie close the edges of the sim-
ulation box can be split during the process of random rotation,
reflection and translation of the boxes. 2. Since the SDSS survey is
not all-sky, TGs can be cut by the edges of the survey. We there-
fore first flagged the groups in real space that were split during the
transformations (translations and rotations) of the simulation box.
We neglected holes in our survey mask caused by spectroscopic
incompleteness, bright stars, camera problems, etc., for technical
simplicity. For example, the spectroscopic incompleteness is worse
in regions of high surface density because of more frequent fibre
collisions. Simulating this would require the calibration of incom-
pleteness as a function of density in the SDSS sky and then apply
it to our mock. This is complex and may not be accurate. Also,
Berlind et al. (2006) found that fibre collisions only caused a small
decrease (0.06 dex) of the group multiplicity function. Moreover,
our goal is to test the FoF technique in a perfect situation, where all
observational errors are neglected.

The resulting mock flux-limited catalogue, shown in Fig. 2, con-
tains 823 497 galaxies.

3.3 Samples

Finally, we extracted several subsamples of galaxies and groups
from our flux-limited sample, which are complete in both distance
(volume) and luminosity (hereafter, doubly complete). We used half-
integer values for the faintest absolute magnitude. We also adopted
a minimum redshift of z = 0.01. Otherwise, at lower redshifts,
peculiar motions of galaxies are non-negligible contributors to their
redshifts, and thus contaminate the distances required to estimate
the galaxy luminosities and stellar masses.

Our adopted doubly complete galaxy subsamples are listed in Ta-
ble 2. Here, the mean density of each subsample is constant within,
contrary to the flux-limited case. Subsample 1 spans deepest down
the luminosity function to 0.09 L∗, but has five times fewer galax-
ies than the two most distant samples. However, by only selecting
galaxies more luminous than 0.9 L∗, subsample 6 is limited to some-
what rare giant galaxies.

4 T E S T I N G M E T H O D S

We tested the FoF algorithm by running it on our mock redshift-
space, doubly complete subsamples of galaxies, for a set of 16 × 16
geometrically spaced pairs of LLs. By directly comparing the prop-
erties of our EGs extracted in redshift space with their ‘parent’ TGs
in real space, we could assess the performance of the FoF in re-
covering the real space information from the projected phase space
observations. Note that TGs can have as little as one single member
galaxy. Also, galaxies in redshift space with no linked galaxies can
be considered as EGs with one single galaxy.

4.1 Linking real space and projected redshift space

There are several ways to link the EGs and TGs. We followed Yang
et al. (2007), by linking the EG to the TG that contains the EG’s
most massive galaxy (MMG), and conversely linking the TG to the
EG that contains the TG’s MMG. With this definition for linking,
we could easily associate FoF groups to real groups.
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FoF algorithm recovery of group properties 1769

Figure 2. Views of our initial, flux-limited, 2.2 sr SDSS mock galaxy catalogue, projection on the celestial sphere (left) and 3D cone (right, not sliced).
The colours provide the absolute r-band magnitude (green for low luminosity). (a) Projected space galaxy mock catalogue. (b) Redshift-space galaxy mock
catalogue.

4.2 Global tests

Our definition of the link between EGs and TGs allowed us to search
for cases where there is no one-to-one correspondence between the
groups in real and redshift space: a TG can suffer from fragmenta-
tion into several EGs, while an EG can be built from the merging
of several TGs.

Fig. 3 illustrates different cases (following an analogous figure in
Knobel et al. 2009). The top panel shows a one-to-one correspon-
dence between the true and extracted groups.

We defined a fragmented TG as one that contains the MMGs of
several EGs. Multiple situations can cause fragmentation of TGs.
In some cases, the FoF algorithm fails to recover entire TGs, se-
lecting instead its primary and secondary substructures (see panel,
Fig. 3 b). In other cases, an EG is mostly composed of galaxies from
one TG, but the MMG of another TG is ‘accidentally’ linked to the
first TG. In consequence, the EG could be linked to a TG providing
only a single member galaxy to the EG, in comparison with more
members arising from another TG. When fragmentation occurred,
we distinguished the primary EG, as that whose MMG corresponds
to the MMG of the parent TG, from the other EGs, which we called
fragments.

The dual of fragmentation is merging. In this situation, an EG
contains the MMGs of several TGs. Proceeding similarly as for the
case of fragmentation, we denoted primary TG of a given EG the
TG whose MMG corresponds to the MMG of that EG, denoting
the other TGs as secondary. An example of merging is shown in
Fig. 3(c). Note that a true group can be fragmented and its primary
extracted group can be the result of a merger of the true group with
another one, as illustrated in Fig. 3(d).

4.3 Local tests

Our local tests check the membership of the EGs. We defined com-
pleteness as the fraction of galaxies in the TG (i.e. within the sphere
of radius r200) that were members of the primary EG. Given this
definition, it did not make sense to consider the completeness for
secondary fragments, hence we limited our tests to the primary EGs.

We defined reliability as the fraction of galaxies in the EG that
were members of the parent TG (i.e. within the sphere of radius
r200). Here, we also limited our tests to the primary EGs.

Mathematically speaking, these definitions of galaxy complete-
ness, C, and reliability, R, can respectively be written as

C = TG ∩ EG

TG
,

R = TG ∩ EG

EG
.

Looking at Fig. 3, the completeness is the fraction of galaxies in
the TG (left, green circles) recovered in the EG (right, red circles),
while the reliability is the fraction of galaxies in the EG that belong
to the TG.

These four quantities allow one to define the capacity of the FoF
grouping algorithm (or any other grouping algorithm) to recover
groups in real space from galaxy catalogues in redshift space.

Note that EGs that are fragments can have high reliability, while
fragmentation causes primary EGs to have reduced completeness.
When EGs are mergers of TGs, the secondary TGs lead to a decrease
in the reliability, but can have high completeness.

4.4 Mass accuracy

There are many properties of groups that one wishes to recover with
optimal accuracy (see Section 1). We focused here on one single
property that appeared to us as the most relevant: the group total
mass. We measured the masses of our EGs using the virial theorem
formula of Heisler, Tremaine & Bahcall (1985)

MEG = 3π

G
〈R〉h σ 2

v = 3π N

2 G

∑
v2

i∑
i<j 1/Rij

, (17)

where 〈R〉h = 〈1/Rij〉−1 is the harmonic mean projected separa-
tion, while σ v is the unbiased measure of the standard deviation of
the group velocities, given as solutions of equation (16) for vLOS

p ,
replacing zcos by the redshift of the MMG of the EG.

More precisely, we computed the accuracy of the log masses,
respectively defining the bias and inefficiency as the median
and equivalent standard deviation (half 16–84 interpercentile) of
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1770 M. Duarte and G. A. Mamon

Figure 3. Schematic links between true groups (green circles) and FoF-
extracted groups, (red circles), each with their respective MMG (black dots).
The solid circles represent primary true and FoF groups, while the dashed
circles respectively correspond to secondary true groups and FoF fragments.
The cyan double arrows each indicate the one-to-one correspondence be-
tween the MMG in the true and extracted groups. The purple rightwards-
pointing arrows correspond to the MMG of a true group ending up as a galaxy
that is not the most massive of its extracted group. The purple leftwards-
pointing arrows represent the cases where the MMG of an extracted group
is not the most massive of its parent true group.

log (MEG/MTG), where MTG is the mass of the TG within the sphere
of radius r200 (see Section 4.3).

4.5 Quality

It is not simple to extract a unique pair of optimal LLs from the
four tests (fragmentation, merging, completeness, and reliability).

To reduce the number of tests, we combined fragmentation and
merging into a single global quality and combined completeness
and reliability into a single local quality.

We could define our qualities by multiplying F (fragmentation) by
M (merging) and similarly, C by R. However, one could alternatively
multiply 1 − F by 1 − M, etc. Instead, we chose quality estimates
that minimize the distance to the perfect case. The advantage of
using distance rather than multiplying probabilities is that the former
gives less weight to situations where one of the two parameters is
perfect and not the other. For example, consider the case F = M = p.
With the multiplication method, we would find that Q = p2 is also
reached with F = ε � 1, yielding Mmult = p2/ε, which can be
quite large (hence plenty of merging). On the other hand, with the
distance method, we would find that Q = p

√
2 is also reached with

F = ε � 1 for Mdist � p
√

2, which is much more restrictive. In a
perfect algorithm, fragmentation and merging do not occur, hence
F = M = 0, they are null. We therefore chose to minimize the global
quality, defined as

Qglobal =
√

F 2 + M2. (18)

Moreover, in a perfect grouping algorithm, the EGs are fully com-
plete and reliable, i.e. 〈C〉 = 〈R〉 = 1, where the means are over all
the groups of a mass bin. We, hereafter, drop the brackets, so that C
and R should now be understood as means over groups within mass
bins. We then define the local quality as

Qlocal =
√

(1 − C)2 + (1 − R)2 . (19)

Both global and local qualities tend to zero for a perfect galaxy
group algorithm. So the optimal LLs will be those that minimize
Qglobal, Qlocal, mass bias and mass inefficiency. The maximum pos-
sible value of both qualities is

√
2.

4.6 Scope of the tests

We limit our tests to TGs containing at least three galaxies and
that are not split by the transformations of the simulation box (see
Section 3.2). Moreover, we only consider EGs with at least three
galaxies and that do not lie near the survey edges (the virial radius,
2.3 Mpc, of a true group of log mass 15.2 in solar units, placed
at z = zmin = 0.01, i.e. at an angle of more than 3.◦27) or redshift
limits (1.8 v200 ≈ 2.7 σ v , of the same mass group, corresponding
to 3073 km s−1). Typically, 60 per cent (sample 2) to 25 per cent
(sample 6) of the groups are flagged (see Appendix B). Finally, the
tests of galaxy completeness and reliability, as well as mass bias and
inefficiency, are restricted to primary EGs of TGs (not fragments).

5 R ESULTS

We have applied the FoF algorithm on near and distant doubly
complete subsamples (numbers 2 and 6 in Table 2), repeating the
tests for a grid of 16 × 16 geometrically spaced pairs of LLs. The
results of our tests are shown in Figs 4–10. The LLs of the different
grouping studies listed in Table 1 are shown, except for Merchán
& Zandivarez (2002), whose LLs nearly overlap with those of Eke
et al. (2004).

5.1 Group fragmentation and merging

Fig. 4 indicates that, for the nearby doubly complete subsample
(number 2), fragmentation only affects the massive TGs (up to
≈80 per cent of them for popular LLs), while Fig. 5 shows that,
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FoF algorithm recovery of group properties 1771

Figure 4. Contours of group fragmentation (first column) and merging (second column), as well as mean galaxy completeness (third column) and reliability
(fourth column) computed for a 16 × 16 grid of LLs for the nearby doubly complete galaxy subsample 2 in Table 2. Results are shown for three bins of
true group masses, for unflagged groups of at least three members (for both the extracted and parent groups), and further restricted to primary groups in the
completeness and reliability panels. Pairs of LLs corresponding to previous are also shown as red letters (H: Huchra & Geller 1982; R: Ramella et al. 1989; t:
Trasarti-Battistoni 1998; E: Eke et al. 2004; B: Berlind et al. 2006; T: Tago et al. 2010; R: Robotham et al. 2011; T: Tempel et al. 2014).

Figure 5. Same as Fig. 4, but where the different rows correspond to different bins of extracted group masses estimated from the virial theorem. The white
zones show cases where the LLs led to no unflagged groups extracted.
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1772 M. Duarte and G. A. Mamon

Figure 6. Same as Fig. 4, but for the distant doubly complete galaxy subsample 6 in Table 2.

Figure 7. Same as Fig. 6, but where the different rows correspond to different bins of estimated masses.

for popular LLs, the fragmentation is lower (10–30 per cent) at
high EG mass, hence fragment masses tend to be small (typically
20–40 per cent fragmentation at small and intermediate estimated
masses).

On the other hand, the distant doubly complete subsample be-
haves in almost the opposite manner: fragmentation is most impor-

tant at the lowest TG masses (roughly 50 per cent fragmentation,
Fig. 6) and is independent of estimated EG masses (at roughly
20–30 per cent; Fig. 7).

In any event, fragmentation tends to decrease with greater LLs,
as expected, although it decreases somewhat faster with increasing
b⊥ than with increasing b‖.
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FoF algorithm recovery of group properties 1773

Figure 8. Global and local quality factors in a 16 × 16 grid of LLs for subsamples 2 (left) and 6 (right), in three bins of true masses. Results are shown for
unflagged groups (restricted to primary groups for Qlocal) of at least three members (in both the true and extracted group). The symbols are as in Fig. 4.

Figure 9. Same as Fig. 8 but in bins of estimated masses. The white zones show cases where the LLs led to no unflagged groups extracted.
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1774 M. Duarte and G. A. Mamon

Figure 10. Bias (μ) and inefficiency (σ ) of the group masses estimated by the virial theorem (equation 17) on our 16 × 16 grid of LLs, in four bins of extracted
group richness (we do not consider extracted groups for which the parent true group has ≤3 members). The bias and inefficiency are respectively computed as
the median and half 16–84 interpercentile of log10(MEG/MTG). Results are shown for primary, unflagged groups. The left and right panels are, respectively,
for galaxy subsamples 2 and 6. The symbols are as in Fig. 4. The white zones indicate LLs with no unflagged groups extracted.

Since merging is the dual of the fragmentation, one expects the
level of merging to vary in the opposite way as fragmentation.
Indeed, Figs 5 and 7 indicate that merging becomes more important
at higher estimated masses, respectively reaching up to 90 per cent
and 65 per cent for high estimated masses with popular choices of
LLs in subsamples numbers 2 and 6. However, Figs 4 and 6 show
that the merging fraction increases only slowly with TG increasing
mass, with typically 15–40 per cent (increasing fast with b⊥) of the
TGs being merged with other ones. Finally, merging decreases with
smaller LLs, especially with smaller b⊥.

Figs 8 and 9 show the Qglobal quality indicator that combines
fragmentation and merging into a single parameter. These fig-
ures show that decreasing b⊥ leads to a better tradeoff between
fragmentation and merging, i.e. that the decrease of merging with
decreasing b⊥ has a stronger effect than the increase of fragmen-
tation with decreasing b⊥: the optimal Qglobal is often reached for
b⊥ < 0.02.

5.2 Galaxy completeness and reliability

Figs 4 and 6 indicate that completeness is very high (>99 per cent) at
low TG masses, and decreases to lower values (60 − 99 per cent) at
high TG mass. A weaker trend occurs when EG mass is substituted
for TG mass (see Figs 5 and 7). Since high-mass TGs are less
complete, their estimated masses should be smaller, and the EGs
with high masses will be the lucky complete ones, which explains
the weaker trend of completeness with EG mass. Note that we are
only considering primary groups of at least three members. The
transverse and LOS LLs have roughly the same impact on galaxy
completeness.

The reliability of the group membership decreases with increas-
ing EG mass (Figs 5 and 7): regardless of the subsample, the relia-
bility is 80–90 per cent for low-mass EGs, but only 50–85 per cent
for high-mass EGs. The value of b‖ has virtually no effect on galaxy
reliability. We will discuss this lack of convergence of the reliability
with b‖ in Section 6.

Galaxy reliability also decreases with the masses of the TGs,
but the trend is weaker (Figs 4 and 6): as the reliability decreases
from 85–95 per cent to 60–90 per cent, roughly independent of the
subsample.

The right panels of Figs 8 and 9 show that, again, the transverse
LL appears to be more decisive than the LOS one when combining
galaxy completeness and reliability into a single local quality factor.

5.3 Mass accuracy

The left columns of the two panels of Fig. 10 show that the primary
EG masses recovered by the FoF algorithm are systematically biased
low: for the popular choices of LLs, the bias (μ) is as strong as
−0.6 ± 0.2 dex at low multiplicity (3 ≤ NEG ≤ 6), decreasing to
0.0 ± 0.3 dex at high multiplicity (NEG ≥ 30).

The right columns of the two panels of Fig. 10 indicate that,
even if the biases could be corrected for, the masses cannot be
recovered to better than 0.8–0.9 dex at low multiplicity, improving
to 0.2 dex at high multiplicity. The inefficiency (σ ) is minimal
for b⊥ ≈ 0.05 (within a factor of 2) and b‖ ≈ 1.0 (low richness)
or b‖ � 1.0 (intermediate and high richness). For transverse LLs
within 40 per cent of b⊥ = 0.1, the inefficiency is not very insensitive
to b‖.
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FoF algorithm recovery of group properties 1775

The situation becomes even worse when fragments are included
in the statistics. In this work, we have separated the accuracy of
the group masses with the occurrence of group fragmentation. But
observers cannot tell if a group is a fragment or a primary EG.

6 C O N C L U S I O N S A N D D I S C U S S I O N

Before testing the FoF algorithm using a mock galaxy catalogue
in redshift space, we first argued on physical grounds (Section 2.1)
that the normalized transverse LL ought to be b⊥ ≈ 0.10 (slightly
increasing with richness) to extract 95 per cent of the galaxies within
the virial radius of NFW true groups. We also argued that, restricting
the galaxies along the LOS to ±1.65 σ v (95 per cent of the galaxies)
for groups defined to be 200 times denser than the critical density
of the Universe requires b‖/b⊥ ≈ 11, hence b‖ � 1.1. These LLs are
estimated from our mocks that are based upon the Millennium-II
simulation that had adopted 	m = 0.25. Converting to 	m = 0.3
yields b⊥ = 0.11 and b‖ = 1.3. Finally, estimating the contami-
nation by interlopers, we predict between 80 per cent (NFW model
extended outwards) to 90 per cent (NFW model truncated to sphere
plus random interlopers) galaxy reliability.

We then built a mock redshift-space galaxy catalogue with the
properties of the flux-limited SDSS primary spectroscopic sample,
from which we extracted two subsamples that are doubly complete
in distance and luminosity (Section 3). We extracted groups from
both of these subsamples, running the standard FoF algorithm for
16 × 16 pairs of LLs. In each case, we measured the fraction of
true groups that were fragmented in the FoF extraction process, the
fraction of extracted groups that were built by the merging of several
true groups, as well as the bias and inefficiency with which the group
masses were extracted. Moreover, we computed the completeness
and reliability of the galaxy membership relative to the spheres of
radius r200 in which the true groups are defined.

We analysed group fragmentation, merging, galaxy completeness
and reliability, mass bias and inefficiency for two doubly complete
subsamples and in bins of true and estimated mass or estimated
richness (for the mass accuracy).

We found that massive true groups are more prone to fragmenta-
tion, as expected, but that, for popular choices of LLs, the probability
of fragmentation is greatest (30 per cent) at low estimated mass, i.e.
the fragments are of low mass. The process of fragmentation of
rich (massive) groups is similar to images of large galaxies being
preferentially fragmented by automatic image extraction pipelines
(e.g. De Propris et al. 2007).

Group merging is low at low estimated mass, but increases dras-
tically to reach 40–90 per cent (for popular LLs) at high estimated
mass. Galaxy completeness is high, typically >80 per cent. Galaxy
reliability is typically 75 to 90 per cent depending on group mass.

Our analytical prediction of 95 per cent completeness for
b⊥ � 0.10 is only met for groups of high true masses (Figs 4
and 6). Groups of low mass will have more concentrated galaxy
populations, which will lead to smaller values of Max(S⊥)/r200,
hence smaller values of b⊥. Also, our analytical prediction of 80–
90 per cent reliability for groups with b⊥ = 0.10, b‖ = 1.1 is accurate
for groups of all masses of the distant subsample (Fig. 6). However,
for the nearby subsample (2), our predicted reliabilities are only
accurate for groups of low true masses, but optimistic for higher
mass groups, for which R � 70–75 per cent.

Group merging and galaxy reliability depend little on b‖, es-
pecially at high transverse LL, b⊥ > 0.1, where the galaxies are
extracted to projected radii beyond r200, hence the contamination
by interlopers is mainly in the transverse direction. This lack of

Figure 11. Variation of the mass bias and reliability as a function of b‖ for
b⊥ = 0.1, for subsamples 2 (left) and 6 (right).

optimal b‖ for galaxy reliability may seem surprising at first. We
checked our analysis by measuring the reliability for b⊥ = 0.1, for
a very wide range of b‖ extending from 0.3 to 40. The top panels
of Fig. 11 indicate that the reliability does end up decreasing fairly
fast beyond some large value of b‖ � 6, i.e. beyond the limits of
Figs 4 and 6. The second row of panels of Fig. 11 shows a different
behaviour in bins of estimated mass. This is the consequence of
the estimated mass increasing very fast with b‖, as shown in the
bottom panels of Fig. 11. The increase, with increasing b‖, of the
mass bias is qualitatively parallel to the corresponding decrease of
the reliability (in bins of TG mass). At low b‖, the reliability de-
creases fairly rapidly and the mass bias increases rapidly (towards
zero), then both settle into an almost constant plateau in the range
1.4 � b‖ � 8, then both worsen rapidly up to b‖ � 25, beyond
which both saturate, because the longitudinal link is so large that
one reaches the minimum and maximum redshifts of the subsample,
where most groups are flagged. Massive groups that are built from
TG merging can be fairly reliable if the secondary TGs have negli-
gible mass relative to the primary one. This explains why R remains
fairly high when M is high. The plateau around b‖≈3 appears to
represent the range of optimal longitudinal LLs.

An illustration is given in Fig. 12, where a given EG has reached
the limits of the catalogue with a very large value of b‖. Fig. 12 also
shows that interloping TGs are highly clustered. This may explain
why increasing b‖ has only a small effect on galaxy reliability: there
is a void behind the main TG (black outer circles).

While fragmentation, measured in bins of true group mass, de-
creases with increasing b‖, as expected (Figs 4 and 6), we find that
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Figure 12. An example of group and halo for b‖ = 20.8 and b⊥ = 0.1 for
subsample 4. The width of the cone is exaggerated by a factor of roughly 5
for illustrative purposes. Outer and inner circle colours respectively refer to
the TGs and EGs. The horizontal green and red lines, respectively, indicate
the maximum redshift, zmax and the redshift where galaxies are flagged for
being close to zmax. Some galaxies of the red EG, whose TG is the black one,
are flagged for being close to zmax, hence the group would not be considered
in our tests.

in bins of estimated mass, the fraction of groups that are (secondary)
fragments increases with b‖ (Figs 5 and 7). We believe that this is
caused by interlopers increasing the group estimated mass (Fig. 11).

The masses, estimated with the virial theorem (equation 17), are
a strong function of the multiplicity of the extracted group. The
estimated masses are systematically biased low, especially for low
extracted group multiplicities (typically by a factor of 4!). Similar
trends have been found for FoF groups (Robotham et al. 2011) and
for other, mostly dynamical, group mass estimators (Old et al. 2014).
The estimated group masses are inaccurate, even after correcting for
the biases: the typically errors are 0.8–0.9 dex at low multiplicity,
decreasing to 0.2 ± 0.1 dex at high multiplicity.

The optimal completeness and reliability of the galaxy member-
ship lead to fairly extreme LLs, i.e. b⊥ < 0.1 and b‖ > 2. However,
the use of such a small transverse LL amounts to extracting the
inner regions of groups, thus missing their outer envelopes. Indeed,
one notices that fragmentation worsens at increasingly lower values
of b⊥. Therefore, our attempt to define a local quality by combining
galaxy completeness and reliability is of little use if one wishes to
recover galaxies out to close to the virial radii of groups.

In fact, the optimal LLs depend on the scientific goal:

(i) statistical studies of environmental effects require high relia-
bility (say R > 0.9), accurate masses and, to a lesser extent, minimal
fragmentation.

(ii) cosmographical studies of group mass functions require ac-
curate masses, minimal group merging and fragmentation.

(iii) studies for followups at non-optical wavelengths (e.g.
X-rays) benefit from high completeness.

For statistical studies of environmental effects, it seems best to
adopt b⊥ � 0.06, b‖ ≈ 1.0, for which the reliability is roughly as high
as it gets for the choice of b⊥: over 90 per cent at low MEG and over
80 per cent at intermediate and high MEG. Then, the completeness
is higher than 70 per cent at high estimated mass and much higher
at low MEG. The mass inefficiency is minimal, but with this choice
of LLs, there will be virtually no EGs with more than 30 galaxies
in the distant more luminous subsample (Fig. 10).

This choice of LLs is close to that of Robotham et al. (2011),
which may seem obvious since both studies used some form of
optimization of the LLs. However, the details of the optimization
criteria are somewhat different: Robotham et al. multiplied four
criteria: basically the group completeness and reliability, which
bears some resemblance to our group fragmentation and merging,
but theirs is based on TG-EG pairs that have more than half their
galaxies in common, as well as two measures of a combination of
galaxy completeness and reliability, averaged over TGs and EGs,
respectively. Our analysis differs in that we directly constrained
group fragmentation and merging, as well as galaxy completeness
and reliability for primary fragments, and finally mass accuracy.

For cosmographical and other studies involving accurate group
mass functions, it appears best to adopt b⊥ � 0.05, b‖ � 2, as
lower b‖ increases fragmentation (Figs 5 and 7), while higher b‖
causes too high group fragmentation at high EG masses. This value
of b‖ � 2 is in agreement with the intersection of the regions of
(b⊥, b‖) space that optimize both the multiplicity function and ve-
locity dispersions obtained by Berlind et al. (2006).

Finally, for non-optical followups, for which galaxy complete-
ness is perhaps the sole important parameter, one should privilege
large LLs, e.g. b⊥ � 0.2, b‖ � 2–4. However, one can also adopt
b⊥ = 0.1, b‖ � 2–4, for which the completeness is greater than
95 per cent at all masses and for both subsamples.

Converting from 	m = 0.25 (Millennium-II Simulation) to
	m = 0.3 (WMAP-Planck compromise), b⊥ must be increased
by 6 per cent (equation 4) to b⊥ � 0.07 for the choices optimizing
environmental or cosmographical studies. Since b‖/b⊥ is indepen-
dent of 	m at given �, b‖ must also be increased by 6 per cent, i.e.
to b‖ ≈ 1.1 for environmental studies.

We finally note that while high estimated mass group fragmenta-
tion and merging depend on the particular doubly complete subsam-
ple, galaxy completeness and reliability as well as mass accuracy
depend little on the subsample. Berlind et al. (2006) had similarly
concluded that the doubly complete subsample influenced little their
tests of the group multiplicity function and the accuracy of projected
radii and velocity dispersions.

FoF grouping techniques can be used as a first guess for other
more refined grouping methods (Yang et al. 2005, 2007). In a future
paper (Duarte & Mamon, in preparation), we will present another
grouping algorithm, which is not an FoF, but is instead a proba-
bilistic grouping algorithm that is built upon our current knowledge
of groups and clusters (partly from X-rays and independent of FoF
analyses of optical galaxy samples) and from cosmological N-body
simulations.
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Mamon G. A., Biviano A., Boué G., 2013, MNRAS, 429, 3079
Marinoni C., Davis M., Newman J. A., Coil A. L., 2002, ApJ, 580, 122
Martı́nez V. J., Saar E., 2002, Statistics of the Galaxy Distribution. Chapman

& Hall, CRC [chapter 7.8]
Mauduit J.-C., Mamon G. A., 2007, A&A, 475, 169
Merchán M., Zandivarez A., 2002, MNRAS, 335, 216
Moore B., Frenk C. S., White S. D. M., 1993, MNRAS, 261, 827
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A P P E N D I X A : G A L A X Y S E A R C H

Implementing galaxy grouping algorithms, such as FoF, requires
the search for galaxy neighbours, which can be very time consum-
ing if one computes all N(N − 1)/2 separations between the N
galaxies. We proceed in two steps, first selecting galaxies meeting
the transverse link, then restricting these galaxies to those that also
meet the LOS link. We built a two-dimensional grid on the sky co-
ordinates with constant steps in declination and steps proportional
to 1/cos δ in right ascension so that the length in right ascension
(at the mean declination of the band of cells) is roughly equal to
the step in declination. For each galaxy, we determine the cells that
require searching for neighbours, and then we search using spher-
ical trigonometry relations (see an illustration of this method in
Fig. A1). The LOS link is then checked (without subdividing into
LOS cells).

The computer time required to build the FoF groups is substan-
tially reduced compared to the brute-force computation between
pairs. The bottleneck of our tests in;volves the computation of the
harmonic mean radius when measuring the EG mass by the virial
theorem (equation 17).

A P P E N D I X B : FR AC T I O N O F FL AG G E D
G RO U P S

Fig. B1 displays the fraction of flagged groups, either because
their parent groups were split in the simulation box transformations

Figure A1. An illustration of the grid on the celestial sphere for a fast
search of neighbours. Selected boxes to search are highlighted, for the given
angular distance from the central point (red line). Note that both the search
angle and the cell size are greatly exaggerated for illustrative purposes.
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Figure B1. Fraction of selected groups flagged as either split by the trans-
formations of the simulation box or lying close to the edges of the mock
galaxy survey for catalogues 2 (top) and 6 (bottom), in bins of true and
estimated masses.

(Section 3) or because they are close to the survey edges and redshift
limits. The fractions of flagged galaxies are greater in the nearby
samples, because the survey edges and redshift limits are more
important in this smaller volume sample.
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