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In a previous work we obtained a set of necessary conditions for the linear approximation in cosmology.
Here we discuss the relations of this approach with the so-called covariant perturbations. It is often argued
in the literature that one of the main advantages of the covariant approach to describe cosmological
perturbations is that the Bardeen formalism is coordinate dependent. In this paper we will reformulate the
Bardeen approach in a completely covariant manner. For that, we introduce the notion of pure and mixed
tensors, which yields an adequate language to treat both perturbative approaches in a common framework.
We then stress that in the referred covariant approach, one necessarily introduces an additional hypersurface
choice to the problem. Using our mixed and pure tensors approach, we are able to construct a one-to-one
map relating the usual gauge dependence of the Bardeen formalism with the hypersurface dependence
inherent to the covariant approach. Finally, through the use of this map, we define full nonlinear tensors that
at first order correspond to the three known gauge invariant variables Φ,Ψ and Ξ, which are simultaneously
foliation and gauge invariant. We then stress that the use of the proposed mixed tensors allows one to
construct simultaneously gauge and hypersurface invariant variables at any order.

DOI: 10.1103/PhysRevD.89.103538 PACS numbers: 98.80.-k, 04.20.Cv, 04.25.-g, 98.80.Jk

I. INTRODUCTION

The cosmological perturbations formalism provide an
important tool to study the evolution of inhomogeneities in
the standard cosmological model. However, since its initial
development [1,2], the gauge-problem has raised several
issues concerning the physical interpretation of such per-
turbations. After a quite long discussion, it appeared in the
literature twomain approaches to deal with such difficulties.
In a pioneering paper [3] Hawking introduced the so-called
covariant approach, which was later used by many authors
[4–21] to define gauge invariant (GI) variables associated
with the gradients of background scalar quantities and the
Weyl tensor. The second approach was developed by
Gerlach and Sengupta [22] and then by Bardeen [23] in the
cosmological scenario. In the latter paper, Bardeen con-
structed GI variables as combinations of the metric pertur-
bations within a specific coordinate system. Even though
Bardeen’s approach may seem straightforward, its imple-
mentation rapidly becomes very involved, and in a sense
continues to be coordinate dependent since one has to start
with gauge dependent equations and variables and then
combine them in a gauge invariant form.
Generally, metric perturbations are defined through the

specification of a background metric written in a specific
coordinate system, and then defining its perturbations as

differences of the physical metric tensor from this fiducial
background metric. In this scenario, the gauge freedom that
appears in the perturbations are associated with the freedom
in the different possible ways to map the physical spacetime
with respect to the background manifold used as a reference
(see for instance [24]).
The physical meaning of Bardeen’s GI variables has

been discussed in [23] by analyzing them in different
gauges. Complementarily to this work and, as an effort to
make a contact between the two formalisms, in Bruni et al.
[7] the authors investigated their meaning by using the
covariant scenario. Their approach was to calculate the
covariant perturbations in a specific coordinate system and
compare them with Bardeen’s variables.
Apart from the GI variables, the meaning of the gauge

transformations themselves has also been investigated by
Stewart and Walker in [25,26]. Among other results, in
these papers the authors address the tensorial decomposi-
tion into scalar, vector and tensor variables. Their approach
consists in considering a smooth family of spacetimes
parametrized by some parameter ϵ, and the perturbation as
the first order expansion of the metric with respect to this
parameter. This method has also been used by Wald [27] to
give a formal description of a generic metric perturbation.
The purpose of this work is to understand more deeply

the relation between the two above mentioned approaches
to the theory of cosmological perturbations, and to present
some new improvements in these formalisms. First of all,
we present the Bardeen approach in a complete covariant
way. With this aim, we introduce a new classification of
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tensors in terms of the fundamental objects used in their
definitions. We call mixed tensors the elements of the set of
all geometrical objects which necessarily combine back-
ground and physical tensors in their definitions, while pure
tensors are the elements of its complement. The gauge
dependent Bardeen variables can be obtained from these
mixed tensors, even if their background values are null or
constant because such mixed tensors do not satisfy the
Stewart-Walker lemma [25,26], only pure tensors do.
On the other hand, the covariant approach defines the

cosmological perturbations in terms of pure tensors, using
only physical geometrical objects. Hence, even in the case
where their background values are null or constant, guar-
anteeing their gauge invariance, they are intrinsically
foliation dependent. As a consequence, while the Bardeen
approach has its well known gauge dependence, the covar-
iant formalism contains a dependence on the spacelike
hypersurfaces one uses to perform the spacetime foliation.
Using our new classification,we compared both formalisms.
We have shown that, besides their dynamical equivalence,
their indeterminacies are complementary. The usual gauge
dependence appearing in the Bardeen approach can be one-
to-one mapped into the hypersurface choice dependence.
The natural question that appears is whether there are

variables that are simultaneously foliation and gauge
invariant. The answer is affirmative, and we have presented
a general way to construct full nonlinear tensors that at first
order are simultaneously foliation and gauge invariant, and
how they are related to the electric part of the Weyl tensor,
which is also gauge and foliation independent at first order.
The definition of these tensors can be made using either
pure tensors or mixed tensors, hence they are common to
the new covariant Bardeen approach and the usual covar-
iant approach. Their scalar parts correspond exactly to the
Bardeen gauge invariant potentials, hence showing that
these potentials are a particular combination that at first
order are not only gauge invariant, as is well known, but
also foliation independent.
In Sec. II we will briefly review the metric perturbation

formalism and show how one can define metric perturba-
tions in a completely covariant way. This method is generic
and valid for an arbitrary background metric. During this
process, we will introduce the concept of pure and mixed
tensors, which gives an adequate common language to treat
both the already usually covariant [3,4] and Bardeen’s [23]
approaches in the same framework.
In Sec. III we define the kinetic variables for pure and

mixed tensors. Additionally, their decomposition are rela-
ted to the gauge freedom and the choice of the spacetime
foliation. By controlling their variations, it is possible to
relate these two freedoms, and at first order one canmap one
into the other directly. As a bonus, our method has shown to
be much simpler then others to do calculations in a gauge
free manner (without choosing any gauge). For instance, in
[28] (from now on VFP) we have used this method to obtain

the perturbed second order Lagrangian for an arbitrary back-
ground in a foliation free manner. Most of the perturbative
expansions that we shall use here were carefully obtained
in VFP, hence we maintain the same notation introduced
in Sec. II of VFP.
Following this discussion, in Sec. IV we construct

nonlinear tensors whose first order perturbations give us
the usual GI variables. In particular, the procedure we use to
define these tensors is that at first order they should give
foliation independent variables. In this way, the Bardeen
potentials are special not only for being GI variables, but
also for being foliation independent. Finally, in Sec. VI we
conclude with final remarks.

II. PERTURBATIONS BY MEANS OF PURE
AND MIXED TENSORS

A gauge theory is one in which the specification of the
dynamical variables depends on functions which can be
arbitrarily chosen at any instant of time [29]. Any change
on this choice is called a gauge transformation. Of course
the physical observables of a gauge theory should not
depend on these arbitrary functions, hence they should be
invariant under gauge transformations (they should be
gauge invariant quantities). In electromagnetism, the vector
potential depends on the choice of some scalar functions,
but the physical electric and magnetic fields do not depend
on them, and so they are gauge invariant quantities.
Any generally covariant theory is a gauge theory: the

specification of the dynamical variables depends on the
coordinate system one is choosing, and this choice is
arbitrary.AsGeneral Relativity (GR) is a generally covariant
theory, it is also a gauge theory, whose gauge group of
transformations is the manifold mapping group (MMG).
However, this is not a peculiarity of GR as long as any field
theory can be put in a general covariant form [27,30]. The
difference arises when one wants to establish the symmetry
group of GR (sometimes called invariance group, or proper
gauge group [30,31]), which is the subgroup of theMMG
which keeps invariant the absolute objects of the theory
written in the coordinate system where they assume their
simplest form. For instance, in a generally covariant field
theory in flat spacetime (special relativity), the flat metric is
not subjected to any dynamics. It is a given external and
absolute object which is present whatever field configura-
tion one constructs. The metric is insensitive to any initial
conditions onemight give to the physical system.Hence, the
symmetry group of any generally covariant field theory in
special relativity is the Poincarè subgroup of theMMG, and
the preferred coordinate system inwhich the flatmetric takes
its simplest Minkowski form is the Cartesian coordinates.
The peculiarity of GR, which gives rise to its name, relies

on the fact that there is no absolute or external object in GR:
all quantities, including geometry itself, are subjected to
dynamical laws, and any physical change of initial con-
ditions modify the future development of all geometrical
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objects of the theory. Therefore, the symmetry group of GR
coincides with its gauge group, the MMG. As a conse-
quence, there is no preferred coordinate system, or a pre-
ferred gauge fixation. In GR, one must rely on gauge
invariant quantities, which are the values of tensor fields
and/or particle positions with respect to other tensor fields
and/or particle positions, including the gravitational field
itself (identified with the geometry of spacetime). The values
of the tensor fields at a point on the manifold are not gauge
invariant quantities because such points do not have a
physical meaning. As an example, geodesics are not gauge
invariant quantities, hence they are not observables, while
geodesic deviations are.
Nevertheless, the situation is more involved when one

turns to the theory of perturbations in GR, which is the
suitable framework when the physical system possesses
some underlying approximate symmetry. By this we mean
that geometrical objects on the physical manifold change
infinitesimally under some restrict group of finite trans-
formations, which is a subgroup of the MMG. In this
case, one can define geometrical objects which are exactly
invariant under this subgroup of transformations, Q̄ðxÞ,1
which we call background geometrical objects. In this
context, the perturbation of an arbitrary physical tensor Q,
can be defined as

δQðxÞ ¼ QðxÞ − Q̄ðxÞ; ð1Þ

where Q̄ stands for the background variable, where we
assume that the quantity δQðxÞ is small in some sense
[27,32]. Assuming that one has a covariant way to measure
the size of the perturbations (see for example [33]), then,
since δQðxÞ is a tensor, any general infinitesimal gauge
transformation belonging to the MMG group in which all
objects are transformed will not alter the size of the pertur-
bations. However, there is an arbitrariness on the way the
background tensors are introduced in the physical manifold.
They are naturally defined in a background manifold Mbg
and one should define them in the physical manifold M
through a diffeomorphism. Hence, consider a certain
manifoldMbg with a given riemannian metric qμν and other
tensor quantities, and a smooth family of diffeomorphisms
ϒλ: I ×Mbg → M fromMbg to the actual physical manifold
M that depends on some parameter λ defined in the interval
I ¼ ½0; b� for some real number b. For each value of λ, we
can define a bijective tensor map from Mbg to M as ϒ�

λ .
Through this bijective map, we can define the background
metric inM as ḡμν ≡ϒ�

0qμν.
2 In fact, tomake contactwith the

usual language in cosmological perturbation scenarios, we
shall call any tensor brought fromMbg toM as a background

quantity, and any tensor defined strictly on M as a physical
tensor.3 In addition, in M we can also define two distinct
covariant derivatives, one for eachmetric.Thus,wedefine the
covariant derivatives∇μ as the operator compatible with gμν
and ∇̄μ compatible with ḡμν.
The main assumption in the perturbation theory is that

the difference

δgμν ≡ gμν − ḡμν;

which we shall call metric perturbation, is small in some
sense. For a small λ, we have that the new background
metric reads

ḡðλÞμν ¼ ϑ−1�λ ḡμν ≈ ḡμν þ £Aḡμν;

where the infinitesimal vector field Aμ, of order λ, is the
tangent field to pðλÞ≡ϒλðpÞ in M. Therefore, for small
values of λ, the new metric perturbation reads

δgðλÞμν ¼ gμν − ðḡμν þ £AḡμνÞ ¼ δgμν − 2∇̄ðμAνÞ: ð2Þ
Note that different values of λ define different back-

ground metrics on the physical manifold, but this arbitrari-
ness in the introduction of the fiducial background metric
must be limited to the above mentioned assumption that
one needs ∇̄ðμAνÞ to be small in the same sense as δgμν.

4

It is worth emphasizing the difference between the above
transformation with a general infinitesimal gauge trans-
formation in M associated with an infinitesimal coordinate
transformation. Given gμν and ḡμν, which are true tensors
in M, such a coordinate transformation generated by an
infinitesimal vector field Bμ changes them as

gμν ⟶ gμν þ £Bgμν ≈ gμν þ £Bḡμν;

ḡμν ⟶ ḡμν þ £Bḡμν;

where in the above approximation we neglected second
order terms. Clearly, metric perturbations, as well pertur-
bations of any other geometrical object defined in the same
way, are invariant under such transformations, i.e.,

~δgμν ≈ ðgμν þ £BḡμνÞ − ðḡμν þ £BḡμνÞ ¼ δgμν: ð3Þ

Indeed, δgμν being defined as the difference of two
tensors it is also a true tensor and as such it is covariant
under general coordinate transformations. Note however
that δgμν is not invariant under the change of diffeo-
morphism described above [see Eq. (2) and compare it
with Eq. (3)]. Of course this is true for perturbations of any

1Here we will omit the indexes for simplicity.
2For the moment we restrict our analysis to the metric tensor,

but the above reasoning can be extended to any other geometrical
object defined on Mbg. All metrics have signature ð−1; 1; 1; 1Þ.

3The term “perturbed tensor” is often used for these objects.
However, “physical tensor” seems more suitable to avoid mis-
understanding with the perturbations that are defined as the
difference of these objects with background tensors.

4Note that this is a sufficient but not necessary condition: as
mentioned above, if Aμ is a Killing vector of ḡμν the perturbation
remains small for any value of λ.
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kind of geometrical objects inasmuch under any diffeo-
morphism change from ϒ0 to ϒλ, all background tensors
are transformed, while all physical quantities are kept fixed
since they are defined independently of the background
manifold Mbg and ϒλ. For instance, consider an arbitrary
background tensor

T̄ μ1μ2…μl
ν1ν2…νm ≡ϒ�

0T
∘ μ1μ2…μl
ν1ν2…νm ;

and a similar tensor T μ1μ2…μl
ν1ν2…νm defined in M. Under a

change in the diffeomorphism ϒ0 → ϒλ we have

T̄ μ1μ2…μl
ν1ν2…νm ⟶ T̄ μ1μ2…μl

ν1ν2…νm þ £AT̄
μ1μ2…μl

ν1ν2…νm ;

T μ1μ2…μl
ν1ν2…νm ⟶ T μ1μ2…μl

ν1ν2…νm :

One can then combine the above transformation with a
small general coordinate transformation generated by the
vector field Bμ, yielding

T̄ μ1μ2…μl
ν1ν2…νm ⟶ T̄ μ1μ2…μl

ν1ν2…νm þ £AþBT̄
μ1μ2…μl

ν1ν2…νm ;

T μ1μ2…μl
ν1ν2…νm ⟶ T μ1μ2…μl

ν1ν2…νm þ £BT
μ1μ2…μl

ν1ν2…νm :

Hence, the most general way a perturbation can be
transformed is given by

δT ≡ T − T̄ ⟶ δT þ £BT − £AþBT̄

≈ δT − £AT̄; ð4Þ

where the indexes have been omitted, and in the last
approximation we neglected second-order terms.
Note that the final result can be obtained, without loss of

generality, by choosing Bμ ¼ −Aμ from the beginning,
yielding

T̄ μ1μ2…μl
ν1ν2…νm ⟶T̄ μ1μ2…μl

ν1ν2…νm ;

δT μ1μ2…μl
ν1ν2…νm ⟶δT μ1μ2…μl

ν1ν2…νm − £AT̄
μ1μ2…μl

ν1ν2…νm :

ð5Þ

This is a very convenient choice given that this specific
combination of transformations keeps the functional form
of the background tensors the same, and this form should
be chosen as the simplest one associated with the preferred
coordinate system induced by the underlying symmetry
group of the background.
It is this combined transformation (diffeomorphism ⊕

coordinate) which is designated as a gauge transformation
in the context of perturbation theory in GR. Note that it
has different actions on the background and physical
geometrical objects, contrary to the usual infinitesimal
gauge transformations of GR, and it should also keep
the perturbations small. One can identify it as an approxi-
mate symmetry group induced by the presence of an extra
structure, which is the background manifold and its

associated geometrical objects. These objects also induce
a preferred coordinate system on the physical manifold,
from which one can move just through infinitesimal
coordinate transformations. The arbitrariness on the way
one introduces this background structure in the physical
manifold is at the basis of the gauge dependence of the
perturbation problem in GR. Hereafter, a gauge trans-
formation shall mean exactly the above chain of trans-
formations with Bμ ¼ −Aμ.
Given the transformation rule for perturbed tensors

Eq. (5), the Stewart and Walker (SW) lemma [25] defines
the conditions under which £AT̄

μ1μ2…μl
ν1ν2…νm ¼ 0, and hence

the conditions for δT μ1μ2…μl
ν1ν2…νm to be GI. Basically, this

lemma states that first-order perturbation of any tensor
which is null or a combination of constants with
Kronecker deltas in the background is GI. However,
within this lemma there is a hidden assumption that is
sometimes overlooked.
The perturbation δT μ1μ2…μl

ν1ν2…νm is defined as the differ-
ence T μ1μ2…μl

ν1ν2…νm − T̄ μ1μ2…μl
ν1ν2…νm . The conditions in the SW

lemma are sufficient only if the tensor T μ1μ2…μl
ν1ν2…νm is

defined solely in terms of quantities from the physical
manifold, i.e., defined independently of Mbg and ϒ0.
Generically, if in the definition of T μ1μ2…μl

ν1ν2…νm we also use
any background tensor, then even if the background tensor
T̄ μ1μ2…μl
ν1ν2…νm is a simple constant its perturbation might not

be gauge invariant.
This is a very important distinction that deserves a clear

terminology. Thus, we propose the following classification.
Any tensor that is defined strictly in terms of objects
from a single manifold we shall call a pure tensor.
Complementarily, a tensor that involves objects from both
manifolds in its definition we shall call a mixed tensor, i.e.,
it mix objects from the fiducial manifold Mbg with objects
from the physical spacetime M. By definition, any back-
ground tensor is a pure tensor inasmuch as it is defined
solely in terms of tensors fromMbg and the diffeomorphism
to map it to M.
The extension of this terminology to perturbed tensors

is straightforward. A perturbed tensor shall be called a
pure perturbation if it is defined as the difference of two
pure tensors. Accordingly, a mix perturbation is defined
as the difference of a mixed with a pure tensor. In view of
the fact that a background tensor is always a pure tensor,
the perturbation might be pure or mixed depending on the
nature of the physical tensor in its definition. Now it
becomes clear that the SW lemma applies only for pure
perturbations and not for mixed ones.
As an example, let us consider a Friedmann-Lemaître-

Robertson-Walker (FLRW) metric as the background
metric. Related to this metric, there is a preferred geodesic
vector field v̄μ which defines the maximally symmetric
spatial hypersurfaces, i.e., the projection of the background
metric ḡμν induces a maximally symmetric metric in the
hypersurfaces (it has six Killing vectors). Therefore, in this
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situation, it might be useful to also decompose physical
tensors in M by projecting them with respect to this
preferred vector field v̄μ. One of these tensors is the
physical metric gμν. We can define the mixed scalar
P ≡ gμνv̄μv̄ν=2, which gives its projection along the
integral curves of v̄μ. This is a global covariant scalar.
The background version of this tensor is simply
P̄ ≡ ḡμνv̄μv̄ν=2 ¼ −1=2. Thus, the mixed perturbation
associated with these projections reads

ϕ≡ P − P̄:

Note that ϕ has been defined in a globally covariant
manner. Notwithstanding, at this point it is worth to
introduce a coordinate system just to make contact with
the usual Bardeen approach. Thus, let us define a coor-
dinate system in which v̄μ ¼ δμ0. It is easy to see that in this
coordinate system gμνv̄μv̄ν ¼ g00 and we have

g00 ¼ ḡ00 þ 2ϕ ¼ −1þ 2ϕ → ϕ ¼ 1

2
δg00:

Therefore, the commonly used metric perturbation ϕ is
simply the mixed perturbation associated with P. This is a
typical example of perturbation that violates the SW
lemma. Indeed, even though the background tensor P̄ is
a simple constant, the mixed perturbation ϕ is a globally
covariant scalar but it is not GI.
Generically, any coordinate dependent perturbation can

be redefined in a global covariant manner as we have done
for ϕ. Furthermore, this procedure does not rely on the
symmetries of the background manifold ḡμν. Given an
arbitrary tensor, say Fμν, a coordinate dependent perturba-
tion associated with its zero-zero component reads

δf ≡ δF00 ¼ F00 − F̄00;

where F̄μν is the background tensor associated with Fμν.
In order to construct the covariant version of the mixed
perturbation δf, we need to define the background vector
field v̄ν whose integral lines coincide with the zero direction
of the above coordinate system. Thus, in this coordinate
system v̄ν ¼ δν0. By using this vector field we can define
two scalar tensors, namely the mixed f ≡ Fμνv̄μv̄ν and the
pure f̄ ¼ F̄μνv̄μv̄ν. Thus, the mixed perturbation is cova-
riantly defined as δf ¼ f − f̄. Evidently, this is the simplest
example as how to define in a covariant manner originally
coordinate dependent perturbations. There are more com-
plicated mixed perturbations that we shall analyze in the
next section.
Any tensor, independent of its nature as a mixed or pure

tensor, transforms as usually under a coordinate trans-
formation. However, they drastically differ under a change
of diffeomorphism. While background pure tensors remain
unchanged, the mixed tensors can have a very complicated
transformation rule depending on its own definition in

terms of the combination of tensors from the physical and
background manifold. In the case of the above mixed
perturbation ϕ, it is easy to find its transformation under a
change of diffeomorphism. For that, let us decompose the
vector field defining the diffeomorphism as5

Aμ ¼ Av̄μ þ Aμ; Aμ ¼ γ̄½Aμ�;

with γ̄½Aμ� being the projection with respect to
γ̄μν ¼ ḡμν þ v̄μv̄ν. Assuming that v̄μ is geodesic, i.e., āμ ≡
∇̄v̄v̄μ ¼ 0 and defining the notation _T ≡ γ̄½£v̄T�, it is
straightforward that under a gauge transformation, i.e.,
under a combined coordinate and diffeomorphism trans-
formation with Bμ ¼ −Aμ, we have

P →
v̄μv̄νðgμν − £AḡμνÞ

2
¼ P þ _A;

and hence

ϕ → ϕþ _A; ð6Þ

as expected. In the above expression the only hypothesis
made is that the background foliation is geodesic.
Apart from this, Eq. (6) gives the general transformation
for ϕ in an arbitrary background. However, the other
metric perturbations are much more complicated and hence
from, here on, we shall restrict ourselves to a FLRW
background. Therefore, the background is assumed to be
described by6:

K̄μν ¼
Θ̄
3
γ̄μν; R̄μν ¼ 2K̄γ̄μν; ð7Þ

D̄μΘ̄ ¼ 0 ¼ D̄μK̄; ð8Þ

with K̄μν, Θ̄ and R̄μν being respectively the extrinsic
curvature, expansion factor and the spatial Ricci tensor,
and D̄μ is the spatial covariant derivative of the background.
The function K̄ is simply a constant divided by the square
of the scale factor.
In the next section, we will show how to define in a

covariant manner all the commonly coordinate dependent
cosmological perturbations characteristic of the Bardeen
approach. In addition, using our terminology, we shall
compare the covariant version of Bardeen formulation with
the usually called covariant approach and elucidate the
relation between gauge transformation and change in the
slicing of the physical spacetime.

5All the following definitions are detailed in Sec. II of VFP.
6All details on our notation and definitions can be found at

Sec. II of VFP.
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III. COVARIANT FORM OF COSMOLOGICAL
PERTURBATIONS: BARDEEN X COVARIANT

APPROACH

Consider a physical spacetime with metric gμν and a
background metric ḡμν that we assume to be the FLRW
metric. We can always define their difference δgμν and
decompose it with respect to the FLRW foliation in such a
way that

δgμν ¼ 2ϕv̄μv̄ν þ 2Bðμv̄νÞ þ 2Cμν; ð9Þ

where

ϕ≡ 1

2
δgv̄ v̄; Bμ ≡−γ̄½δgv̄μ�; Cμν ≡ 1

2
γ̄½δgμν�:

The above notation is such that a v̄ index means
projections in the vector field v̄μ, i.e., for instance
δgv̄μ ¼ δgαμv̄α. The above three tensors are mixed tensors.
The definition of ϕ follows the same line of reasoning as
before while the Bμ and Cμν can be define in a covariant
manner through the four tensors

Pμ ¼ γ̄½gμv̄�; P̄μ ¼ γ̄½ḡμv̄� ¼ 0;

Pμν ¼
γ̄½gμν�
2

; P̄μν ¼
γ̄½ḡμν�
2

¼ γ̄μν
2

;

such that

Bμ ¼ Pμ − P̄μ; Cμν ¼ Pμν − P̄μν:

Note that the above definitions are general and do
not depend on any assumption about the smallness of
these tensors. In other words, we can always introduce a
tensor ḡμν and define the difference δgμν ≡ gμν − ḡμν
without assuming anything about δgμν. Additionally,
given a global foliation defined by a timelike vector
field v̄μ (v̄μv̄νḡμν ¼ −1) we can define the projector
γ̄μν ≡ ḡμν þ v̄μv̄ν. Therefore, in principle, we can always
rewrite Einstein’s equations in terms of ϕ, Bμ and Cμν

and obtain nonlinear second-order equations of motion
for δgμν that encode the same information as those
written in terms of gμν. In this sense, without making the
perturbative hypothesis, we are just using different
variables to describe the metric gμν in terms of the
decomposition made in Eq. (9) and the given metric ḡμν.
This decomposition also shows that the fields ϕ, Bμ and
Cμν are just the difference δgμν projected in the 3þ 1
background splitting. Notwithstanding, in the standard
model scenario, cosmological perturbations are first-
order metric perturbations with respect to the FLRW
metric. Thus, we shall assume that ϕ, Bμ and Cμν are
first-order perturbations and, unless explicitly stated, all

objects will have theirs indexes raised and lowered by
the background metric.
Using explicitly their definitions we can calculate

the gauge transformation for each one of them. For
that it is convenient to decompose the perturbations in
terms of the scalar, vector and tensor (SVT) decom-
position, i.e.,

Bμ ¼ D̄μB þ Bμ; ð10Þ

Cμν ¼ ψγ̄μν − D̄μD̄νE þ D̄ðνFμÞ þWμν; ð11Þ

where D̄μBμ¼D̄μFμ¼D̄μWμ
ν¼Wμ

μ¼0 (see Appendix A
for details). Using the expressions for the kinematic
variables in FLRW spacetime and the projections of
∇̄νAμ it can be shown that the gauge transformation for
the perturbations above are

ϕ → ϕþ _A; ð12Þ

B → B þ _As − 2Θ̄
3

As −A; ð13Þ

E → E þ As; ð14Þ

ψ → ψ −A
Θ̄
3
; ð15Þ

where we have decomposed Aμ which is the spatial part of
the vector field Aμ as Aμ ¼ D̄μAs þ Av

μ [see Eq. (A1)]. For
the vector sector we find

Bμ → Bμ þ _Avμ; ð16Þ

Fμ → Fμ − Avμ: ð17Þ

Apart from the background slicing, in many cases, it is
useful to define a 3þ 1 splitting also in the physical
manifold. Thus, we introduce an arbitrary global timelike
vector field vμ. In principle this splitting is completely
arbitrary, however, since we are interested in foliations
“close” to the background slicing, we assume that vμ is
such that δvμ ≡ vμ − v̄μ is of the same order of δgμν.
At first order the inverse metric perturbation is
δgμν ¼ −δgαβḡαμḡβν. Thus, the normalization of vμ requires
that

vμvνgμν ¼ −1þ 2δvμv̄μ − 2ϕ ¼ −1; ⇒ δvμv̄μ ¼ ϕ:

This result can be expressed as

δvμ ¼ −ϕv̄μ þ vμ; ð18Þ
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where we have defined the spatial projection of δvμ as
vμ ≡ γ̄½δvμ�.7 Equation (18) shows us that it is the pertur-
bation vμ that parametrize the freedom in the choice of the
spatial hypersurfaces in M.
Even though this choice of spatial hypersurface in M

is arbitrary, one could argue that it would be reasonable to
use the background slicing itself to foliate the physical
spacetime, i.e., to use the same vector field v̄μ to define the
foliation in M. To use this vector field we must first
normalize it with respect to the metric gμν, which gives

v̄μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−v̄αv̄βgαβ
q ≈ ð1 − ϕÞv̄μ:

One can easily see that this choice of spatial sectioning
coincide with choosing vμ ¼ 0 in Eq. (18). Then, in
general, we can use the perturbation defined in Eq. (18)
and set vμ ¼ 0 to obtain the results in terms of the
background foliation.
Notice that by choosing vμ ¼ 0 we are in fact changing

the nature of the perturbations as being mixed or pure
tensors. Indeed, by attaching the physical foliation with
respect to the background slicing, any pure tensor inM that
depends on the vector field vμ automatically becomes a
mixed tensor since vμ itself becomes dependent on back-
ground quantities. Thus, perturbations with vμ ¼ 0 do not
satisfy the SW lemma. On the other hand, it becomes clear
that pure perturbations has one extra variable with respect
to mixed perturbations, which is precisely the quantity vμ.
In addition, keeping vμ arbitrary makes the perturbations to
satisfy the SW lemma.
We can further decompose the vμ [Eq. (A1)] as

vμ ¼ D̄μV þ Vμ: ð19Þ

Recalling its definition, i.e., vμ ≡ γ̄½vμ� − γ̄½v̄μ� ¼ γ̄½vμ�,
we see that under a gauge perturbation this object trans-
forms as

vμ → γ̄½vμ − £Av̄μ� ¼ vμ þ D̄μA;

V → V þA; Vμ → Vμ: ð20Þ

Equations (12)–(20) allow us to find the transformation
rule for all kinematic variables. The first one we shall
consider is the acceleration of the curves defined by vμ.
In what follows, we will construct the pure and mixed

perturbations for all kinematics variables but we need to
distinguish them without having to change their symbols.
Thus, we shall introduce a small circle above each tensor
if they are pure tensors and maintain the mixed tensors
without any symbol.

δa
∘
μ ¼ D̄μ

_V þ _Vμ − D̄μϕ; ð21Þ

and it is easy to check that δa
∘
μ is GI, which is expected

from SW lemma. If, however, we had used the mixed
perturbations (vμ ¼ 0), δaμ would no longer be GI, i.e., the
curves with tangent v̄μ in the perturbed manifold would not
be geodesics and its acceleration would depend on the
gauge choice.
The Frobenius theorem guarantees that for a global

foliation the field vμ must satisfy v½μ∇νvα� ¼ 0. In
Eq. (A11) of VFP we have shown that, at first order, this
equation reduces to D̄½μvν� ¼ 0; i.e., the vector part of vμ is
null (Vμ ¼ 0). Notwithstanding, we will maintain Vμ, but
with the warning that in this case the decomposition is not
global. In other words, the commutator of the operators Dμ

will not define a global spatial curvature tensor.
The shear tensor can be calculated using the results of

Appendix A of VFP.8 The pure version of the shear
perturbation reads

δσ
∘
μν ¼ D̄hμD̄νiðS þ VÞ

þ D̄ðμSνÞ þ D̄ðμVνÞ þ _Wμ
αγ̄αν;

S ≡
�

B − _E þ 2

3
Θ̄E

�

; Sμ ≡ Bμ þ _Fμ; ð22Þ

where the symbol hi represents the projection to the
symmetric traceless part of a tensor [Eq. (A2)]. One can
readily obtain that when performing a gauge transformation,

S → S −A;

so that the quantity S þ V is GI, which again is a result of
the SW lemma. Once more, for its mixed version, the scalar
part of the shear perturbation becomes δσμν ¼ D̄hμD̄νiS,
which is not GI.
Besides the shear we need the expansion factor Θ to

describe the extrinsic curvature. This field when defined as
a mixed perturbation gives

δΘ ¼ D̄2S þ Θ̄ϕþ 3 _ψ ; ð23Þ

or when considered as a pure perturbation changes to7It is more convenient to define the normal vector perturbation
using its covariant form. Note that, by doing so, we have, at first
order,

δvμ ¼ v̄μδgμν þ δvμḡμν ¼ 2ϕv̄ν þ Bν þ δvμḡμν:

Hence the contravariant version of its spatial projection will
involve metric perturbations Bμ explicitly, i.e., γ̄½δvμ� ¼ Bμ þ vμ.

8We have changed the notation on the shear decomposition to
avoid an excess of indexes. The map of our notation here with the
VFP paper is

S ≡ δσs; Sμ ≡ δσvμ:
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δΘ
∘ ¼ δΘþ D̄2V:

It is worth to stress that for the expansion perturbation
both forms are gauge dependent since its background value
is nontrivial but the pure expansion perturbation is also
foliation dependent.
To close the set of kinetic variables we calculate the

perturbations of the traceless spatial Ricci tensor

rμν ≡Rhμνi; RðμνÞ ¼ rμν þ
Rγμν
3

; ð24Þ

which when defined through a pure tensor is naturally GI.
Its pure perturbation is given by

δr
∘
μν ¼ −D̄hμD̄νi

�

ψ þ Θ̄
3
V
�

−
Θ̄
3
D̄ðμVνÞ − ðD̄2 − 2K̄ÞWμν: ð25Þ

Once more we have the same situation. For an arbitrary
foliation the perturbation for the traceless spatial Ricci is GI
but with the caveat that we have introduced an arbitrary
field vμ.
Apart from tensor perturbations, it is also important to

extend this formalism for scalar quantities. Since the FLRW
metric is homogenous and isotropic, one can construct pure
perturbations that will be GI by taking spatial gradients of
the background fields. Consider for instance the scalar field
φ. Its perturbations under a gauge transformation change as

δφ → δφ − £Aφ̄ ¼ δφ −A _̄φ;

where we are assuming that the background version of φ is
homogeneous in the hypersurfaces. However, the gradient
Dμφ at first order is expressed as

Dμφ ≈ vμ _̄φþ D̄μδφ ¼ D̄μðδφþ V _̄φÞ þ _̄φVμ: ð26Þ

Since D̄μφ̄ ¼ 0, we have that δðDμφÞ ¼ Dμφ. Note that
the particular combination δφþ V _̄φ is GI. Furthermore,
this pure perturbation compare spatial gradients defined in
different spatial sections that causes the appearance of the
foliation dependent field vμ.
This is another almost general rule, i.e., GI tensors

constructed in the usual covariant approach will depend
on the choice of spatial foliation. There are some few
exceptions to this rule, such as the Weyl tensor or, at first
order, its projections that defines its electric and mag-
netic parts.
In the case of scalar fields, it is possible to build gauge

and foliation invariant tensors. Defining the tensor

Mμν ≡DhμDνiφ − ð£vφÞσμν;

we obtain

δMμν ¼ D̄hμD̄νiðδφ − _̄φSÞ: ð27Þ

Note that the above perturbation is the derivative of a GI
quantity that it is usually defined in the so-called coordinate
approach as the GI scalar perturbation associated with φ.
Notwithstanding, we stress once again that all the above
perturbed quantities were defined in a covariant manner and
with no reference to any coordinate system.
To complete the set of variables, we consider the energy

momentum tensor projections

Tμν ¼ ρ
∘
vμvν þ 2vðμq

∘
νÞ þ p

∘
γμν þ Π

∘
μν; ð28Þ

where q
∘
μ ≡−γ½Tμ

v� is the fluid flow of the energy
momentum tensor, ρ

∘ ≡ Tμ
νvνvμ the energy density,

p
∘ ≡ 1

3
Tμ

νγν
μ the isotropic pressure and Π

∘
μν ≡ γ½Tμν� the

anisotropic pressure spatial traceless tensor. All of them are
defined with respect to the foliation defined by vμ.
We can define the gradients of the background quantities

(see [4]) as

Xμ ¼ κDμρ
∘
; Yμ ¼ κDμp

∘
; Zμ ≡DμΘ

∘
; ð29Þ

where we have added the gradient of the expansion factor
for completeness. Considering pure perturbations these
gradients will be GI and, using Eq. (26), we obtain at first
order

δXμ ¼ κD̄μðδρþ V _̄ρÞ; δYμ ¼ κD̄μðδpþ V _̄pÞ;
δZμ ¼ D̄μδZ

∘
; ð30Þ

where we have defined the following mixed perturbations,

δρ≡ ρ − ρ̄ ≈ δρ
∘

δp≡ p − p̄ ≈ δp
∘
; ð31Þ

with

ρ≡Tμ
νv̄νv̄μ; p≡ 1

3
Tμ

νγ̄ν
μ; ρ

∘ ≈ ρ; p
∘ ≈p; ð32Þ

and the field

δZ
∘
¼ δΘ

∘
þ V _̄Θ: ð33Þ

The vector field qμ when defined as a pure perturbation
will also be GI, it is easy to show that

δq
∘
μ ≈ ðρ̄þ p̄Þðuμ − vμÞ;
≈ ðρ̄þ p̄Þ½D̄μðU − VÞ þ Uμ − Vμ�; ð34Þ

where
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uμ ≡− γ̄½Tμ
νv̄ν�

ρþ p
; uμ ¼ D̄μU þ Uμ; D̄μUμ ¼ 0:

This vector field has a simple interpretation. The quantity
ð1 − ϕÞv̄μ þ uμ is, at first order, a timelike eigenvector of
Tμ

ν. Thus, in the fluid frame, qμ ¼ 0 and vμ ¼ uμ.
Once more we identify the explicit dependency of pure

perturbations on the choice of hypersurface. It also shows
that it is the additional degree of freedom introduced by
an arbitrary choice of hypersurface in M that makes the
variables GI.
When working with pure perturbations, one usually

chooses the hypersurface using a physical criteria. For
example, one can choose a frame in which there is no
particle or energy flux (see [4,7]). In the latter case, the field
vμ ¼ uμ describes a physical property of the system
which fixes the extra variable associated with the physical
foliation in M.
It is possible to mimic this scenario using mixed tensors

and gauge dependent variables. Initially we have the
situation where these variables are defined in the back-
ground induced frame, which, at this point, is arbitrary.
We also have the projected physical hypersurface vector
field discussed above, which is a mixed tensor, described
by Eq. (19), i.e., vμ ≡ γ̄½vμ�. Now, performing a gauge
transformation all these variables changes, but it also
changes the background induced hypersurface where they
are defined. In Table I we compare the expressions of the
kinematic and matter variables.9

The first important point is that pure tensors have in
general (for the vector and tensor quantities) an additional
vector mode. This happens because the background normal
vector field is hypersurface orthogonal but vμ is not, i.e., it
does not necessarily define a global foliation.
Let us for instance consider the case when vμ is indeed

hypersurface orthogonal. In this case Vμ ¼ 0 and any
choice of hypersurface in M can be reproduced by a gauge
choiceA ¼ −V. There are two hypersurfaces defined inM,
the induced background Σ̄ and the physically defined Σ.
Performing a gauge transformation, we change the diffeo-
morphism between Mbg and M, which also changes the
background foliation Σ̄. Thus, given a physically defined
hypersurface Σwe can always make a gauge transformation
to obtain Σ̄ ¼ Σ. Note, however, that even with this choice
of gauge the mixed tensor perturbations would not be gauge
invariant. Any further gauge transformation would change
all quantities and make Σ̄ ≠ Σ. On the other hand, if vμ is
not hypersurface orthogonal we can still choose A ¼ −V
but then the vector mode variables will differ while the
scalar modes remains equal.
The above discussion shows that, concerning scalar

perturbations, the freedom in choosing a specific foliation

in the GI covariant formalism is equivalent to choose a
gauge in the Bardeen approach. Accordingly, both situa-
tions suffer from the same difficulties. For instance, in a
geodesic foliation we have aμ ≈ D̄μð _V − ϕÞ ¼ 0, but this
condition does not fix completely the hypersurfaces.
For any other choice of V þ f such that _f ¼ 0 we would
still have δaμ ¼ 0. This is exactly the problem with the
synchronous gauge, which generates the same unphysical
modes in the solutions.
Concluding, it is equivalent to work with the GI

covariant formalism with a fixed choice of foliation or
with the gauge dependent formalism with a fixed gauge.
The only advantage of the former was the maintenance of
its covariance. However, since we have constructed a fully
covariant formalism to describe the metric perturbations,
both methods become equivalent. Besides, when one needs
to go beyond a Friedmann background metric, it is not clear
what tensors are GI. Hence, for a general background, our
method proves to be straightforward in obtaining covariant
perturbations.

IV. GAUGE AND FOLIATION INVARIANT
VARIABLES

In the last section we have shown that pure or mixed
perturbations are respectively foliation and gauge depen-
dent. This analysis was based in first-order expansion of
kinematic quantities. In this section we shall construct exact
tensors that in first order reduce to the usual Bardeen’s
potentials, i.e., reduce to Φ and Ψ. There are two possible
ways: we can start with mixed tensors which are gauge
dependent and combine them to obtain first-order GI
quantities or we can begin with pure tensors which are
already GI and look for foliation independent combina-
tions. Both methods arrive at the same variables which
means that Bardeen GI variables are not just GI but are also
independent of the choice of the foliation.

TABLE I. Pure and mixed tensor comparison.

Pure tensors Mixed tensors

a
∘
μ ≈ ð _V − ϕÞ∥μ þ _Vμ aμ ≈ −ðϕþ _AÞ∥μ

σ
∘
μν ≈ ðS þ VÞ∥hμνi þ Vðμ∥νÞ

þ Sðμ∥νÞ þ _Wμ
αγ̄αν

σμν ≈ ðS −AÞ∥hμνi
þ Sðμ∥νÞ þ _Wμ

αγ̄αν
r
∘
μν ≈ −ðψ þ Θ̄

3
VÞ∥hμνi

− Θ̄
3
Vðμ∥νÞ

− ðD̄2 − 2K̄ÞWμν

rμν ≈ −ðψ − Θ̄
3
AÞ∥hμνi

− ðD̄2 − 2K̄ÞWμν

X
∘
μ ¼ κðδρþ V _̄ρÞ∥μ Xμ ¼ κðδρ −A _̄ρÞ∥μ

Y
∘
μ ¼ κðδpþ V _̄pÞ∥μ Yμ ¼ κðδp −A _̄pÞ∥μ

Z
∘
μ ¼ ðδΘþ D̄2V þ V _̄ΘÞ∥μ Zμ ¼ ðδΘ − D̄2A −A _̄ΘÞ∥μ

q
∘
μ ¼ ðρ̄þ p̄ÞðU − VÞ∥μ

þ ðρ̄þ p̄ÞðUμ − VμÞ
qμ ¼ ðρ̄þ p̄ÞðU þAÞ∥μ

þ ðρ̄þ p̄ÞUμ

γ½vμ� ¼ 0 γ̄½vμ� ¼ ðV þAÞ∥μ þ Vμ

9Note that in Table I we used a more compact notation for the
background spatial derivative, i.e., D̄μ ≡ ∥μ, as defined in VFP.
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Let us consider first the potential Ψ. Its common
definition is

Ψ≡ ψ − Θ̄
3
S: ð35Þ

Looking at Table I we immediately see that ψ appears in
rμν and S in σμν. Thus, an obvious choice is

T μν ¼ −rμν − Θ
3
σμν; ð36Þ

It is straightforward to calculate that at first order, T μν

reads

δT μν ¼ D̄hμD̄νiΨþ ðD̄2 − 2K̄ÞWμν

−
Θ̄
3
ðD̄ðμSνÞ þ _Wμ

αγ̄ανÞ: ð37Þ

Therefore, at first order, T μν depends only on gauge
invariant variables and its scalar mode is just the Bardeen
potential Ψ. Note also that using mixed or pure tensors
results in the same expression for δT μν, which means that
this variable is GI and foliation invariant.
To define the next Bardeen potential Φ defined by

Φ≡ ϕþ _S; ð38Þ

we introduce the following tensor,

αμν ≡Dhμaνi þ ahμaνi;

δαμν ¼ D̄hμD̄νið _V − ϕÞ þ D̄hν _Vμi; ð39Þ

where the term ahμaνi was included for later convenience.
Even though it is of second order, it does not alter the first-
order perturbation. The desired tensor is

J μν ≡ ð£vσÞhμνi − αμν; ð40Þ

where ð£vσÞhμνi means that one has to first take the Lie
derivative and then apply the projector. Its perturbation
reads

δJ μν ¼ D̄hμD̄νiΦþ D̄ν
_Sμ þ Ẅμ

αγ̄αν þ
2Θ̄
3

_Wμ
αγ̄αν; ð41Þ

whose scalar mode gives the usual GI potential Φ but
defined in a covariant manner. This tensor share the same
properties of T μν, i.e., at first order it is gauge and foliation
independent.
The two tensors defined above in Eqs. (36) and (40) are

closely related to the electric part of the Weyl tensor
Eμν ¼ Wμανβvαvβ. In terms of the kinetic variables we have

Eμν ¼
1

2

�

Θ
3
σμν − ð£vσÞhμνi þ rμν þ αμν

�

;

¼ − 1

2
ðT μν þ J μνÞ:

Thus these gauge and hypersurface invariant variables
naturally appears as parts of the Weyl tensor. In fact, this
should have already been expected since the Weyl tensor
is null in the Friedmann background and differently from
the other examples it does not depend on the choice of
foliation in M. Its electrical part however could depend on
the foliation but since the background Weyl tensor is null at
first-order Eμν will also not depend on the choice of
foliation, i.e.,

scalar part of ðδEμνÞ ¼ −D̄hμD̄νi
1

2
ðΦþΨÞ: ð42Þ

To obtain the GI perturbation associated with the
expansion factor we define the tensor

Uμν ≡ 3ð£vT Þhμνi þ ΘJ μν;

¼ −3ð£vrÞhμνi − ð£vΘÞσμν − αμν; ð43Þ

which at first order gives

δUμν ¼ D̄hμD̄νiΞ; Ξ≡ 3 _Ψþ Θ̄Φ ¼ δΘ − D̄2S − _̄ΘS:

ð44Þ

In the same manner as the previous quantities, this
perturbation is also gauge and foliation invariant.
In the above reasoning we have constructed three gauge

and foliation invariant variables Φ, Ψ and Ξ that are related
respectively to the acceleration of vμ, the spatial Ricci
tensor and expansion factor. These variables were made GI
by combining them with the shear tensor.
We should stress that we could have alternatively built

them directly from the mixed perturbations and hence
without referring to a second spatial folitation in M. In this
case, these variables have simpler meaning when compared
with their pure versions. By using the mixed perturbations
we are comparing tensors that are defined in the same
spatial sectioning but with different metrics.
On the other hand, when dealing with pure perturbations

we are comparing tensors defined with respect to the vμ

foliation with those defined with respect to the v̄μ back-
ground foliation. As a consequence, it appears an additional
term in these perturbations and the shear perturbation is given
by Eq. (22). The presence of the field V comes from the fact
that we are comparing tensors in different hypersurfaces.
In the gravitational sector, there are only two variables

that are simultaneously gauge and foliation invariant. The
Φ and Ψ potentials are sufficient to describe the evolution
of the perturbations and there is no need to deal with the
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additional degree of freedom coming from vμ.
Notwithstanding, the usual covariant approach formulation
demands for consistency the inclusion of vμ which from
this point of view seems unnecessary.
In summary, the usual covariant approach introduces an

a priori arbitrary foliation described by V and uses it to
build GI quantities. In contrast, the Bardeen approach uses
the shear potential S to construct the GI quantities and has
the advantage of not introducing an additional degree of
freedom to the system.
For the matter sector, its own degrees of freedom can be

used to defined a physically motivated notion of spatial
hypersurfaces and consequently V. For example, in the
case of a perturbed perfect fluid we can define the vector
normal to the spatial sectioning as the timelike eigenvector
of the energy momentum tensor which fix V ¼ U and
defines a natural choice for vμ.

10 However, it is worth
emphasizing that there is nothing special about this choice
of foliation. Alternatively, we could as well have defined
the spatial sectioning by requiring the GI acceleration
vector field aμ to be null. Thus, even though vμ could
be viewed as dynamically superfluous, its importance relies
in the possibility to use physically relevant choices of
spatial sectioning.

V. COMPARISON BETWEEN THE TWO
METHODS

Usually the gauge issue is seen as the result of intro-
ducing a background manifold, as an absolute object, to
the problem in hand. While this is true, one can trace back
what are the principles which led to this construction. First,
one states the physical problem by describing it with a
metric manifold and a matter content. At this point all the
description is invariant under diffeophormisms. The next
and key step is to assume that the physical system can be
approximate by a fiducial and hopefully simpler model.
For example, in the usual covariant approach, one states that
some kinetic variables are “small” for a given choice of
hypersurfaces. So, in this approximation, it is necessary to
introduce a foliation and then assume special characteristics
for the kinetic tensors. However, their “smallness” is for
certain hypersurfaces. Clearly, there is no way to guarantee
this property for a generic choice of foliation. Notwith-
standing, given a initial hypersurface where the smallness
assumption is valid, one can always find other hypersurfaces
in which the same assumption still holds. These other
hypersurfaces can be related to the first one by a diffeo-
morphism. Such diffeomorphism should be applied only to
the hypersurface, to describe the change in the foliation.
More precisely, given only the physical quantities, one

introduces the hypersurface choice by defining a normal
vector field nμ. Using this field one obtains all kinetic

variables as functions of the metric and their covariant
derived objects. For example, the extrinsic curvature is a
complicated function of nμ, i.e., Kðn; gÞμν. However, by
Proposition 8.3.13 of [27], a hypersurface expressed by nμ

and another one defined by sμ are diffeomorphic.11 Hence,
the change of hypersurfaces can be implemented by an
exponential map sμ ¼ expð£AÞnμ, which at first order
changes nμ as nμ → nμ þ £Anμ, for an arbitrary but small
vector field Aμ. Hence, when one changes the hypersurface,
all objects in Kμν but nμ are kept fixed, whereas nμ can be
seen as being transformed by a diffeomorphism.
This is exactly what happens when one uses the back-

ground foliation to build the mixed kinetic variables,
Kðv̄; gÞμν, where v̄ is the normal vector field used to define
the background foliation. Note that, as discussed in Sec. II,
any change in the mapping of the background quantities
into the physical manifold will change all the background
quantities, and of course the normal vector v̄μ, and keep
fixed all physical quantities (remember that the subsequent
coordinate transformation we introduced to complete what
we defined as a gauge transformation was just a matter of
convenience in order to reverse this situation). This change
in the mapping can also be seen as a diffeomorphism
acting only on v̄μ. Hence this shows that bothKðn; gÞμν and
Kðv̄; gÞμν have exactly the same transformation rule when
one changes the spatial sectioning and the gauge, respec-
tively. It is worth emphasizing that the analogy between the
gauge and the hypersurface freedom is not only a coinci-
dence at first order but a general result valid at any order
and for any background.
Note, however, that gauge transformations and changes

of foliation are two physically distinct operations. Their
equivalence is restrict only to the situation described above
in the cosmological perturbation scenario.
This reasoning show us that one a gauge issue is

automatically created when one introduces the approxima-
tion hypothesis through a choice of hypersurfaces, i.e., the
freedom in choosing the hypersurfaces among all possibil-
ities in which the approximation is valid. It is clear that, an
arbitrary choice of hypersurface is always possible and
this by itself is not connected to the gauge issue. It is only
when it is used to implement the perturbative hypothesis
that it creates a gauge problem. We thus argue that the
gauge freedom is a natural ingredient of the perturbative
approach, independently of an eventual explicit introduc-
tion of a background manifold.
It is instructive to summarize the discussion above before

going further in the higher-order issues. The usual covariant
analysis can be described as follows:
(1) Assume that, for a given special foliation defined by

a vector field nμ, some kinetic tensors and projected
matter tensors are first or zero order.

10If the fluid it not irrotational, this folitation will not be global,
which can cause further complications.

11Here we are assuming that the hypersurfaces are smooth
Cauchy surfaces.
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(2) Linearize the equations of motion by removing all
second and higher-order terms.

(3) Use the SW lemma to obtain gauge invariant (GI)
variables. This is done by manipulating the kinetic
variables (applying spatial gradients, removing
traces, etc), to define a complete set of gauge invariant
tensors and equations of motion to express the
physical problem at hand.

The steps above completely remove the gauge ambiguity
from the problem. They also avoid the explicit introduction
of a background metric and the zero-plus-first-order split-
ting. Nonetheless, as we can see in Table I, the GI variables
used in this context are not foliation invariant. Hence,
one must solve this ambiguity by choosing a hypersurface
before solving the system. Consequently, the procedure
above removes the gauge ambiguity of the problem, but
does not address the hypersurface problem.
The coordinate approach of the metric perturbation, on

the other hand, follows the steps:
(1) Define a background metric and a matter content

within a given coordinate system.
(2) Write explicitly the metric and matter perturbations

as the difference between the physical objects and
their background counterparts.

(3) Choose a spatial sectioning in the physical manifold
to describe the kinetic variables.

(4) Solve the gauge issue by applying one of two
different approaches:
(i) Make a gauge choice for the perturbations

such that the gauge ambiguity is completely
(and hopefully) solved.

(ii) Find combinations between perturbation varia-
bles which are gauge invariant.

(5) Expresses every equation in terms of the perturba-
tions disregarding any second-order terms.

This method starts with a choice of coordinate system
adapted to the background metric and, as such, implicitly
specifies the background foliation. After introducing
a spatial section in the physical manifold, one obtains a
set of tensor components describing this hypersurface in a
coordinate system adapted to the background foliation.
If one chooses to fix the gauge, one should elect some
perturbations to have specific values. This choice often
involves perturbations related to the choice of hypersurface.
Otherwise, one finds the GI combination of perturbations,
which again involves (but not necessarily) hypersurface
dependent quantities. In the end, the system is given by a
combination of choices of the coordinate system, hyper-
surfaces, and a gauge choice or GI combinations. The high
number of different ingredients makes the problem cum-
bersome, but straightforward to make calculations. This
method has potentially the two ambiguities, gauge and
foliation, convoluted in the system.
In the two methods described above the spatial section-

ing ambiguity is not handled. In both cases, the foliation is

defined at the beginning. In the second approach, one may
also use the background foliation, as it was done in the
review [34].
In the present paper, we have outlined how to deal with

the two problems in the following:
(1) Define the background geometry covariantly. In the

case of a FLRW metric, one should include the
definition of the timelikevector field v̄μ characterizing
the preferred homogeneous and isotropic foliation.

(2) Map the background geometry in the physical mani-
fold and define perturbations as the differences
between the physical and the background tensors.
Additionally, define mixed tensors by using the back-
ground foliation v̄μ to express the kinetic variables.

(3) Find the mixed tensor combinations which provides
the GI variables.

(4) Write the equations of motion in terms of these
GI variables.

The above procedure provides a coordinate and gauge
free approach to the perturbations. Since the gauge freedom
and foliation ambiguity have the same transformation rule,
as we have shown above (as a mixed tensor combination
Qðv̄; gÞ transforms under a gauge transformation in the
same way as Qðn; gÞ transforms under a change in the
foliation n, then if the mixed tensor combination Qðv̄; gÞ is
gauge invariant it will also be foliation independent), any
GI variable found at any order will be also foliation
invariant. Therefore, this method provides a straightforward
way to obtain gauge and foliation invariant quantities in a
covariant fashion.
The higher-order approaches for the cosmological per-

turbations are mostly based on the usual covariant
approach. They take advantage of the SW lemma to define,
in a systematic way, higher-order GI variables. However,
this method does not address the foliation dependency of
the perturbations, leading to a system where this ambiguity
is resolved like the original gauge problem, i.e., by
introducing arbitrary hypersurfaces. For this reason, we
argue that the method presented in this paper is more
suitable to deal with these issues. It has the advantage of
being covariant, independent of any particular choice of
foliation, and any GI variable obtained from it will also
be foliation independent at any order. However, since
the mixed tensors do not satisfy the SW lemma, to our
knowledge there is still no systematic way to obtain GI
variables at arbitrary higher-order perturbative level.

VI. CONCLUSIONS

The purpose of this work was to discuss the cosmologi-
cal perturbation scenario and to present some new improve-
ments in the formalism. Usually, the Bardeen approach is
viewed as coordinate dependent, even though gauge
invariant variables can be defined in the formalism. This
coordinate dependence seems to weaken the treatment,
especially when one goes to higher-order perturbations.
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Here, as an effort to support it, we have presented the
Bardeen approach in a complete covariant way.
In the process of building a covariant Bardeen approach,

a crucial difference in how to define the perturbed variables
appeared. In order to deal with this situation, we proposed a
new classification of tensors in terms of the fundamental
objects used in their definitions. Pure tensors are formed
by objects defined with respect to a single manifold, while
mixed tensors combine objects coming from two different
manifolds; i.e., they mix background and physical tensors.
The other well known covariant approach defines the

cosmological perturbations in a foliation dependent way.
The equivalence of the Bardeen and the so-called covariant
approach has been established in the past, but it is common
to find authors advocating in favor of one or the other.
Therefore, it seemed appropriate to compare both formal-
isms in light of our new language.We have shown that, apart
from their dynamical equivalence, they possess comple-
mentary indeterminacies. The Bardeen approach has the
usual gauge dependence, while in the covariant formalism a
dependence appears on the choice of spacelike hypersurfa-
ces. We have shown how these dependencies can be one-to-
onemapped to each other. This is evident from inspection of
Table I.
The natural question that appears is whether there is a

variable that is simultaneously foliation and gauge invari-
ant. The answer is affirmative and, using Table I, we have
presented a general way to construct full nonlinear tensors
that, at first order, are simultaneously foliation and gauge
invariant. They are shown in Eqs. (36), (40), (43). Their
scalar parts correspond exactly to the Bardeen potentials,
hence, showing that these potentials are a particular
combination that at first order are not only gauge invariant,
as it is well known, but also foliation independent.
Hence, the new results of our paper can be summarized

as follows:
(1) Formulation of Bardeen’s approach in a completely

covariant manner.
(2) A new classification of tensors in perturbation

theory: pure and mixed tensors.
(3) The construction of Table 1, where the relationship

between the indeterminacies of the covariant and
Bardeen approaches are clearly shown.

(4) The construction of full nonlinear tensors that at first
order are simultaneously foliation and gauge invari-
ant, exhibited in Eqs. (36), (40), (43).

These four results were presented in a logical order,
where one step cannot be taken without the preceding one.
We expect that the above results can be useful in the

examination of more involved problems. For instance,
stimulated by the dark energy problem, there has been
recently several attempts to construct a robust perturbative
formalism to describe metric perturbations. In particular,
the possibility of a significant back-reaction contribution
due to the formation of nonlinear structures in small scales

has raised some doubts about the validity of first order
perturbations in the standard cosmological model. In order
to address these issues, it is crucial to control the gauge
and foliation dependency of the perturbed variables. As we
will show elsewhere, our formalism is adequate to describe
first order perturbations around a FLRW background, and
to analyze the necessary conditions for the validity of the
first order cosmological perturbations.
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APPENDIX: SCALAR, VECTOR AND TENSOR
DECOMPOSITION

Given a foliation defined by a global timelike vector field
v̄μ and the spatial covariant derivative D̄μ we define the
Laplace-Beltrami operator as D̄2 ≡ γ̄μνD̄μD̄ν. Depending
on the details of the spatial foliation and the class of
functions that we are working with this operator can have a
unique inverse (see [26]). Assuming that this is the case,
we can decompose any spatial vector field Aμ. First we
define D̄2As ¼ D̄μAμ, using the unique inverse of D̄2. We
then define Av

μ ¼ Aμ − D̄μD̄−2D̄νAν, such that D̄μAvμ ¼ 0
and, therefore,

Aμ ¼ D̄μAs þ Av
μ: ðA1Þ

To decompose a second-order spatial tensor, we first
introduced the spatial symmetric traceless symbol,

Thμνi ≡ γ½TðμνÞ� − γμνTαβγ
αβ

3
: ðA2Þ

When acting on a spatial second derivative of a scalar field,
it can be written as

A∥hμνi ¼
�

D̄μD̄ν − γ̄μνD̄2

3

�

A; ðA3Þ

where the double divergence of the expression above gives

D̄μD̄νA∥hμνi ¼
�

2D̄4

3
þ R̄μνD̄μD̄ν þ D̄μR̄D̄μ

�

A:

For a FLRW background we can use the form of the spatial
Ricci tensor [Eq. (7)] to write it as

D̄μD̄νA∥hμνi ¼ 2D̄2

3
ðD̄2 þ 3K̄ÞA: ðA4Þ

The equation above inspires us to define
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D̄2
K ≡ D̄2 þ 3

2
D̄−2ðR̄μνD̄μD̄ν þ D̄μR̄D̄μÞ; ðA5Þ

so that, in general,

D̄μD̄νA∥hμνi ¼ 2

3
D̄2D̄2

KA: ðA6Þ

Assuming now that both D̄2 and D̄2
K operators have

unique inverses, we can write the double divergence of an
arbitrary spatial second-order tensor Aμν as

D̄μD̄νAhμνi ¼ D̄2D̄2
KA

s; ðA7Þ

which shows that the tensor

Bμν ¼ Ahμνi − D̄hμD̄νiD̄−2
K D̄−2D̄αD̄βAhαβi; ðA8Þ

has null double divergence. Then, clearly D̄μBμ
ν is a

divergenceless spatial vector. To extract this vector we
first note that given a divergenceless spatial vector Fμ, we
can write

D̄μD̄νD̄ðμFνÞ ¼
�

D̄μR̄
2

þ R̄hμνiD̄ν

�

Fμ: ðA9Þ

Note that, in general, the double divergence of D̄ðμFνÞ is not
null, however. When the background is FLRW we have
R̄hμνi ¼ 0 ¼ D̄μR̄, which is a null quantity. Using Eq. (A8)
we define the tensor

Hμν ≡ D̄ðμFνÞ − D̄hμD̄νiFds; ðA10Þ

where we defined the scalar built above as

Fds ≡ D̄−2
K D̄−2D̄μD̄νD̄ðμFνÞ: ðA11Þ

Taking the single divergence of the tensor above, we obtain

D̄μHμν ¼ D̄2
R̄μ

νFν; ðA12Þ

where we defined the operator

D̄2
R̄μ

ν≡ γ̄μ
νD̄2þR̄μ

ν

2

þ
�

2D̄νD̄2

3
þR̄ν

μD̄μ

�

D̄−2
K D̄−2

�

D̄μR̄
2

þR̄hμνiD̄ν

�

:

ðA13Þ

Finally, if the operator D̄2
R̄μ

ν has a unique inverse we define
the tensor

Eμν ¼ Bμν −Hμν; ðA14Þ

for which the divergence is given by

D̄μEμ
ν ¼ D̄μBμ

ν − D̄2
R̄μ

νFν:

Using the unique inverse we choose Fν ¼ D̄2
R̄ν

βD̄αBα
β,

which results in D̄μEμ
ν ¼ 0.

When we impose that the background is FLRW, the
operator D̄2

R̄μ
ν is simply

D̄2
R̄μ

ν ¼ γ̄μ
ν

2
ðD̄2 þ 2K̄Þ; ðA15Þ

and the second-order tensor Hμν ¼ D̄ðμFνÞ.
Thus, in general, we can decompose a second-order

tensor Ahμνi as

Ahμνi ¼ D̄hμD̄νiðAs þ FdsÞ þ D̄ðμFνÞ þ Eμν; ðA16Þ

where D̄μEμ
ν ¼ 0 ¼ D̄μFμ.
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