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We consider a class of nonlocal, pure-metric modified gravity models which were developed to
reproduce the Tully-Fisher relation without dark matter and without changing the amount of weak
lensing predicted by general relativity. Previous work gave only the weak field limiting form of the field
equations specialized to a static and spherically symmetric geometry. Here we derive the full field
equations and specialize them to a homogeneous, isotropic and spatially flat geometry. We also discuss
the problem of fitting the free function to reproduce the expansion history. Results are derived for
models in which the MOND acceleration a0 ≈ 1.2 × 10−10 m:s−2 is a fundamental constant and for the
more phenomenologically interesting case in which the MOND acceleration changes with the
cosmological expansion rate.
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I. INTRODUCTION

Despite the successes of the standard model of cosmol-
ogy based on general relativity, many feel unsatisfied that
the only currently available evidences for dark matter and
dark energy are indirect, and it is certainly worth pursuing
other approaches. One of them is the MOND paradigm
(modified Newtonian dynamics), as proposed by Milgrom
[1], which led to many successful explanations of various
observations as well as to predictions which were con-
firmed [2]. In particular, it explains the Tully-Fisher relation
[3], which states that the observed limiting rotation velocity
of galaxies, v∞, scales as the fourth root of the baryonic
mass of the galaxy (see [4] for a recent confirmation of this
relation). As it was first formulated in a nonrelativistic
way, Milgrom’s proposal stipulates that a test particle at a
distance r from a mass M will experience a gravitational
acceleration given by the Newtonian expression aN ¼
GM=r2 as long as aN is (much) larger than a critical
acceleration a0, while the same particle will undergo the
MOND acceleration aMOND ¼ ffiffiffiffiffiffiffiffiffiffi

aNa0
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

GMa0
p

=r when
aN is smaller than a0. A constant value for a0 of about
1.2 × 10−10 m:s−2 leads to good fits of galaxy rotation
curves using reasonable mass-to-luminosity ratios [5],
without the need for nonbaryonic dark matter [6]. As
noticed by many authors, this numerical value for a0 is very
close to cH0=2π, where H0 is the current value of the
Hubble parameter. This gives some support to the idea that
the MOND parameter a0 actually varies with time over the

cosmological history of the Universe [7], and we will
discuss some aspects of this possibility in this paper
(together with the constant a0 case). Such a time variation
of a0 could also lead to some specific observational
signatures [7,8].
Despite its successes, the current MOND framework also

suffers from various problems both at the level of obser-
vation fitting and theoretical construction. It is indeed well
known that some amount of dark matter is needed
(or possibly a deviation from the original MOND formu-
lation without dark matter) in order for MOND to fit
velocity dispersion in galaxy clusters. The bullet cluster [9]
is also often presented as a serious puzzle for MOND (see
however [10–12]). On the theory side, the great challenge
has been to construct a relativistic extension of MOND that
reproduces, without dark matter, both the observed cos-
mology and the observed amount of weak lensing. Some
attempts along this line include TeVeS theories [13–20] and
other models with scalar and vector fields [21,22],
Milgrom’s bi-metric model [23], and nonlocal, metric-
based models [24–27]. It is fair to say that these attempts,
however very interesting, need to be further explored and
consolidated.
In our previous work [28], we introduced yet a new

relativistic formulation of MONDwhich is at the root of the
present work. In this formulation, the only dynamical
degrees of freedom are those of a metric. Hence, we called
such a theory a “pure-metric” theory, in contrast to the
TeVeS model or bi-metric theory, which both contain
degrees of freedom that are added explicitly to those of
the metric. Note that such a distinction cannot always be
considered as very deep; e.g., it is well known that fðRÞ
theories (which would qualify as a pure-metric theory using
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our terminology) can also be formulated as scalar-tensor
theories, i.e., as theories with a metric and an extra scalar in
the gravitational sector. We will in turn use here sometimes
scalars to describe our model. However our scalars will
not have a proper dynamics as we will explain later. The
advantages of a pure metric–based theory are that it allows
a clear way to build the matter coupling in agreement with
the equivalence principle as well as a simple comparison
with general relativity. As argued in particular in [28,29], it
can however be shown that a pure metric based theory of
MOND has to be nonlocal,1 and this is the case in the
theory under consideration. The point of this paper is to
further develop a class of generally coordinate invariant,
nonlocal metric realizations of MOND which have been
proposed in [28].
Nonlocal metric extensions of gravity (irrespective of

MOND) have been much studied [30] because they offer a
richer phenomenology than fðRÞ models [31,32], which
are the only local, invariant, metric-based and kinetically
stable extensions of general relativity [33,34]. We do not
believe fundamental theory is nonlocal, but rather that
nonlocal extensions of general relativity derive from
quantum infrared corrections to the effective field equations
that became nonperturbatively strong during an extended
phase of primordial inflation [35]. Put simply, we believe
that MOND derives from the gravitational vacuum polari-
zation of the vast ensemble of infrared gravitons created
during primordial inflation. Although our class of models
is, at this stage, purely phenomenological, our suspicion
about its probable origin helps to justify two features that
would otherwise be inexplicable:

(i) Our models possess an initial time ti, and
(ii) Our models predict significant deviations from

general relativity on large scales but not on small
scales.

Our previous work [28] began by deriving phenomeno-
logical equations which any metric-based theory of MOND
must obey for static, spherically symmetric geometries of
the form

ds2 ≡ gμνdxμdxν ¼ −½1þ bðrÞ�dt2 þ ½1þ aðrÞ�dr2
þ r2dΩ2: ð1Þ

If the energy density ρðrÞ is such that the system is
everywhere in the MOND regime (as would be the case,
for example, in a low surface brightness galaxy) then the
Tully-Fisher relation implies [28]

1

2a0r2
d
dr

ð½rb0ðrÞ�2Þ ¼ 8πGρðrÞ: ð2Þ

(This phenomenological realization of the Tully-Fisher
relation is a powerful motivation for nonlocality because
it contains a net three derivatives, as opposed to the nonzero
even number of derivatives that must follow from the
variation of a local curvature invariant.) We fixed the other
potential aðrÞ by requiring that weak lensing agrees exactly
with what general relativity predicts assuming the potential
bðrÞ is known,

rb0ðrÞ − aðrÞ ¼ 0: ð3Þ

Note that any power of (3) would work as well because
the right-hand side of the equation vanishes. If one
allows only an approximate agreement with general rela-
tivity as far as lensing is concerned, as e.g. is allowed
by cosmological data using lensing, a coefficient of
order one can just be inserted in front of aðrÞ in the
equation above.
We assumed a Lagrangian consisting of general relativity

and normal matter, plus a MOND correction term ΔL,

L ¼ R
ffiffiffiffiffiffi−gp

16πG
þ ΔLþ Lmatter: ð4Þ

Because the matter Lagrangian is unchanged from general
relativity (except for the absence of dark matter) our field
equations take the form

Gμν þ ΔGμν ¼ 8πGTμν; ð5Þ

where Gμν ≡ Rμν − 1
2
gμνR is the usual Einstein tensor and

Tμν is the usual stress-energy tensor. (We employ a metric
with mostly plus signature with Riemann tensor Rρ

σμν ¼
þ∂μΓρ

νσ − � � � and Ricci tensor Rμν ≡ Rρ
μρν.) The MOND

correction ΔGμν to the Einstein tensor comes from varying
the action deriving fromΔL, namely, the spacetime integral
ΔS of ΔL. We get

ΔGμνðxÞ≡ 16πGffiffiffiffiffiffi−gp δΔS½g�
δgμνðxÞ : ð6Þ

We constructed the MOND correction ΔL such that, in the
static, spherically symmetric and ultraweak field regime,
the μ ¼ ν ¼ 0 equation reduces to (2) and the μ ¼ ν ¼ r
equation is proportional to (3).
We found that it sufficed to employ a single nonlocal

scalar,

Y½g�≡ gμν∂μ
2

□
½uαuβRαβ�∂ν

2

□
½uρuσRρσ�: ð7Þ

Here and henceforth □≡ 1ffiffiffiffi−gp ∂μð ffiffiffiffiffiffi−gp
gμν∂νÞ is the covar-

iant scalar d’Alembertian, and its inverse is defined with
retarded boundary conditions on the initial value surface.
The timelike four-velocity field uμ½g� is the normalized
gradient of some nonlocal scalar functional of the metric

1As explained in Sec. III of Ref. [28], no local term (built from
the metric, its curvature tensor or even its derivatives) can bear
simultaneously the right power of the gravitational field and the
right number of derivatives to yield the MOND law.
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χ½g�, such as the invariant volume of the past light cone,
which grows in the timelike direction,

uμ½g�≡ −gμν∂νχ½g�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβ∂αχ½g�∂βχ½g�

q : ð8Þ

In the static, spherically symmetric and ultraweak field
limit, Y½g� reduces to just ½b0ðrÞ�2 and we could reproduce
(2), without disturbing the general relativistic relation (3),
with a MOND addition of the form,

ΔLy ¼
a20

16πG

�
1

2

�
Y
a20

�
−
1

6

�
Y
a20

�3
2 þ � � �

� ffiffiffiffiffiffi
−g

p
: ð9Þ

In this expression, the first term is needed to cancel an
equivalent contribution coming from the Einstein-Hilbert
action, while the second term is responsible for the MOND
force law that one can read from (2).
We found that it was permissible, but not necessary, to

involve a second nonlocal scalar,

X½g�≡ gμν∂μ
1

□

�
uαuβRαβ −

1

2
R

�
∂ν

1

□

�
uρuσRρσ −

1

2
R

�
:

ð10Þ

In the static, spherically symmetric and ultraweak field
limit X½g� reduces to ½b0ðrÞ − aðrÞ=r�2. In this limit, the
contribution of the Einstein-Hilbert action imposing Eq. (3)
(from the grr equation) can thus be canceled by adding a
term linear in X½g�, with a suitable coefficient. To this term,
one can then add a next-order correction in the ultraweak
field expansion, such as

ΔLx ¼
a20

16πG

�
−
1

2

�
X
a20

�
þ 1

6

�
X
a20

�3
2 þ � � �

� ffiffiffiffiffiffi
−g

p
: ð11Þ

Any successful implementation of MONDmust involve the
addition of (9), but the decision of whether or not to
additionally include (11) is optional because (3) holds both
in general relativity and in the MOND regime (see [28] for
more details). Avoiding deviations from existing tests of
general relativity requires that the higher order terms give
suppression for large values of Y½g�=a20.
The purpose of this paper is to extend our past results

by deriving the MOND corrections to the field equations
for a general metric and then specialize them to the
homogeneous and isotropic geometry appropriate to cos-
mology. To keep the analysis simple we define the scalar
χ½g�, whose normalized gradient gives the timelike four-
velocity (8), using the same inverse of the scalar
d’Alembertian which appears in both Y½g� and X½g�,

χ½g�≡ −
1

□
1: ð12Þ

We also consider the important changes which occur when
one alters the MOND acceleration a0 from a fundamental
constant to a dynamical quantity which varies with the
cosmological expansion rate. As mentioned above, many
authors have drawn attention to the numerical coincidence
a0 ≈ cH0=2π between the MOND acceleration and the
current value of the Hubble parameter [7].2 With a timelike
four-velocity field such as uμ½g�, whose divergenceDμuμ ¼
3H in a cosmological background, it is easy to make this
relation dynamical by the replacement

a0 ⟶ α½g�≡Dμuμ

6π
: ð13Þ

In this way the extra MOND force, which is necessary if
there is no dark matter, can become effective even at early
times during which the condition jY=a20j ≫ 1 would
otherwise have suppressed MOND effects.
This paper contains five sections of which this

introduction is the first. In Sec. II we consider the simplest
class of models in which ΔL depends only on the invariant
Y½g�, with the MOND acceleration a0 a fundamental
constant. We derive the correction ΔGμν to the field
equations for a general metric and then specialize this to
cosmology. Section III carries out the same exercise for
MOND additions which also depend on the invariant X½g�,
again with constant a0. In Sec. IV we derive the changes
which occur when the MOND acceleration is made
dynamical through the replacement (13). Section V gives
our conclusions.

II. MODELS BASED ON Y WITH CONSTANT a0

The task of this section is to analyze the minimal class of
models,

ΔLy ¼
1

16πG
× a20fy

�
Y½g�
a20

� ffiffiffiffiffiffi
−g

p
; ð14Þ

where Y½g� is the nonlocal invariant defined by expressions
(7), (8) and (12), and a0 is strictly constant. We first express
the nonlocal model (14) in a local form involving the metric
and four auxiliary scalars. We next vary with respect to gμν

to derive the MOND addition to the Einstein tensor (6) for a
general metric, then specialize to the homogeneous, iso-
tropic and spatially flat geometry appropriate to cosmology.
The section closes with a discussion of how the function
fyðZÞ can be chosen for Z < 0 (MOND phenomenology
only fixes fyðZÞ for Z > 0) to support an arbitrary
expansion history.

2As underlined in the first Ref. [7], a slower than Hubble rate
evolution of a0 is allowed by present data on rotation curves of
galaxies at high redshifts. We will mention at the end of Sec. IV
some ways of reducing this evolution rate as compared to (13).
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A. General field equations

We can derive causal and conserved field equations from
the nonlocal form (14) using the “partial integration trick”
of earlier studies [36–38]. However, it is simpler to localize
ΔLy using scalar auxiliary fields after the procedure of
Nojiri and Odintsov [39]. Our model (14) requires scalars ϕ
and χ to stand for the two nonlocal expressions in the
original Lagrangian,

ϕ ⟶
2

□
uαuβRαβ; χ ⟶ −

1

□
1; ð15Þ

and Lagrange multiplier fields ξ and ψ to enforce these
relations. We shall abuse the notation slightly by employing
the same symbol for the local Lagrangian and its nonlocal
ancestor (14),

ΔLy ¼
1

16πG

�
a20fy

�
gμν∂μϕ∂νϕ

a20

�
− ½∂μξ∂νϕgμν þ 2ξRμνuμuν� − ½∂μψ∂νχgμν − ψ �

� ffiffiffiffiffiffi
−g

p
: ð16Þ

The four-velocity field in this version of the model is still the normalized gradient (8) of χ, but the scalar χ is an independent
variable.
It is straightforward to compute the MOND correction to the Einstein tensor,

16πGffiffiffiffiffiffi−gp δΔSy
δgμν

¼ 1

2
gμν½−a20fy þ gρσð∂ρξ∂σϕþ ∂ρψ∂σχÞ þ 2ξuρuσRρσ − ψ �

þ ∂μϕ∂νϕfy0 − ∂ðμξ∂νÞϕ − ∂ðμψ∂νÞχ − 2ξ½2uðμuαRνÞα þ uμuνuαuβRαβ�
− ½□ðξuμuνÞ þ gμνDαDβðξuαuβÞ − 2DαDðμðξuνÞuαÞ�: ð17Þ

In this and subsequent expressions we follow the usual
convention in which parenthesized indices are sym-
metrized. Also, we denote the covariant derivative with
respect to xμ by the symbol Dμ.
It remains to specify the various scalars as nonlocal

functionals of the metric. This follows from applying
retarded boundary conditions to the field equations which
result from varying (16),

16πGffiffiffiffiffiffi−gp δΔSy
δξ

¼ □ϕ − 2uαuβRαβ; ð18Þ

16πGffiffiffiffiffiffi−gp δΔSy
δψ

¼ □χ þ 1; ð19Þ

16πGffiffiffiffiffiffi−gp δΔSy
δϕ

¼ □ξ − 2Dμ

�
Dμϕfy0

�
gρσ∂ρϕ∂σϕ

a20

��
; ð20Þ

16πGffiffiffiffiffiffi−gp δΔSy
δχ

¼ □ψ − 4Dμ

"
ξgμρ⊥ uσRρσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβ∂αχ∂βχ

q
#
: ð21Þ

(Note the induced metric gμν⊥ ≡ gμν þ uμuν which appears
in equation (21) for ψ.) Solving for each of the four
scalars involves inverting the scalar d’Alembertian □,
which would ordinarily allow us to freely specify each
scalar and its first time derivative on the initial value
surface. Permitting those degrees of freedom would result
in two scalar ghosts [38,40]. The original nonlocal model
is recovered by setting each scalar and its first time

derivative to zero on the initial value surface, which also
eliminates the ghosts (and in fact all the modes associated
with the scalars).

B. Specialization to FLRW

On scales of 100 Mpc and larger the geometry of our
Universe is well described by a homogeneous, isotropic
and spatially flat metric in comoving coordinates,

ds2FLRW ≡ gμνdxμdxν ¼ −dt2 þ a2ðtÞd~x · d~x: ð22Þ

The function aðtÞ is known as the scale factor and its
logarithmic time derivative gives theHubble parameterHðtÞ,

HðtÞ≡ _a
a
: ð23Þ

The nonvanishing components of the affine connection are

Γi
j0 ¼ Hδij; Γ0

ij ¼ Hgij: ð24Þ

This implies the following components of the curvature,

R0
i0j¼ð _HþH2Þgij; Ri

jkl¼H2ðδikgjl−δilgjkÞ; ð25Þ

R00 ¼ −3ð _H þH2Þ; Rij ¼ ð _H þ 3H2Þgij;
R ¼ 6 _H þ 12H2: ð26Þ
The nonvanishing components of the second covariant

derivative of a scalar SðtÞ are simple,

DEFFAYET, ESPOSITO-FARÈSE, AND WOODARD PHYSICAL REVIEW D 90, 064038 (2014)

064038-4



D0D0S ¼ S̈;

DiDjS ¼ −H _Sgij ⇒ □S ¼ −ðS̈þ 3H _SÞ ¼ −
1

a3
d
dt

a3 _S:

ð27Þ
Of course the final expression for s≡□S, with our
retarded boundary conditions, results in a simple form
for S ¼ 1

□
s,�

1

□
s

�
ðtÞ ¼ −

Z
t

ti

dt0

a3ðt0Þ
Z

t

ti

dt00a3ðt00Þsðt00Þ: ð28Þ

We also require various contractions of double covariant
derivatives of a second rank tensor whose nonzero com-
ponents are restricted by homogeneity and isotropy to be
T00ðtÞ and Tij ¼ TðtÞgij. [Note that this T does not mean
the trace of Tμν, and notably that it will vanish below
for Tμν ¼ ξuμuν.] Some tedious but straightforward
manipulations reveal

□T00 ¼ −T̈00 − 3H _T00 þ 6H2ðT00 þ TÞ; ð29Þ

□Tij ¼½−T̈ − 3H _T þ 2H2ðT00 þ TÞ�gij; ð30Þ

DαD0Tα
0 ¼ −T̈00 − 3Hð _T00 þ _TÞ þ 3H2ðT00 þ TÞ; ð31Þ

DαDiTα
j ¼½H _T00 þ ð _H þ 4H2ÞðT00 þ TÞ�gij; ð32Þ

DαDβTαβ ¼ T̈00 þ 3Hð2 _T00 þ _TÞ þ 3ð _Hþ 3H2ÞðT00 þ TÞ:
ð33Þ

The various auxiliary fields take simple forms when
specialized to the FLRW geometry (22),

ϕðtÞ ¼ 6

Z
t

ti

dt0

a3ðt0Þ
Z

t0

ti

dt00a3ðt00Þ½ _Hðt00Þ þH2ðt00Þ�; ð34Þ

χðtÞ ¼
Z

t

ti

dt0

a3ðt0Þ
Z

t0

ti

dt00a3ðt00Þ ⇒ uμðtÞ ¼ δμ0; ð35Þ

ξðtÞ ¼ 2

Z
t

ti

dt0 _ϕðt0Þfy0
�
−
_ϕ2ðt0Þ
a20

�
; ð36Þ

ψðtÞ ¼ 0: ð37Þ

Strictly speaking, uμ is ill defined on the initial value
surface, because Eq. (8) is singular when _χ ¼ 0, but we can
take the limit of the well-defined uμðtÞ for t → ti.
Alternative definitions of this timelike unit vector may
also be chosen, like Eqs. (20)–(22) of Ref. [41].
Of course homogeneity and isotropy imply that any

second rank tensor such as ΔGμν has only two distinct
components when specialized to the FLRW geometry (22).
We find them to be

16πGffiffiffiffiffiffi−gp δΔSy
δg00

				
FLRW

¼ a20
2
fy

�
− _ϕ2

a20

�
þ 3H_ξþ 6H2ξ; ð38Þ

16πGffiffiffiffiffiffi−gp δΔSy
δgij

				
FLRW

¼ −
�
a20
2
fy

�
− _ϕ2

a20

�
þ ̈ξþ

�
_ϕ

2
þ 4H

�
_ξ

þ ð4 _H þ 6H2Þξ
�
gij: ð39Þ

C. The reconstruction problem

If the function fyðZÞ in expression (14) were known for
Z < 0 then one would add expression (38) to the usual
Friedmann equation and solve for the scale factor aðtÞ,

3H2 þ
�
a20
2
fy

�
− _ϕ2

a20

�
þ 3H_ξþ 6H2ξ

�
¼ 8πGρ; ð40Þ

where ρ describes all matter sources, including radiation
and baryonic matter, but not dark matter nor dark energy
which would be reproduced by the nonlocal terms within
the curly brackets. However, MOND phenomenology only
determines the asymptotic forms of fyðZÞ for 0 < Z ≲ 1
and for Z ≫ 1,

0 < Z ≲ 1 ⇒ fyðZÞ ¼
1

2
Z −

1

6
Z

3
2 þOðZ2Þ; ð41Þ

1 ≪ Z < ∞ ⇒ fyðZÞ ⟶ 0: ð42Þ

The reconstruction problemconsists of instead regardingaðtÞ
as known—along with how the energy density ρ depends
upon aðtÞ—and then solving the modified Friedmann equa-
tion (40) to find the functionfyðZÞwhich supports the desired
expansion history (similarly to what has been done in scalar-
tensor theories [42] or other nonlocal models [43]).
Once the reconstruction problem has been solved the

model is fixed, and one can subject it to meaningful tests by
working out its predictions for the growth of cosmological
perturbations. Many modified gravity models have been
analyzed in this way. For example, the free function fð 1

□
RÞ

of “nonlocal cosmology” [37,40] was determined (numeri-
cally) to support the ΛCDM expansion history, without a
cosmological constant [43], then its predictions for struc-
ture formation were shown to be in conflict with the most
recent data on weak lensing and redshift space distortions
[44]. In this subsection we will derive a second order, linear
differential equation for fyðZÞ which could be numerically
solved to support a given expansion history.
The first problem with (40) is that time is the natural

variable, rather than ZðtÞ≡ −½ _ϕðtÞ=a0�2. We therefore
employ the new symbol fðtÞ to regard the dependent
variable as a function of time,
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fðtÞ≡ fy

�
− _ϕ2ðtÞ
a20

�
⇒ fy0

�
− _ϕ2

a20

�
¼ −

a20 _f

2 _ϕ ϕ̈
: ð43Þ

The second problem is that the auxiliary scalar ξ given by
expression (36) involves an integral. We therefore divide
(40) by 3a20H

2ðtÞ and differentiate,

d
dt

�
−

_f

Hϕ̈
þ f
6H2

�
−
2_f

ϕ̈
¼ d

dt

�
8πGρ
3a20H

2

�
: ð44Þ

Equation (44) is a linear, second order differential equation
for fðtÞ which can be evolved forward from t ¼ ti, using
the explicit expression (34) for ϕðtÞ in terms of the known
expansion history. From the mathematical point of view,
fðtÞ is fully determined from the two initial conditions
_fðtiÞ ¼ 0 and fðtiÞ ¼ 2½8πGρðtiÞ − 3HðtiÞ2�=a20, implied
by Eqs. (34), (36), (40) and (43). However, we actually
have more freedom becauseHðtÞ is not known with infinite
precision. At early times during radiation domination, we
only need our nonlocal terms, within the curly brackets of
Eq. (40), to be negligible with respect to 8πGρradiation. As
will be detailed in a forthcoming publication, it is thus
possible to integrate (44) backwards in time, starting from
the present epoch, while still integrating forward (34) and
(36) to respect the crucial constraints ϕðtiÞ ¼ _ϕðtiÞ ¼
ξðtiÞ ¼ _ξðtiÞ ¼ 0 which eliminate ghost excitations. One
of the two integration constants in the solution of (44) is
then fixed by requiring that the undifferentiated equa-
tion (40) holds, while the second constant allows us to
match the limit of fyðZÞ for Z → 0− to the needed MOND
form (9) for Z > 0.
The final step is inverting the relation between Z and t

implied by relation (34) to solve for t as a function of Z,

ZðtÞ ¼ −
�

6

a0a3ðtÞ
Z

t

ti

dt0a3ðt0Þ½ _Hðt0Þ þH2ðt0Þ�
�
2

⇒ tðZÞ:

ð45Þ

The desired function is fyðZÞ ¼ fðtðZÞÞ. Except for very
simple expansion histories this analysis will need to be
done numerically.

III. MODELS WHICH INCLUDE
X WITH CONSTANT a0

The purpose of this section is to work out how ΔGμν

changes if, in addition to the mandatory MOND term (14)
we elect to also add the optional term,

ΔLx ¼
1

16πG
× a20fx

�
X½g�
a20

� ffiffiffiffiffiffi
−g

p
; ð46Þ

where X½g� is the nonlocal invariant defined by expressions
(10), (8) and (12), and a0 is strictly constant. Much of the
analysis is similar to what was done in Sec. II for ΔLy. In
particular, it is again useful to localize the system using
auxiliary scalar fields. In addition to χ and ψ which are
already present in the mandatory term (16)—we require a
scalar θ which bears the same relation to X½g� that ϕ bears
to Y½g�,

θ ⟶
1

□

�
uαuβRαβ −

1

2
R

�
: ð47Þ

Of course we also need a Lagrange multiplier field ω to
enforce this relation. This makes the local version,

ΔLx ¼
1

16πG

�
a20fx

�
gμν∂μθ∂νθ

a20

�
− ∂μω∂νθgμν

− ω

�
uαuβRαβ −

1

2
R

�� ffiffiffiffiffiffi
−g

p
: ð48Þ

We remind the reader that uμ is the normalized gradient (8)
of χ, which appears, along with its Lagrange multiplier ψ,
in the mandatory term (16).
The correction (48) makes to ΔGμν is

16πGffiffiffiffiffiffi−gp δΔSx
δgμν

¼ 1

2
gμν

�
−a20fx þ ∂ρω∂σθgρσ þ ω

�
uαuβRαβ −

1

2
R

��
þ ∂μθ∂νθfx0

− ∂ðμω∂νÞθ − ω

�
2uðμuαRνÞα þ uμuνuαuβRαβ −

1

2
Rμν

�
þ 1

2
ðgμν□ −DμDνÞω

−
1

2
½□ðωuμuνÞ þ gμνDαDβðωuαuβÞ − 2DαDðμðωuνÞuαÞ�: ð49Þ

The auxiliary fields θ and ω are determined by applying
retarded boundary conditions to the equations which derive
from varying ΔSx,

16πGffiffiffiffiffiffi−gp δΔSx
δω

¼ □θ −
�
uαuβRαβ −

1

2
R

�
; ð50Þ

16πGffiffiffiffiffiffi−gp δΔSx
δθ

¼ □ω − 2Dμ

�
Dμθfx0

�
gρσ∂ρθ∂σθ

a20

��
: ð51Þ

The equation for the auxiliary field χ is still (19), but the
equation for ψ receives contributions from the χ depend-
ence (through uμ) in both ΔLy and ΔLx,
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16πGffiffiffiffiffiffi−gp δΔSxþy

δχ
¼ □ψ − 2Dμ

�ð2ξþ ωÞgμρ⊥ uσRρσffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gαβ∂αχ∂βχ

q �
: ð52Þ

Just as for the mandatory addition ΔLy, we do not regard
the auxiliary scalars as fundamental fields with arbitrary
initial value data. That would result in the combination
θ − ω being a ghost [38,40]. We instead define each
auxiliary field and its first time derivative to vanish at t ¼ ti.
Specializing to the FLRW geometry is a straightforward

extension of the analysis of subsection II B. The addition of
the optional term (46) does not change the FLRW expres-
sions (34)–(37) for the four auxiliary scalars ϕ, χ, ξ and ψ
of the mandatory MOND term (14). [Note in particular that
ψ still vanishes identically, Eq. (37), because gμρ⊥ uσRρσ ¼
gμρ⊥ Rρ0 ¼ gμ0⊥ R00 ¼ 0 in FLRW.] The two new auxiliary
scalars become

θðtÞ ¼
Z

t

ti

dt0

a3ðt0Þ
Z

t0

ti

dt00a3ðt00Þ½6 _Hðt00Þ þ 9H2ðt00Þ�; ð53Þ

ωðtÞ ¼ 2

Z
t

ti

dt0 _θðt0Þfx0
�
−
_θ2ðt0Þ
a20

�
: ð54Þ

And the contributions to the two nonzero components of
ΔGμν are

16πGffiffiffiffiffiffi−gp δΔSx
δg00

				
FLRW

¼ a20
2
fx

�
−_θ2

a20

�
þ 3H _ωþ 9

2
H2ω; ð55Þ

16πGffiffiffiffiffiffi−gp δΔSx
δgij

				
FLRW

¼ −
�
a20
2
fx

�
−_θ2

a20

�
þ ω̈þ

�
_θ

2
þ 3H

�
_ω

þ
�
3 _H þ 9

2
H2

�
ω

�
gij: ð56Þ

An important observation is that X vanishes for exact
matter domination, HðtÞ ¼ 2

3t. This means that the optional
correction cannot have much effect on cosmology at the
time of recombination, or on the early stages of structure
formation. It also means that the optional correction cannot
supply the MOND enhancement of gravity which would be
necessary to compensate for the absence of dark matter at
early times.

IV. MAKING a0 DYNAMICAL

MOND phenomenology only constrains the function
fyðZÞ of the mandatory MOND addition (14) for Z > 0.
Based on subsection II C, it seems possible to adjust how
fyðZÞ behaves for Z < 0 to support an arbitrary expansion
history. However, the variable Y½g� is essentially −H2ðtÞ
for cosmology, whereas a0 ∼H0=2π, so the argument

Z ¼ Y=a20 ∼ −4π2H2=H2
0 varies enormously over inter-

esting cosmological events such as nucleosynthesis
(Z ∼ −1032) and recombination (Z ∼ −1010). This raises
concerns about fine tuning. These concerns can be amelio-
rated by making the MOND acceleration a0 some func-
tional α½g� of the metric so that it changes with the scale of
cosmological acceleration. There are many, many plausible
choices for α½g�. To develop some quantitative understand-
ing of the consequences of a sliding scale, we here work out
the effect of a simple choice (13) in which a0 is replaced by
1=6π times the expansion, i.e.,Dμuμ=6π where the timelike
four-velocity uμ½g� is defined in Eqs. (8) and (12). Because
the optional MOND addition (46) does not seem to have
much effect for cosmology we only derive results for the
mandatory addition (14).
The replacement (13) causes only three changes in the

general metric field equations (17) and (18)–(21). The first
and most obvious change is that the factors of a0 in (17) and
(20) get replaced by α½g�. The second change is that
the addition to the Einstein tensor acquires an extra
contribution from the metric dependence of α½g�,

ðΔGμνÞnew ¼ ðΔGμνÞold þ gμν½α2fy − gρσ∂ρϕ∂σϕfy0�

þ 1

6π
½gμνuγ∂γ − 2uðμ∂νÞ − uμuνuγ∂γ�

×

�
αfy −

1

α
gρσ∂ρϕ∂σϕfy0

�
: ð57Þ

The final change is that equation (21) for the auxiliary
scalar ψ picks up an extra term from the χ dependence of α,

16πGffiffiffiffiffiffi−gp δΔSy
δχ

¼□ψ−Dμ

�
4ξgμν⊥ uρRρνþ 1

3πg
μν
⊥ ∂ν½αfy−1

αg
ρσ∂ρϕ∂σϕfy0�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gκλ∂κχ∂λχ
p �

:

ð58Þ

These small alterations in the functional form of the field
equations conceal vast changes in their numerical values.
That becomes apparent upon specialization to the FLRW
cosmology (22). In this case the functional α½g� becomes

α½g�jFLRW ¼ HðtÞ
2π

: ð59Þ

The auxiliary scalars ϕ, χ and ψ are unchanged from
expressions (34), (35) and (37), respectively, but ξ becomes

ξðtÞ ¼ 2

Z
t

ti

dt0 _ϕðt0Þfy0
�
−4π2 _ϕ2ðt0Þ
H2ðt0Þ

�
: ð60Þ

Our nonlocal addition to the Friedmann equation is
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ΔG00 ¼ −
H2

8π2
fy − _ϕ2fy0 þ 3H_ξþ 6H2ξ; ð61Þ

where each of the functions fyðZÞ is evaluated
at Z ¼ −4π2 _ϕ2=H2.
Let us underline two subtleties related to the way we

introduce a time-dependent a0 through the replacement
a0 → α½g�. First of all, in a FLRW background, the argu-
ment Z of the function fyðZÞ will remain of the order of
−4π2 at all times, so that the reconstruction of an arbitrary
expansion history seems more difficult to achieve. This
needs to be analyzed numerically. There are however many
other possible definitions of a time-dependent a0, and
significant but not-too-large variations of Z are possible for
instance with some kind of geometrical mean between α½g�
and the constant a0. Independently of the cosmological
reconstruction, corresponding to Z < 0, note that a time-
dependent a0 → α½g� will be quite useful in the MOND
correction (9) for Z > 0, so that this modified dynamics
happen for larger accelerations at earlier times, mimicking
the clustering effects of dark matter.
The second subtlety is that our definition (13) for α½g� is

likely to vanish within gravitationally bound systems,
because the local expansion Dμuμ should not keep any
information about the asymptotic cosmological evolution
(although this needs to be confirmed by further examina-
tion). This would force the model always into the general
relativistic regime, which would turn off the MOND force
even in the static, spherically symmetric and ultraweak field
regime. One might deal with this by simply using a0 þ α½g�
as the acceleration scale [45] entering our nonlocal action,
or one might devise a more nonlocal version of α½g� whose
value inside a gravitationally bound system depends upon
the cosmological expansion around it [46].

V. CONCLUSIONS

Our previous work on extending MOND to a relativistic,
metric theory led to consideration of two nonlocal scalar
functionals of the metric: a mandatory one Y½g� given in
expression (7) andoptional oneX½g�given in expression (10)
[28]. To recover MOND with sufficient weak lensing
requires that the Y term, and allows that the X term, be
added to the gravitational Lagrangian in the form

ΔLffiffiffiffiffiffi−gp ¼ a20
16πG

�
fy

�
Y½g�
a20

�
þ fx

�
X½g�
a20

��

¼ 1

32πG

�
ðY − XÞ − ðY3

2 − X
3
2Þ

3a0
þ � � �

�
: ð62Þ

Our previous study gave the field equations for static,
spherically symmetric geometries in the ultraweak field
limit. In this paper we have derived the field equations—
expressed as an addition ΔGμν to the usual Einstein
tensor—for arbitrary functions fy and fx and for an arbitrary
metric. Our result for ΔGμν from the mandatory term is
equation (17), with auxiliary fields (18)–(21). Our result for
ΔGμν from the optional term is equation (49), with auxiliary
fields (50)–(52).
We also specialized the general field equations to the

FLRW geometry (22) of cosmology. Our results for the
mandatory term are relations (34)–(39); for the optional term
they are relations (53)–(56). BecauseX happens to vanish for
a matter-dominated cosmology, the optional term does not
seem likely to play much role in cosmology. However, in
subsection II C we described a technique by which the free
function fyðZÞ could be constructed for Z < 0—which is
not constrained by MOND phenomenology—to support a
general expansion history aðtÞ.
Although the reconstruction problem can be solved for

the mandatory term, there will be large variations in the
argument Z ¼ − _ϕ2=a20 ∼ −4π2H2=H2

0 over the course of
cosmological history. This makes it likely that the extra
MOND force—which is needed at early times if there is no
dark matter—will only become effective at recent times.
That argues for making a0 dynamical. In Sec. IV we
derived the field equations and their specialization to
cosmology for a simple ansatz (13) in which the MOND
constant a0 changes with the expansion of the Universe.
One obvious problem is that our definition (13) for the
dynamical MOND acceleration α½g� probably vanishes
inside a gravitationally bound structure, so that the
MOND force would always be turned off. We conclude
that a more nonlocal ansatz may be necessary, in which the
MOND acceleration inside gravitationally bound structures
can still be determined by the cosmological expansion
around them.
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