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ABSTRACT
Redshift-space distortion (RSD) observed in galaxy redshift surveys is a powerful tool to test
gravity theories on cosmological scales, but the systematic uncertainties must carefully be
examined for future surveys with large statistics. Here we employ various analytic models
of RSD and estimate the systematic errors on measurements of the structure growth-rate
parameter, fσ 8, induced by non-linear effects and the halo bias with respect to the dark
matter distribution, by using halo catalogues from 40 realizations of 3.4 × 108 comoving
h−3 Mpc3 cosmological N-body simulations. We consider hypothetical redshift surveys at
redshifts z = 0.5, 1.35 and 2, and different minimum halo mass thresholds in the range of
5.0 × 1011–2.0 × 1013 h−1 M�. We find that the systematic error of fσ 8 is greatly reduced to
∼5 per cent level, when a recently proposed analytical formula of RSD that takes into account
the higher order coupling between the density and velocity fields is adopted, with a scale-
dependent parametric bias model. Dependence of the systematic error on the halo mass, the
redshift and the maximum wavenumber used in the analysis is discussed. We also find that the
Wilson–Hilferty transformation is useful to improve the accuracy of likelihood analysis when
only a small number of modes are available in power spectrum measurements.
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1 IN T RO D U C T I O N

Many observational facts suggest that our Universe is now in the
period of accelerated expansion but its physical origin is yet to be
understood (Riess et al. 1998; Perlmutter et al. 1999; Spergel et al.
2003; Tegmark et al. 2004). This might be a result of an exotic form
of energy with negative pressure that should be added to the right-
hand side of the Einstein equation as the cosmological constant
�, or more generally a time varying dark energy term. Another
possibility is that gravity is not described by the Einstein equation
on cosmological scales. Therefore, observational tests of gravity
theories on cosmological scales are important, and the redshift-
space distortion (RSD) effect observed in galaxy redshift surveys
gives such a test. RSD is distortion of a galaxy distribution in redshift
space caused by peculiar motions of the galaxies (see Hamilton

� E-mail: ishikawa@kusastro.kyoto-u.ac.jp

1998 for a review). The magnitude of this effect is expressed by
the anisotropy parameter β = f/b at the linear level (Kaiser 1987),
where f = d ln δ/d ln a is the linear growth rate of the fractional
density fluctuations δ, a the scalefactor of the universe and b the
galaxy bias with respect to the matter distribution. This is simply
a result of the mass continuity that relates the growth rate and
the velocity of large-scale systematic infall motion, and thus is
always valid regardless of gravity theories. When the galaxy bias is
independently measured, one can derive the parameter f. When the
galaxy bias is unknown, we can still measure the combination of
fσ 8 using the observed fluctuation amplitude of the galaxy density
field, where σ 8 is the rms amplitude of the mass fluctuations on
comoving 8 h−1Mpc scale.

A number of measurements of the growth rate have been reported
up to z ∼ 0.8 by using the data of various galaxy surveys (Tadros
et al. 1999; Percival et al. 2004; Cole et al. 2005; Guzzo 2008;
Blake et al. 2011; Samushia, Percival & Raccanelli 2012; Reid
et al. 2012; Beutler et al. 2013; de la Torre et al. 2013; Contreras
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et al. 2013a; Oka et al. 2013). In the near future, we expect more
RSD measurements at even higher redshifts. Although the statistical
significance is not as large as those at lower redshifts, an RSD
measurement at z ∼ 3 has also been reported by Bielby et al.
(2013). Planned/ongoing surveys, such as VLT/VIPERS1 (z � 1),
Subaru/FastSound2 (z ∼ 1.3) and HETDEX3 (z ∼ 3), will give
further constraints on the modified gravity theories proposed to
explain the accelerated cosmic expansion.

However, there are several effects that could result in systematic
errors of the growth-rate measurement, e.g. the non-linear evolution
of the power spectrum and the galaxy/halo bias. These must care-
fully be examined in advance of future ambitious surveys, in which
the systematic error might be larger than the statistical error.

Okumura & Jing (2011) demonstrated the importance of non-
linear corrections to the growth-rate parameter measurement by
using the multipole moment method for the linear power spectrum
(Cole, Fisher & Weinberg 1994) with an assumption of a scale-
independent constant halo bias, by using halo catalogues from
N-body simulations at z ∼ 0.3. A simple step to go beyond the
linear-theory formula is to include the effect of the velocity disper-
sion that erases the apparent fluctuations on small scales (Fisher
et al. 1994; Peacock & Dodds 1994; Hatton & Cole 1998; Peacock
1999; Tinker, Weinberg & Zheng 2006). Although this effect was
originally discussed to describe the random motions of galaxies
inside a halo and usually referred to as the Finger-of-God (FoG)
effect (Jackson 1972; Tully & Fisher 1978), the presence of any
pairwise velocity between galaxies (or even haloes) results in the
damping of the clustering amplitude (see e.g. Scoccimarro 2004).
This is often phenomenologically modelled by multiplying a damp-
ing factor that reflects the pairwise velocity distribution function.
Bianchi et al. (2012) found that the RSD parameter β measured
using this approach has a systematic error of up to 10 per cent for
galaxy-sized haloes in simulated halo catalogues at z = 1.

Another step to include the effect of the non-linear evolution
is to use analytical redshift-space formulae of the power spectrum
and/or the correlation function for modestly non-linear scales larger
than the FoG scale [Scoccimarro 2004; Taruya, Nishimichi & Saito
2010, hereafter TNS; Nishimichi & Taruya 2011; Tang, Kayo &
Takada 2011; Seljak & McDonald 2011; Reid & White 2011; Kwan,
Lewis & Linder 2012]. de la Torre & Guzzo (2011) showed that an
accuracy of 4 per cent is achievable for measurements of f from two-
dimensional (2D) two-point correlation functions, when the TNS
formula for the matter power spectrum is applied. In these previous
studies, the halo bias was treated as a constant free parameter, or the
correct scale dependence of the bias parameter directly measured
from numerical simulations was used, to derive the RSD parameters.
However, in real surveys the true bias cannot be measured and hence
it is uncertain whether this accuracy can really be achieved. A more
practical method to include the effect of a general scale-dependent
bias is to use phenomenological and parametrized bias models,
such as the parametrization proposed by Cole et al. (2005) (we call
it ‘Q-model bias’ in this paper), but such models have not been
extensively tested in the previous studies.

In addition to these analytical approaches, there are fully empiri-
cal RSD models based on N-body simulations both in Fourier and in
configuration spaces. Jennings, Baugh & Pascoli (2011b) reported
that, by employing their fitting formula for the non-linear power
spectra of velocity divergence (Jennings, Baugh & Pascoli 2011a),

1 http://vipers.inaf.it/
2 http://www.kusastro.kyoto-u.ac.jp/Fastsound/
3 http://hetdex.org/

they can recover the correct growth rate f from the redshift-space
matter power spectrum. Also, Contreras et al. (2013b) developed an
empirical fitting function of the 2D correlation function, and also
recovered the correct value of the growth rate f from halo catalogues
by excluding small-scale regions from their analysis.

In this study, we investigate the accuracy of the RSD measurement
for various halo catalogues at three redshifts of 0.5, 1.35 and 2. Espe-
cially, we investigate how the accuracy improves by using the TNS
formula of the power spectrum with the scale-dependent Q-model
bias. We run high-resolution cosmological N-body simulations of
collisionless dark matter particles and produce 40 realizations of
halo catalogues in a comoving volume of 3.4 × 108 h−3 Mpc3 at
each of the three redshifts. We then measure the growth rate fσ 8

by fitting the 2D halo power spectrum Phalo(k, μ) with theoretical
models, where k is the wavenumber and μ the cosine of the angle
between the line of sight and the wavevector. We search six model
parameters: f, the three parameters of the Q-model bias, the 1D
velocity dispersion σ v and the amplitude of the mass fluctuations
σ 8. The other cosmological parameters are fixed in this study.

This paper is organized as follows. In Section 2, we describe
the N-body simulations, the generation of halo catalogues and the
measurement of the 2D power spectrum Psim(k, μ) for matter and
haloes. In Section 3, we introduce the theoretical RSD models that
we test and the Markov chain Monte Carlo (MCMC) method with
which we measure the systematic and statistical errors on fσ 8 and
the other model parameters. We give the main results in Section 4
with some implications for future surveys and Section 5 is devoted
to the summary of this paper.

Throughout the paper, we assume a flat � cold dark matter
(�CDM) cosmology with the matter density �m = 0.272, the
baryon density �b = 0.046, the cosmological constant �� = 0.728,
the spectral index of the primordial fluctuation spectrum ns = 0.97,
σ 8 = 0.81 and the Hubble parameter h = 0.70, which are consis-
tent with the 7-year Wilkinson Microwave Anisotropy Probe results
(Komatsu et al. 2011).

2 MO C K C ATA L O G U E G E N E R ATI O N
AND POWER SPECTRU M MEASUREMENT

In this section, we describe the details of our N-body simulation
and how to measure the 2D power spectra for matter and haloes.
Although our main interest is on the analysis of halo catalogues,
we also analyse the matter power spectra to check the consistency
between theoretical predictions and the measured power spectra
from simulations, and to check if we can measure fσ 8 correctly
when the halo bias does not exist.

We use the cosmological simulation code GADGET2 (Springel et al.
2001b; Springel 2005). We employ Np = 10243 dark matter parti-
cles in cubic boxes of a side length 700 h−1 Mpc (or equivalently,
a survey volume V ∼ 3.4 × 108 h−3 Mpc3) with periodic bound-
ary conditions, giving the mass resolution of 2.4 × 1010 h−1 M�.
This box size is appropriate to achieve the halo mass resolution
for galaxy surveys. The gravitational softening length is set to
be 4 per cent of the mean inter-particle distance. In our simu-
lation, GADGET2 parameters regarding force and time integration
accuracy are as follows: PMGRID = 20483, MaxSizeTimestep =
0.03, MaxRMSDisplacementFac = 0.25 and ErrTolForceAcc =
0.001. We checked if this parameter choice is adequate by
comparing with more precise simulations (i.e. PMGRID = 10243,
MaxSizeTimestep = 0.005, MaxRMSDisplacementFac = 0.01
and ErrTolForceAcc = 0.0002). We ran these simulations from
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Figure 1. The measured 2D power spectra in redshift space for halo cata-
logues of Mmin = 5.0 × 1011 h−1 M� at z = 1.35. The open, filled and plus
(cross, star) symbols show the power spectra at μ = 0.05, 0.55 and 0.95,
respectively. For the same μ value, three types of points show the power
spectra for different mass resolution simulations with Np = 10243, 12803

and 15363 from left to right, respectively. Error bars show FKP error esti-
mated as (P̂ + Pshot)/

√
Nmode (Feldman, Kaiser & Peacock 1994). All the

data points are on the same k grids but they are slightly shifted horizontally
around the true k values for clarity.

the identical initial condition used for fiducial run, and the mea-
sured power spectra from them converge (within statistical errors).
In addition, we ran higher mass resolution simulations employing
Np = 12803 and 15363 particles. We found that the difference of
the power spectra is negligible (see Fig. 1). We confirmed that sys-
tematic error of the growth-rate measurement arising from these
changes is smaller than the statistical error.

We generate the initial conditions at z = 49 using a parallel code
developed in Nishimichi et al. (2009) and Valageas & Nishimichi
(2011), which employs the second-order Lagrangian perturbation
theory. The matter transfer function is calculated with Code for
Anisotropies in the Microwave Background (CAMB; Lewis, Challinor
& Lasenby 2000). We run a total of 40 independent realizations to
reduce the statistical error on the matter and halo power spectra.
For each realization, snapshot data are dumped at three redshifts
z = 0.5, 1.35 and 2.

We identify dark matter haloes using the friends-of-friends
(FoF) algorithm with a linking length bFoF = 0.2. We use a set
of halo catalogues with different minimum masses in the range of
5.0 × 1011–2.0 × 1013 h−1 M�. The detailed properties of the cat-
alogues including the minimum mass Mmin, the mean halo mass
Mhalo (simple average mass of haloes) and the number density of
the haloes nhalo are shown in Table 1. Note that, particles grouped
into a halo by the FoF algorithm may include gravitationally un-
bound ones, in particular for light FoF haloes. In order to evaluate
the effect of this contamination, we measured fσ 8 using only cen-
tral subhaloes identified by using SUBFIND algorithm (Springel et al.
2001a; Nishimichi & Oka 2013). It turns out that this alternative
analysis gives consistent fσ 8 values within 1 per cent level with
those from the original analysis using FoF haloes.

We measure the 2D power spectra Psim(k, μ) for the halo cat-
alogues as well as the matter distribution by using the standard
method based on the Fourier transform. To measure the power spec-
tra in redshift space, the positions of haloes (or matter) are shifted
along the line-of-sight coordinate as s = x + vz/(aH )ûz under the
plane-parallel approximation, where s is the redshift-space coor-
dinate, x the real-space counterpart whereas ûz denotes the unit
vector along the line of sight. Then the haloes are assigned on to

regular 12803 grids through the clouds-in-cells (CIC) interpolation
scheme, to obtain the density field on the grids. We perform fast
Fourier transforms with deconvolution of the smoothing effect of
the CIC (Hockney & Eastwood 1988; Takahashi et al. 2008, 2009).
We set the wavenumber bin size �k = 0.01 h Mpc−1 and the direc-
tion cosine bin size �μ = 0.1. The binned power spectrum for a
given realization is estimated as

P̂ (k, μ) = 1

Nmode

∑
k

|δk|2 − Pshot, (1)

where the summation is taken over Nmode Fourier modes in a bin.
In the above equation, Pshot denotes the shot noise given by the
inverse of the halo number density, n−1

halo, and we do not subtract the
shot noise for the matter power spectrum. We show the measured
2D power spectra P̂ (k, μ) for haloes with the mass threshold of
Mmin = 5.0 × 1011 h−1 M� at z = 1.35 in Fig. 1, for three direction
cosine values of μ = 0.05, 0.55 and 0.95. We can see that three
power spectra measured from different mass resolution simulations
(i.e. Np = 10243, 12803 and 15363), which are started from the
same input power spectrum, are in good agreement with each other.
Finally, we average the 40 independent power spectra and obtain
Pave40(k, μ) for matter and haloes.4

3 R SD MODEL FI TTI NGS

3.1 Theoretical RSD models

In this section, we introduce four theoretical models tested in this
study: two analytical models for the 2D power spectrum in redshift
space, and two types of parametrization for the halo bias. We also
explain how to determine the best-fitting parameters in the models
through the MCMC method.

In linear theory, the 2D halo power spectrum in redshift space
can be written as

P (k, μ) = b2(1 + βμ2)2Plin(k), (2)

(Kaiser 1987) where b is the halo bias and Plin(k) the linear matter
power spectrum in real space. We model the FoG effect arising from
halo velocity dispersion by the Lorentzian-type damping function:

P (k, μ) = DFoG(kμf σv) × b2(1 + βμ2)2Plin(k) (3)

DFoG(x) = 1

(1 + x2/2)2
(4)

(Peacock & Dodds 1994). We call this model ‘the Kaiser model’.
Another model that takes into account the non-linear evolution on
mildly non-linear scales, we use the model based on the perturbative
expansion (TNS) and generalized to biased tracers in Nishimichi &
Taruya (2011):

P (k, μ) = DFoG(kμf σv)

× b2[Pδδ(k) + 2βμ2Pδθ (k) + β2μ4Pθθ (k)

+ bCA(k, μ; β) + b2CB (k, μ; β)], (5)

where Pδδ , Pθθ and Pδθ denote the auto power spectra of density
contrast and of velocity divergence θ = ∇ · u = −∇ · v/(aHf ),

4 The measured power spectra, both real-space Preal(k) and redshift-
space 2D P(k, μ), are publicly released at http://www.kusastro.kyoto-u.ac.
jp/∼ishikawa/catalogues/
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Table 1. Summary of the halo catalogues. The minimum mass Mmin and the mean halo mass Mhalo are shown in units of h−1 M�
and the halo number density nhalo is shown in h3 Mpc−3. The halo bias shows the value of b0σ 8/σ 8, input, where b0 and σ 8 are the
best-fitting parameters by fitting with the TNS+Q-model bias. (See Section 3.1 for the definition of σ 8, input.)

z = 2 z = 1.35 z = 0.5
Mmin Mhalo nhalo bias Mhalo nhalo bias Mhalo nhalo bias

5.0 × 1011 1.51 × 1012 4.52 × 10−3 2.3 1.92 × 1012 6.15 × 10−3 1.7 2.83 × 1012 7.43 × 10−3 1.1
1.0 × 1012 2.65 × 1012 1.91 × 10−3 2.6 3.32 × 1012 2.96 × 10−3 1.9 4.90 × 1012 3.77 × 10−3 1.2
2.0 × 1012 4.61 × 1012 7.52 × 10−4 3.1 5.71 × 1012 1.28 × 10−3 2.2 8.36 × 1012 1.90 × 10−3 1.4
5.0 × 1012 9.80 × 1012 1.80 × 10−4 3.9 1.19 × 1013 3.90 × 10−4 2.7 1.70 × 1013 7.22 × 10−4 1.7
1.0 × 1013 1.74 × 1013 5.14 × 10−5 4.7 2.08 × 1013 1.42 × 10−4 3.3 2.90 × 1013 3.30 × 10−4 1.9
2.0 × 1013 3.13 × 1013 1.16 × 10−5 6.1 3.66 × 1013 4.43 × 10−5 4.0 4.96 × 1013 1.40 × 10−4 2.3

and their cross power spectrum, respectively (Scoccimarro 2004;
Percival & White 2009), and CA and CB are the correction terms
arising from the higher order mode coupling between the density
and velocity fields (TNS; Nishimichi & Taruya 2011). This model
is referred to as ‘the TNS model’ hereafter. It should be noted that
this RSD model is strictly valid only when the halo bias is assumed
to be constant. However, later we will introduce a scale-dependent
halo bias to the TNS model, to incorporate the scale dependence of
bias. Though there is an inconsistency here, this is probably the best
approach available for the moment to get a good estimate of fσ 8.

For our MCMC analysis described in the next subsection, we
in advance prepare templates for the power spectrum of equa-
tion (5) at each of the three redshifts for a fiducial cosmological
model. In particular, the three power spectra, Pδδ , Pδθ and Pθθ , are
calculated by using the closure approximation up to the second-
order Born approximation, and the correction terms, CA and CB,
are evaluated by the one-loop standard perturbation theory (Taruya
& Hiramatsu 2008; Taruya et al. 2009; TNS). In computing these
templates, we use the fiducial value of the density fluctuation am-
plitude σ 8,fid(z = 0) = 0.81 and the linear-theory growth factor at
each redshift.

In the MCMC analysis, we treat σ 8 as a free parameter and
re-scale the template spectra as follows. We replace the density
and velocity spectra as Pab → Pab × (σ 8(z)/σ 8,input(z))2 and the
correction terms as CA(or CB) → CA(or CB) × (σ 8(z)/σ 8,input(z))4.
These replacements are valid at the leading order, and we expect that
the error induced by this approximated treatment would be small.
This procedure significantly saves computing time to calculate the
spectra for a given value of σ 8.

As for the halo bias, we assume a linear bias b = δhalo/δmatter, and
we adopt two models: a constant bias and a parametrized ‘Q-model’
bias to allow scale dependence (or, equivalently, non-locality of the
relation between the halo and matter density fields; Cole et al. 2005;
Nishimichi & Taruya 2011). These are expressed as

b(k) =

⎧⎪⎪⎨
⎪⎪⎩

b0 : constant bias

b0

√
1 + Qk2

1 + Ak
: Q − model bias,

where b0, Q and A are model parameters.
To summarize, we test the following four theoretical models for

the 2D halo power spectrum in redshift space: ‘Kaiser+constant
bias’, ‘Kaiser+Q-model bias’, ‘TNS+constant bias’ and ‘TNS+Q-
model bias’ in this study. All the models include the four parameters,
f, b0, σ v and σ 8. Additionally, the two models with the Q-model
bias have two more parameters, Q and A. When we analyse the
matter power spectrum, we fix the bias parameters as b0 = 1 and
Q = A = 0.

3.2 Fitting methods

In this study, we employ the maximum likelihood estimation using
the MCMC method and find the best-fitting model parameters as
well as their allowed regions. In contrast to the analysis using the
ratio of the multipole moments (e.g. Cole et al. 1994), we try to fit
the shape of the 2D power spectrum, Psim(k, μ), directly. In such a
case, we should take into account the fact that there is only a small
number of Fourier modes in a (k, μ) bin. If the measured power
spectrum P(k, μ) at each (k, μ) bin follows the Gaussian distribution,
the likelihood can be written as L ∝ exp (−χ2/2), where the chi-
square, χ2, is calculated in the standard manner from the measured
and expected values of P(k, μ) and its standard deviation.

In reality, however, P(k, μ) does not follow the Gaussian but the
χ2 distribution even when the density contrast itself is perfectly
Gaussian. In order to take into account this statistical property in
the maximum likelihood estimation, we apply the Wilson–Hilferty
(WH) transformation (Wilson & Hilferty 1931) that makes a χ2 dis-
tribution into an approximate Gaussian. We define a new variable

P ′
sim(k, μ) = (Psim + Pshot)

1/3, (7)

and P ′
sim is expected to approximately obey the Gaussian distribution

with a mean of

P ′
true =

[
1 − 1

9Nmode

]
(Ptrue + Pshot)

1/3 (8)

and a variance of

σ 2
P ′ = 1

9Nmode
(Ptrue + Pshot)

2/3. (9)

It should be noted that the power spectrum amplitude directly mea-
sured from the simulations, Psim + Pshot, does not exactly obey the
χ2 distribution, because it includes the shot noise term. However,
the WH transformation should be effective only at small wavenum-
bers where the number of modes in a k-space bin is small, and the
shot noise term is relatively unimportant also at small wavenum-
bers. Therefore, we adopt the above transformation, expecting
that Psim + Pshot approximately obeys a χ2 distribution. (For the
wavenumbers where the shot noise term becomes comparable with
the real-space halo power spectrum, see Fig. 8.)

Thus, after this transformation, we expect that

χ2 =
∑

k<kmax

∑
μ

[
P ′

sim(k, μ) − P ′
model(k, μ)

]2

σ 2
P ′,model

(10)

approximately obeys a χ2 distribution, with better accuracy than
simply using Psim, where kmax is the upper bound of the range
of wavenumbers that we use in fitting, P ′

model and σP ′
model

are the
WH-transformed model power spectrum and its variance given by
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equations (8) and (9) with replacing Ptrue by the model power spec-
trum Pmodel. In our analyses, we vary kmax from 0.05 to 0.50 h Mpc−1

at an interval of 0.05 h Mpc−1.
To see how much the fit is improved by this WH approximation,

we will later compare the results with those obtained using the
standard χ2 statistic calculation without the WH transformation, in
which we simply use Psim, Pmodel and a variance of σ 2

P = (Pmodel +
Pshot)2/Nmode (Feldman et al. 1994).

Then we find the best-fitting values and their allowed regions of
all the model parameters (four parameters, f, b0, σ v and σ 8, for the
models with the constant bias, and additional two, Q and A, for the
models with the Q-model) simultaneously, by the standard MCMC
technique.

4 R ESULTS AND DISCUSSION

4.1 Matter power spectrum

Before presenting our main results using haloes in the next subsec-
tion, let us discuss the robustness of the fσ 8 measurement in the
absence of the halo/galaxy bias.

In the upper panel of Fig. 2, we show the matter power spectra in
real space at z = 0.5, 1.35 and 2 with the reference wavenumbers
k1 per cent, up to which the closure theory is expected to be accurate

Figure 2. Upper panel: comparison of the measured matter power spectra
from simulations, with the theoretical predictions from the closure theory Pδδ

(solid lines), and from a linear theory Plin (dashed lines), at three different
redshifts. The arrows indicate the wavenumbers up to which the closure
theory is accurate at 1 per cent level (k1 per cent = 0.19, 0.27 and 0.34 h Mpc−1

at z = 0.5, 1.35 and 2, respectively). Lower panel: the best-fitting fσ 8 with
1σ error bars and the reduced χ2 values by fitting with the Kaiser model
(open symbols) and with the TNS model (filled symbols) as a function of the
maximum wavenumber kmax used in fitting. (All the data points are on the
same kmax grids for the different models and redshifts, but they are slightly
shifted horizontally for clarity (see also Fig. 1).

within 1 per cent, indicated by arrows (see Nishimichi et al. 2009;
TNS). The measured power spectra indeed agree with Pδδ predicted
by the closure theory at ∼3 per cent level, in rough agreement with
the definition of k1 per cent. Therefore, we use k1 per cent as indicators of
a few per cent accuracy wavenumbers throughout the paper. In the
lower panel, we show the measured fσ 8 values normalized by the
correct ones assumed in the simulations, and the reduced χ2 val-
ues χ2

red for the best-fitting models. It is clearly seen that fσ 8 from
the Kaiser model (open symbols) is significantly underestimated
at kmax � 0.10 h Mpc−1 at all the redshifts, while the TNS model
(filled symbols) returns fσ 8 closer to the correct value, with system-
atic errors of less than 4 per cent up to kmax ∼ 0.30 h Mpc−1. As
wavenumber increases, χ2

red boosts up quickly away from unity, and
the maximum wavenumber kmax up to which χ2

red 
 1 roughly co-
incides with k1 per cent. Systematic overestimates by the TNS model
are seen at kmax = 0.20 and 0.25 h Mpc−1 at z = 0.5, and underesti-
mates at kmax > 0.15 h Mpc−1 at z = 2. The origin of these is rather
uncertain, but these might arise from sub-per cent uncertainty of
the power spectrum prediction by the closure theory, or from the
incompleteness in the RSD modelling of the TNS model.

The MCMC analysis above is done with the power spectrum,
Pave40, averaged over 40 realizations. Thus, the number of modes in
each of the (k, μ) bins is rather large compared with that available
in realistic surveys. We therefore examine the accuracy of the RSD
measurement using P̂ in equation (1) for each realization.

In Fig. 3, we show by filled symbols the mean values of the best-
fitting fσ 8 at z = 1.35 using the TNS model, treating each of the 40
realizations as a single observation and running the MCMC chain
for each of them, with and without applying the WH approximation.
There can be seen overestimations of fσ 8 at small wavenumbers.
For comparison, we also show the results from the averaged power
spectrum of 40 realizations Pave40 (open symbols; same as in Fig. 2).
Since the overestimating feature is greatly reduced for the results
using Pave40 that includes a larger number of modes, the system-
atic overestimation must be caused by the small number of modes
in the measured power spectrum. Then we compare the results of
filled symbols with and without the WH transformation (magenta

Figure 3. Systematic errors of the fσ 8 measurements by fitting to the matter
power spectrum Pmatter(k, μ) with the TNS model at z = 1.35. The open
symbols and their error bars show the results from Pave40 (averaged power
spectrum of 40 realizations) and 1σ statistical errors. The filled symbols
show the means of 40 best-fitting fσ 8 values calculated for each realiza-
tion, with the errors estimated by the scatter of the fσ 8 values of the 40
realizations. The triangles and circles shown with and without applying
the WH approximation, respectively. All the data points are slightly shifted
horizontally for clarity (see also Fig. 1).
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triangles versus blue circles), and it can be seen that the WH transfor-
mation improves the accuracy of fσ 8 estimates. Even after applying
the WH transformation, there still remains a discrepancy at kmax �
0.10 h Mpc−1, which is likely to be the limitation of the WH trans-
formation. (Note that the WH transformation is an approximation.)
However, since the use of the WH transformation gives more accu-
rate results than those without using it, this technique is good to be
incorporated.

Regarding the sizes of statistical errors on fσ 8, we also tested
jackknife resampling method. Although this gives 30–70 per cent
larger error bars compared to MCMC errors, we think these results
are roughly consistent with each other. In the rest of this paper, we
focus on the results of the MCMC analyses after averaging over 40
power spectra (i.e. Pave40) with applying the WH transformation, to
reduce the error induced by a small number of modes in k-space
bins.

4.2 Halo power spectrum

4.2.1 The case of z = 1.35 and Mmin = 1.0 × 1012 h−1M�
We next analyse halo catalogues to measure fσ 8 by fitting the
power spectra in redshift space with the four analytical models.
As the baseline case, we show the measured fσ 8 and the val-
ues of χ2

red for the best-fitting models to the halo catalogues of
Mmin = 1.0 × 1012 h−1M� at z = 1.35 in Fig. 4 as a function of the
maximum wavenumber, kmax , used in the analysis. Here and here-
after, when we present results for a fixed value of kmax , we adopt
kmax = 0.25 h Mpc−1 as the baseline value.

All the four models give fσ 8 within a few per cent accuracy
at kmax ∼ 0.10 h Mpc−1, up to which linear theory is sufficiently
accurate (see dashed lines in the upper panel of Fig. 2). There can be
seen overestimation by more than 1σ level at kmax = 0.05 h Mpc−1,
and they are likely to be cosmic variances. We have checked that
one of the two subsamples gives fσ 8 consistent with the correct
value within 1σ error when we split the 40 realizations into two
groups and analyse the averaged power spectra of them separately.
On the other hand, underestimation at kmax = 0.15 h Mpc−1 for all
the models seem to be systematic errors. It is difficult to identify the
causes of these results, since the measured power spectrum can be

Figure 4. The best-fitting fσ 8 with 1σ error bars and the reduced χ2 values,
for the halo catalogue of Mmin = 1.0 × 1012 h−1M� at z= 1.35. Data points
show the results of the four different models of the 2D halo power spec-
trum: Kaiser+constant bias, Kaiser+Q-model bias, TNS+constant bias, and
TNS+Q-model bias.

fitted pretty well with reduced χ2 values of ∼1. We leave this issue
for future studies.

We then investigate the results from the four RSD modellings
one by one. The Kaiser model again fails to reproduce the correct
fσ 8 at kmax � 0.25 h Mpc−1, but this time fσ 8 are overestimated, in
contrast to the results of the matter power spectra. Even when the
TNS model is employed, the assumption of the constant bias leads
to underestimation of fσ 8 at kmax � 0.20 h Mpc−1. However, when
we use the TNS model with the scale-dependent Q-model bias, the
systematic error is significantly reduced down to 5 per cent level up
to kmax ∼ 0.50 h Mpc−1. Note that the adopted perturbation theory
is accurate by ∼1 per cent level only up to kmax = 0.27 h Mpc−1.
It is rather surprising that the reduced χ2 values are ∼1 up to
kmax ∼ 0.50 h Mpc−1. This means that ∼5 per cent level systematic
errors of fσ 8 is possible even if the fit looks good, which should be
kept in mind in future analyses applied on the real data.

We plot in Fig. 5 the four best-fitting model power spectra against
the simulation data measured at three fixed direction cosine of the
wavevector, μ = 0.05, 0.55 and 0.95. In Fig. 6, the halo bias mea-
sured from N-body simulations is presented. The plot shows the
mean of the 40 independently measured biases from each realiza-
tion in real space as b(k) = √

Phalo(k)/Pmatter(k), and its standard
deviation. For comparison, we also show the best-fitting model bias
curves, b(k)σ 8/σ 8, input, for the four models, which are calculated
for each model with the corresponding parameters, b0, Q, A and
σ 8, using their best-fitting values found by the MCMC analysis.
The measured bias shows a monotonic increasing trend with the
wavenumber. Generally the scale dependence of the halo bias is
different for different halo mass and redshift, and both increasing

Figure 5. The power spectra in redshift space at μ = 0.05, 0.55
and 0.95 at z = 1.35. The upper panel is for the halo catalogue of
Mmin = 1.0 × 1012h−1 M�, while the lower panel is for the matter distri-
bution. The data points are measurements from simulations and the curves
show the best fits for different models (see labels in the figure for corre-
sponding models).
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Figure 6. Comparison between the halo bias directly measured from
simulations and the best-fitting bias models, for the halo catalogue of
Mmin = 1.0 × 1012 h−1 M� at z = 1.35. The data points and lines are
for the same simulation and models as those in the upper panel of Fig. 5.

and decreasing trends are possible depending on these parameters
(Sheth & Tormen 1999; Nishimichi & Taruya 2011; Okumura &
Jing 2011).

When the Kaiser model is used, an apparently inverse trend is
seen for the systematic deviation of fσ 8 measurements from the
input value, for the matter and halo power spectra, and this can be
understood as follows. In a fitting to the matter spectrum, the Kaiser
model tries to reproduce the power enhancement arising from the
non-linear evolution at high-k by setting σ 8 larger than the input
value, because of the absence of the bias model parameters (see
dash-dotted line at μ ∼ 0 in the lower panel of Fig. 5). It is easy to
show that, from the Kaiser formula, a systematically lower value of
fσ 8 than the input value is favoured to reproduce the RSD effect at
large μ, when σ 8 is overestimated. In a fitting to the halo spectrum,
there are degrees of freedom for bias models, but the non-linear
power enhancement at high-k cannot be completely absorbed by
the constant or Q-model bias. The power enhancement can also be
absorbed to some extent by reducing σ v in the FoG damping factor,
but Fig. 7 indicates that the best-fitting σ v is zero when the Kaiser
model is employed, regardless of the bias modellings. The power
enhancement that cannot be absorbed by bias modellings or the FoG
parameter then favours a larger fσ 8 than the correct value, at the
cost of a poorer agreement at low-k.

Figure 7. The best-fitting values and the 1σ and 2σ confidence regions
of the four different models (see figure) in the fσ 8–σ v plane, for the halo
catalogue of Mmin = 1.0 × 1012h−1 M� at z = 1.35.

The systematic underestimation of fσ 8 when we employ the
TNS+constant bias model might be a result of the discrepancy be-
tween the correct bias measured directly from simulations and the
best-fitting constant bias at low-k (k � 0.15 h Mpc−1, see dashed
line in Fig. 6), because the bias shape of the best-fitting model of
the TNS+Q-model bias is close to the simulation-measured bias.

Compared with the sizes of statistical errors for the
Kaiser+constant bias model, we get nearly equal sizes of errors
for the Kaiser+Q-model bias, 1.5–2 times larger errors for the
TNS+constant bias and 2.5 times larger errors for the TNS+Q-
model bias. The size of statistical error becomes generally larger
with increasing the number of fitting model parameters because of
the effect of marginalizing, though the size of increase is quanti-
tatively different for different models because of different ways of
parameter degeneracy.

4.2.2 Dependence on z and Mmin

Now we investigate the other halo catalogues at the three redshifts
with different minimum halo mass thresholds. The results of the
fσ 8 measurement by fitting with the TNS+Q-model bias are shown
in Fig. 8. We firstly focus on the results at kmax ∼ k1 per cent. In this
regime fσ 8 measurements with systematic uncertainties of less than
∼5 per cent are achieved, except for massive halo catalogues of
Mmin � 1013 h−1 M� at z = 2. These correspond to highly biased
haloes of b0σ 8/σ 8,input � 4. Therefore, we can state that the TNS
model can be used for fσ 8 measurements with an accuracy of 5 per
cent if kmax ∼ k1 per cent and b � 4.

The behaviour beyond k1 per cent depends on the mass of haloes as
well as redshift. In some cases, a value of fσ 8 consistent with its in-
put value is successfully recovered up to much higher wavenumbers
(see e.g. the heaviest halo catalogue at z = 0.5, from which we can
measure the correct fσ 8 values up to kmax = 0.45 h Mpc−1). How-
ever, this result should be taken with care. This apparently successful
recovery of fσ 8 is probably because of the rather flexible functional
form of the scale-dependent bias adopted in this paper. The param-
eters A and Q can sometimes absorb the mismatch between the true
matter power spectra and the TNS model beyond k1 per cent without
leaving systematics to fσ 8 for some special cases. The situation
would probably be quite different when different parameterizations
are chosen for b(k). Nevertheless, it is of interest to explore the pos-
sibility to add some more information from higher wavenumbers.
Although we, in this paper, employ only one particular functional
form for the scale-dependent bias as well as a constant bias model,
the reproductivity of the growth-rate parameter from high-k modes
with different bias functions is also of interest. We leave further
investigations along this line for future studies.

4.3 Implications for future surveys

In this subsection, we give some implications for future use of our
analysis methodologies. As seen above, we have demonstrated that
we can measure fσ 8 with a systematic error of �5 per cent by using
the TNS model combined with the Q-model bias, provided that
the used wavenumber range is kmax ∼ k1 per cent and haloes are not
strongly biased (b � 4).

Nishimichi & Taruya (2011) showed the expected constraints on
the growth rate f(z) for some ongoing and planned surveys (see fig. 6
and table III in their paper). The estimated 1σ statistical errors are
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Figure 8. The best-fitting fσ 8 and the reduced χ2 values at z = 2, 1.35 and
0.5 from top to bottom, respectively. Different symbols are for the different
values of the minimum halo mass Mmin = 5.0, 10, 20, 50, 100 and 200 in units
of 1011 h−1 M�. The black arrows show the k1 per cent wavenumbers. The
cyan, blue, purple and blown arrows with symbols indicate the wavenumbers
where the shot noise term becomes comparable with the halo power spectrum
in real space, for the catalogues of Mmin = 20, 50, 100 and 200, respectively
(see, Section 3.2).

7.5–3.9 per cent at redshift z = 0.7–1.5 for SuMIRe-PFS5, and
5.1 per cent at z = 3.0 for HETDEX. This means that the TNS+Q-
model bias fit can reduce the systematic errors arising from the
non-linear effects and the halo bias to be comparable or lower than
the statistical errors from these surveys.

5 http://sumire.ipmu.jp/

The space mission Euclid6 will survey over a redshift range of
0.7 < z < 2.1 and get redshifts of 50 million galaxies. The number
of galaxies in each redshift bin will be more than one million. We
can roughly estimate the statistical error expected from Euclid to be
a few per cent level, by using an empirical formula

�f σ8

f σ8
∼ 50√

Ngal
(11)

(Guzzo 2008; Song & Percival 2009), where Ngal is the number of
galaxies. This estimation indicates that we need to further improve
the modelling of RSD, to make the systematic error smaller than
the statistical error of Euclid.

5 C O N C L U S I O N S

We have investigated how accurately the structure growth rate fσ 8

can be measured from the RSD effects through the model fittings.
We have used the halo catalogues generated from N-body simula-
tions assuming the standard �CDM universe with general relativity,
at z = 0.5, 1.35 and 2 for various minimum halo mass thresholds of
5.0 × 1011–2.0 × 1013 h−1 M�. We have tested two analytical mod-
els for the 2D power spectrum in redshift space: the Kaiser model
and the TNS model including the higher order coupling terms be-
tween the density and velocity fields. We have implemented two
models for the halo bias: a constant bias and a scale-dependent
parametric bias model (i.e. Q-model).

We find significant systematic error (more than 10 per cent for
kmax � 0.30 h Mpc−1) when the Kaiser model is simply adopted
regardless of the bias modellings, which is consistent with previous
studies. Under the assumption of the constant bias, the systematic
error still remains even when we employ the TNS model. However,
when we use the TNS model with the Q-model bias, the systematic
error can be reduced to �5 per cent for all the redshifts and mass
thresholds, by using the wavenumber range up to k1 per cent (e.g.
k1 per cent = 0.19, 0.27 and 0.34 h Mpc−1 at z = 0.5, 1.35 and 2,
respectively).

For some heavy halo catalogues at z = 0.5, the TNS+Q-model
gives the accurate fσ 8 measurement significantly beyond k1 per cent.
This is probably because the Q-model bias model absorbs the
difference between the simulated matter power spectrum and the
TNS model prediction, but this feature is only for particular cases,
and a further investigation is necessary. At lower mass ranges, the
TNS+Q-model gives clearly biased fσ 8 estimates at kmax > k1 per cent,
especially at lower redshifts where the non-linear effects are more
significant.

We conclude that the TNS model as a 2D power spectrum formula
combined with the Q-model bias is a powerful tool to measure
the structure growth rate. The systematic error can be reduced to
under 5 per cent at kmax ∼ k1 per cent, which is comparable with or
smaller than the expected statistical errors of near-future ground-
based surveys at high redshifts, such as SuMIRe-PFS and HETDEX.
Some future ambitious surveys, such as Euclid, will achieve even
smaller statistical errors, and we will need to pursue more accurate
theoretical models taking into account the non-linear effects and
the halo/galaxy bias. We also note that the TNS formula is valid
only when gravity is described by general relativity. Therefore, this
model cannot be used for a test of other theories of gravity, but still
it can be used to test whether general relativity is a valid theory to
describe the formation of large-scale structure.

6 http://www.euclid-ec.org/
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Finally, we note on the importance of an appropriate treatment for
the fσ 8 measurement, when only a small number of Fourier modes
are available in a k-space bin of power spectrum measurements. In
such a case, a measured power spectrum P̂ in equation (1) obeys
not the Gaussian but the χ2 distribution even when the underlying
density field itself obeys the Gaussian statistics. In this study, we
have introduced the WH transformation which converts the variable
obeying the χ2 distribution into an approximate Gaussian, in our
likelihood calculation of the MCMC analysis. Indeed, we have
confirmed that the WH transformation improves the accuracy of
the fσ 8 measurement, and hence it is a useful prescription when the
number of available modes is small.

AC K N OW L E D G E M E N T S

We thank A. Taruya for providing the templates of the TNS power
spectrum for our analysis, and A. Oka for useful discussions. Nu-
merical computations were carried out on Cray XT4 and the anal-
yses were in part carried out on computers at Center for Computa-
tional Astrophysics, CfCA, of National Astronomical Observatory
of Japan. TN is supported by JSPS Postdoctoral Fellowships for
Research Abroad. RT is supported by Grant-in-Aid for Japan Soci-
ety for the Promotion of Science (no. 25287062) and by Hirosaki
University Grant for Exploratory Research by Young Scientists.
NY acknowledges financial support from the Japan Society for the
Promotion of Science (JSPS) Grant-in-Aid for Scientific Research
(25287050).

R E F E R E N C E S

Beutler F. et al., 2013, MNRAS, 429, 3604
Bianchi D., Guzzo L., Branchini E., Majerotto E., de la Torre S., Marulli F.,

Moscardini L., Angulo R. E., 2012, MNRAS, 427, 2420
Bielby R. et al., 2013, MNRAS, 430, 425
Blake C. et al., 2011, MNRAS, 415, 2876
Cole S., Fisher K. B., Weinberg D. H., 1994, MNRAS, 267, 785
Cole S. et al., 2005, MNRAS, 362, 505
Contreras C. et al., 2013a, MNRAS, 430, 924
Contreras C., Blake C., Poole G. B., Marin F., 2013b, MNRAS, 430, 934
de la Torre S., Guzzo L., 2011, MNRAS, 427, 327
de la Torre S. et al., 2013, A&A, 557, 54
Feldman H. A., Kaiser N., Peacock J. A., 1994, ApJ, 426, 23
Fisher K. B., Davis M., Strauss M. A., Yahil A., Huchra J. P., 1994, MNRAS,

267, 927
Guzzo L., 2008, Nature, 451, 541
Hamilton A. J. S., 1998, Astron. Space Sci. Libr., 231, 185S
Hatton S., Cole S., 1998, MNRAS, 296, 10
Hockney R. W., Eastwood J. W., 1988, Computer Simulation using Particles.

Hilger, Bristol

Jackson J. C., 1972, MNRAS, 156, 1P

Jennings E., Baugh C. M., Pascoli S., 2011a, MNRAS, 410, 2081
Jennings E., Baugh C. M., Pascoli S., 2011b, ApJ, 727, L9
Kaiser N., 1987, MNRAS, 227, 1
Komatsu E. et al., 2011, ApJS, 192, 18
Kwan J., Lewis G. F., Linder E. V., 2012, ApJ, 748, 78
Lewis A., Challinor A., Lasenby A., 2000, ApJ, 538, 473
Nishimichi T., Oka A., 2013, preprint (astro-ph/1310.2672)
Nishimichi T., Taruya A., 2011, Phys. Rev. D, 84, 043526
Nishimichi T. et al., 2009, PASJ, 61, 321
Oka A., Saito S., Nishimichi T., Taruya A., Yamamoto K., 2013, MNRAS,

439, 2515
Okumura T., Jing Y. P., 2011, ApJ, 726, 5
Peacock J. A., 1999, Cosmological Physics. Cambridge Univ. Press,

Cambridge
Peacock J. A., Dodds S. J., 1994, MNRAS, 267, 1020
Percival W. J., White M., 2009, MNRAS, 393, 297
Percival W. J. et al., 2004, MNRAS, 353, 1201
Perlmutter S. et al., 1999, ApJ, 517, 565
Reid B. A., White M., 2011, MNRAS, 417, 1913
Reid B. A. et al., 2012, MNRAS, 426, 2719
Riess A. G. et al., 1998, AJ, 116, 1009
Samushia L., Percival W. J., Raccanelli A., 2012, MNRAS, 420, 2102
Scoccimarro R., 2004, Phys. Rev. D, 70, 083007
Seljak U., McDonald P., 2011, J. Cosmol. Astropart. Phys., 11, 039
Sheth R. K., Tormen G., 1999, MNRAS, 308, 119
Song Y.-S., Percival W. J., 2009, J. Cosmol. Astropart. Phys., 10, 004
Spergel D. N. et al., 2003, ApJS, 148, 175
Springel V., 2005, MNRAS, 364, 1105
Springel V., Yoshida N., White S. D. M., 2001a, New Astron., 6, 79
Springel V., White S. D. M., Tormen G., Kauffmann G., 2001b, MNRAS,

328, 726
Tadros H. et al., 1999, MNRAS, 305, 527
Takahashi R. et al., 2008, MNRAS, 389, 1675
Takahashi R. et al., 2009, ApJ, 700, 479
Tang J., Kayo I., Takada M., 2011, MNRAS, 416, 229
Taruya A., Hiramatsu T., 2008, ApJ, 674, 617
Taruya A., Nishimichi T., Saito S., Hiramatsu T., 2009, Phys. Rev. D,

80, 123503
Taruya A., Nishimichi T., Saito S., 2010, Phys. Rev. D, 82, 063522 (TNS)
Tegmark M. et al., 2004, Phys. Rev. D, 69, 103501
Tinker J. L., Weinberg D. H., Zheng Z., 2006, MNRAS, 368, 85
Tully R. B., Fisher J. R., 1978, in Longair M. S., Einasto J., eds, Proc. IAU

Symp. 79, The Large Scale Structure of the Universe. Reidel, Dordrecht,
p. 31

Valageas P., Nishimichi T., 2011, A&A, 527, 87
Wilson E., Hilferty M., 1931, Proc. Natl. Acad. Sci., 17, 684

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 443, 3359–3367 (2014)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/443/4/3359/1016264 by C
N

R
S - ISTO

 user on 25 April 2022

http://www.astro-ph/1310.2672

