Empirical ugri-UBVR<SUB>c</SUB> transformations for galaxies - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles Monthly Notices of the Royal Astronomical Society Year : 2014

Empirical ugri-UBVRc transformations for galaxies

David O. Cook
  • Function : Author
Daniel A. Dale
  • Function : Author
Liese van Zee
  • Function : Author
Janice C. Lee
  • Function : Author
Robert C. Kennicutt
  • Function : Author
Daniela Calzetti
  • Function : Author
Shawn M. Staudaher
  • Function : Author
Charles W. Engelbracht
  • Function : Author

Abstract

We present empirical colour transformations between Sloan Digital Sky Survey ugri and Johnson-Cousins UBVRc photometry for nearby galaxies (D < 11 Mpc). We use the Local Volume Legacy (LVL) galaxy sample where there are 90 galaxies with overlapping observational coverage for these two filter sets. The LVL galaxy sample consists of normal, non-starbursting galaxies. We also examine how well the LVL galaxy colours are described by previous transformations derived from standard calibration stars and model-based galaxy templates. We find significant galaxy colour scatter around most of the previous transformation relationships. In addition, the previous transformations show systematic offsets between transformed and observed galaxy colours which are visible in observed colour-colour trends. The LVL-based galaxy transformations show no systematic colour offsets and reproduce the observed colour-colour galaxy trends.
Fichier principal
Vignette du fichier
stu1581.pdf (543.03 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

insu-03645247 , version 1 (25-04-2022)

Identifiers

Cite

David O. Cook, Daniel A. Dale, Benjamin D. Johnson, Liese van Zee, Janice C. Lee, et al.. Empirical ugri-UBVRc transformations for galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 445, pp.890-898. ⟨10.1093/mnras/stu1581⟩. ⟨insu-03645247⟩
5 View
10 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More