Photometric redshift analysis in the Dark Energy Survey Science Verification data - Archive ouverte HAL Access content directly
Journal Articles Monthly Notices of the Royal Astronomical Society Year : 2014

Photometric redshift analysis in the Dark Energy Survey Science Verification data

, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , (1) , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
1
C. Sánchez
  • Function : Author
M. Carrasco Kind
  • Function : Author
H. Lin
  • Function : Author
R. Miquel
  • Function : Author
F. B. Abdalla
  • Function : Author
A. Amara
  • Function : Author
M. Banerji
  • Function : Author
C. Bonnett
  • Function : Author
R. Brunner
  • Function : Author
D. Capozzi
  • Function : Author
A. Carnero
  • Function : Author
F. J. Castander
L. A. N. da Costa
  • Function : Author
C. Cunha
  • Function : Author
A. Fausti
  • Function : Author
D. Gerdes
  • Function : Author
N. Greisel
  • Function : Author
J. Gschwend
  • Function : Author
W. Hartley
  • Function : Author
S. Jouvel
  • Function : Author
O. Lahav
  • Function : Author
M. Lima
  • Function : Author
M. A. G. Maia
  • Function : Author
P. Martí
  • Function : Author
R. L. C. Ogando
  • Function : Author
F. Ostrovski
  • Function : Author
P. Pellegrini
  • Function : Author
M. M. Rau
  • Function : Author
I. Sadeh
  • Function : Author
S. Seitz
  • Function : Author
I. Sevilla-Noarbe
  • Function : Author
A. Sypniewski
  • Function : Author
J. de Vicente
  • Function : Author
T. Abbot
  • Function : Author
S. S. Allam
  • Function : Author
D. Atlee
  • Function : Author
G. Bernstein
  • Function : Author
J. P. Bernstein
  • Function : Author
E. Buckley-Geer
  • Function : Author
D. Burke
  • Function : Author
M. J. Childress
  • Function : Author
T. Davis
  • Function : Author
D. L. Depoy
  • Function : Author
A. Dey
  • Function : Author
S. Desai
  • Function : Author
H. T. Diehl
  • Function : Author
P. Doel
  • Function : Author
J. Estrada
  • Function : Author
E. Fernández
  • Function : Author
D. Finley
  • Function : Author
B. Flaugher
  • Function : Author
J. Frieman
  • Function : Author
E. Gaztanaga
  • Function : Author
K. Glazebrook
  • Function : Author
K. Honscheid
  • Function : Author
A. Kim
  • Function : Author
K. Kuehn
  • Function : Author
N. Kuropatkin
  • Function : Author
C. Lidman
  • Function : Author
M. Makler
  • Function : Author
J. L. Marshall
  • Function : Author
R. C. Nichol
  • Function : Author
A. Roodman
  • Function : Author
E. Sánchez
  • Function : Author
B. X. Santiago
  • Function : Author
M. Sako
  • Function : Author
R. Scalzo
  • Function : Author
R. C. Smith
  • Function : Author
M. E. C. Swanson
  • Function : Author
G. Tarle
  • Function : Author
D. Thomas
  • Function : Author
D. L. Tucker
  • Function : Author
S. A. Uddin
  • Function : Author
F. Valdés
  • Function : Author
A. Walker
  • Function : Author
F. Yuan
  • Function : Author
J. Zuntz
  • Function : Author

Abstract

We present results from a study of the photometric redshift performance of the Dark Energy Survey (DES), using the early data from a Science Verification period of observations in late 2012 and early 2013 that provided science-quality images for almost 200 sq. deg. at the nominal depth of the survey. We assess the photometric redshift (photo-z) performance using about 15 000 galaxies with spectroscopic redshifts available from other surveys. These galaxies are used, in different configurations, as a calibration sample, and photo-z's are obtained and studied using most of the existing photo-z codes. A weighting method in a multidimensional colour-magnitude space is applied to the spectroscopic sample in order to evaluate the photo-z performance with sets that mimic the full DES photometric sample, which is on average significantly deeper than the calibration sample due to the limited depth of spectroscopic surveys. Empirical photo-z methods using, for instance, artificial neural networks or random forests, yield the best performance in the tests, achieving core photo-z resolutions σ68 ∼ 0.08. Moreover, the results from most of the codes, including template-fitting methods, comfortably meet the DES requirements on photo-z performance, therefore, providing an excellent precedent for future DES data sets.
Fichier principal
Vignette du fichier
stu1836.pdf (2.67 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

insu-03645233 , version 1 (25-04-2022)

Identifiers

Cite

C. Sánchez, M. Carrasco Kind, H. Lin, R. Miquel, F. B. Abdalla, et al.. Photometric redshift analysis in the Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2014, 445, pp.1482-1506. ⟨10.1093/mnras/stu1836⟩. ⟨insu-03645233⟩
5 View
5 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More