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ABSTRACT

Aims. We propose a decision criterion for segmenting the cosmic web into different structure types (voids, sheets, filaments, and
clusters) on the basis of their respective probabilities and the strength of data constraints.
Methods. Our approach is inspired by an analysis of games of chance where the gambler only plays if a positive expected net gain
can be achieved based on some degree of privileged information.
Results. The result is a general solution for classification problems in the face of uncertainty, including the option of not committing
to a class for a candidate object. As an illustration, we produce high-resolution maps of web-type constituents in the nearby Universe
as probed by the Sloan Digital Sky Survey main galaxy sample. Other possible applications include the selection and labelling of
objects in catalogues derived from astronomical survey data.
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1. Introduction

Building accurate maps of the cosmic web from galaxy surveys
is one of the most challenging tasks in modern cosmology. Rapid
progress in this field took place in the last few years with the
introduction of inference techniques based on Bayesian proba-
bility theory (Kitaura et al. 2009; Jasche et al. 2010, 2015; Nuza
et al. 2014). This facilitates the connection between the proper-
ties of the cosmic web, thoroughly analyzed in simulations (e.g.
Hahn et al. 2007; Aragón-Calvo et al. 2010; Cautun et al. 2014),
and observations (see Leclercq et al. 2014, for a review on the
interface between theory and data in cosmology).

In Leclercq et al. (2015), we conducted a fully probabilis-
tic analysis of structure types in the cosmic web as probed
by the Sloan Digital Sky Survey (SDSS) main galaxy sample.
This study capitalized on the large-scale structure inference per-
formed by Jasche et al. (2015) using the BORG (Bayesian Origin
Reconstruction from Galaxies, Jasche & Wandelt 2013) algo-
rithm. As the full gravitational model of structure formation
COLA (COmoving Lagrangian Acceleration, Tassev et al. 2013)
was used, our approach resulted in the first probabilistic and
time-dependent classification of cosmic environments at non-
linear scales in physical realizations of the large-scale structure
conducted with real data. Using the Hahn et al. (2007) definition
(see also its extensions, Forero-Romero et al. 2009; Hoffman
et al. 2012), we obtained three-dimensional, time-dependent
maps of the posterior probability for each voxel to belong to a
void, sheet, filament or cluster.

These posterior probabilities represent all the available struc-
ture type information in the observational data assuming the
framework of Λ cold dark matter cosmology. Since the large-
scale structure cannot be uniquely determined from observa-
tions, uncertainty remains about how to assign each voxel to a
particular structure type. The question we address in this letter
is how to proceed from the posterior probabilities to a particu-
lar choice of assigning a structure type to each voxel. Decision
theory (see, for example, Berger 1985) offers a way forward,
since it addresses the general problem of how to choose between
different actions under uncertainty. A key ingredient beyond the
posterior is the utility function that assigns a quantitative profit to
different actions for all possible outcomes of the uncertain quan-
tity. The optimal decision is that which maximizes the expected
utility.

After setting up the problem using our example and briefly
recalling the relevant notions of Bayesian decision theory, we
will discuss different utility functions and explore the results
based on a particular choice.

2. Method

The decision problem for structure-type classification can be
stated as follows. We have four different web-types that con-
stitute the “space of input features:” {T0 = void, T1 = sheet,
T2 = filament, T3 = cluster}. We want to either choose one of
them, or remain undecided if the data constraints are not suffi-
cient. Therefore our “space of actions” consists of five different
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elements: {a0 = “decide void,” a1 = “decide sheet,” a2 = “decide
filament,” a3 = “decide cluster,” and a−1 = “do not decide.”} The
goal is to write down a decision rule prescribing which action to
take based on the posterior information.

Bayesian decision theory states that the action a j that should
be taken is that which maximizes the expected utility function
(conditional on the data d), given in this example by

U(a j(xk)|d) =

3∑
i=0

G(a j|Ti)P(Ti(xk)|d), (1)

where xk labels one voxel of the considered domain, P(Ti(xk)|d)
are the posterior probabilities of the different structure types
given the data, and G(a j|Ti) are the gain functions that state the
profitability of each action, given the “true” underlying structure.
Formally, G is a mapping from the space of input features to the
space of actions. For our particular problem, it can be thought
of as a 5 × 4 matrix G such that Gi j ≡ G(a j|Ti), in which case
Eq. (1) can be rewritten as a linear algebra equation, U = G.P
where the 5-vector U and the 4-vector P contain the elements
U j ≡ U(a j(xk)|d) and Pi ≡ P(Ti(xk)|d), respectively.

Let us consider the choice of gain functions. Several choices
are possible. For example, the 0/1-gain functions reward a cor-
rect decision with 1 for each voxel, while an incorrect deci-
sion yields 0. This leads to choosing the structure type with
the highest posterior probability. While this seems like a rea-
sonable choice, we need to consider that a decision is taken in
each voxel, whereas we are interested in identifying structures as
objects that are made of many voxels. For instance, since clus-
ters are far smaller than voids, the a priori probability for a voxel
to belong to a cluster is much smaller than for the same voxel to
belong to a void. To treat different structures on an equal footing,
it makes sense to reward the correct choice of structure type Ti
by an amount inversely proportional to the average volume Vi of
one such structure. In the following, we use the prior probability
as a proxy for the volume fractions,

P(Ti) ≈
Vi

V0 + V1 + V2 + V3
· (2)

We further introduce an overall cost for choosing a structure with
respect to remaining undecided, leading to the following speci-
fication of the utility,

G(a j|Ti) =


1
P(Ti)

− α if j ∈ ~0, 3� and i = j,

−α if j ∈ ~0, 3� and i , j,
0 if j = −1.

(3)

This choice limits 20 free functions to only one free parameter,
α. With this set of gain functions, making (or not) a decision
between structure types can be thought of as choosing to play or
not to play a gambling game costing α. Not playing the game,
i.e. remaining undecided ( j = −1), is always free (G(a−1|Ti) = 0
for all i). If the gambler decides to play the game, i.e. to make a
decision ( j ∈ ~0, 3�), they pay α but may win a reward, 1

P(Ti)
, by

betting on the correct underlying structure (i = j).
In the absence of data, the posterior probabilities in Eq. (1)

are the prior probabilities P(Ti), which are independent of the

position xk, and the utility functions are, for j ∈ ~0, 3�,

U(a j) =

3∑
i=0

G(a j|Ti)P(Ti)

=

(
1
P(T j)

− α

)
P(T j) −

3∑
i=0
i, j

αP(Ti)

= 1 − α

P(T j) +

3∑
i=0
i, j

P(Ti)


= 1 − α, (4)

and U(a−1) = 0. (5)

Equations (4) and (5) mean that, in the absence of data, this re-
duces to the roulette game utility function, where, if correctly
guessed, a priori unlikely outcomes receive a higher reward, in-
versely proportional to the fraction of the probability space they
occupy. Betting on outcomes according to the prior probability
while paying α = 1 leads to a “fair game” with zero expected
net gain. The gambler will always choose to play if the cost per
game is α ≤ 1 and will never play if α > 1.

The posterior probabilities update the prior information in
light of the data, providing an advantage to the gambler through
privileged information about the outcome. In the presence of in-
formative data, betting on outcomes based on the posterior prob-
abilities will therefore ensure a positive expected net gain and
the gambler will choose to play even if α > 1. Increasing the
parameter α therefore represents a growing “aversion for risk”
and limits the probability of losing. Indeed, for high α, the gam-
bler will only play in cases where the posterior probabilities give
sufficient confidence that the game will be won, i.e. that the de-
cision will be correct.

3. Maps of structure types in the SDSS

We applied the above decision rule to the web-type posterior
probabilities presented in Leclercq et al. (2015), for different val-
ues of α ≥ 1 as defined by Eq. (3). In doing so, we produced var-
ious maps of the volume of interest, consisting of the northern
Galactic cap of the SDSS main galaxy sample and its surround-
ings. Slices through these three-dimensional maps1 are shown in
Fig. 1 for the late-time large-scale structure (at a = 1) and in
Fig. 2 for the primordial large-scale structure (at a = 10−3).

When the game is fair (namely when α = 1), it is always
played, i.e. a decision between one of the four structure types is
always made. This results in the “speculative map” of structure
types (top left panel of Figs. 1 and 2). There, a decision is made
even in regions that are not constrained by the data (at high red-
shift or outside of the survey boundaries), based on prior betting
odds.

By increasing the value of α > 1, we demand higher con-
fidence in making the correct decision. This yields increasingly
“conservative maps” of the Sloan volume (see Figs. 1 and 2). In
particular, at high values of α, the algorithm makes decisions in
the regions where data constraints are strong (see Figs. 3 and 6
in Leclercq et al. 2015), but often stays undecided in the unob-
served regions. It can be observed that even at very high val-
ues, α >∼ 3, a decision for one structure is made in some uncon-
strained voxels (typically in favour of the structure for which the
1 For all slices shown, we kept the coordinate system of Jasche et al.
(2015).
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Fig. 1. Slices through maps of structure types in the late-time large-scale structure, at a = 1. The colour coding is blue for voids, green for sheets,
yellow for filaments, and red for clusters. Black corresponds to regions where data constraints are insufficient to make a decision. The parameter α,
defined by Eq. (3), quantifies to the risk aversion in the map: α = 1.0 corresponds to the most speculative map of the large-scale structure, and
maps with α ≥ 1 are increasingly conservative. These maps are based on the posterior probabilities inferred by Leclercq et al. (2015) and on the
Bayesian decision rule subject of the present work.

reward is the highest: clusters in the final conditions, and clus-
ters or voids in the initial conditions). This effect is caused by the
limited number of samples used in our analysis. Indeed, because
of the finite length of the Markov Chain, the sampled representa-
tion of the posterior has not yet fully converged to the true poste-
rior. For this reason, the numerical representation of the posterior
can be artificially displaced too much from the prior, which re-
sults in an incorrect web-type decision. This effect could be mit-
igated by obtaining more samples in the original BORG analysis
(for an increased computational cost); or can be avoided by fur-
ther increasing α, at the expense of also degrading the map in
the observed regions. We found the value of α = 4 (bottom right
panel of Figs. 1 and 2) to be the best compromise between re-
ducing the number of unobserved voxels in which a decision is
made to a tiny fraction and keeping information in the volume
covered by the data.

As expected, structures for which the prior probabilities are
the highest disappear first from the map when one increases α:
betting on these structures being poorly rewarded, this choice
is avoided in case of high risk aversion. In the final conditions
(Fig. 1), we found that sheets completely disappear for α ≈ 1.68
and filaments for α ≈ 4.01. In the initial conditions (Fig. 2), the
critical value is around α ≈ 2.36 for both sheets and filaments. In
the most conservative maps displayed in Figs. 1 and 2 (α = 4.0),
the SDSS data provide extremely high evidence for the voids and
clusters shown. In constrained parts, extended regions belonging
to a given structure type may not have the expected shape. This

is true in particular for filamentary regions. Several factors can
explain this: first, slicing through filaments make them appear
as dots; second, with the dynamic Hahn et al. (2007) definition,
filament regions often extend out into sheets and voids, and their
static skeleton geometry is not the most prominent at the voxel
scale (3 Mpc/h in this work).

As detailed in Jasche et al. (2015), data constraints are prop-
agated by the structure formation model assumed in the infer-
ence process (second-order Lagrangian perturbation theory) and
therefore radiate out of the SDSS boundaries. For this reason, for
moderate values of α, web-type classification can be extended
beyond the survey boundaries to regions influenced by data. This
can be observed in Figs. 1 and 2, where one can see, for instance,
that the shape of voids that intersect the mask is correctly recov-
ered. Similarly, the classification of high-redshift structures con-
firms that the treatment of selection effects by BORG is correctly
propagated to web-type analysis.

We finally comment on the required computational resources
for the complete chain for running BORG, computing the web-
type posterior, and making a decision. Inference with BORG is
the most expensive part: on average, one sample is generated in
1500 s on 16 cores (Jasche et al. 2015). Then, in each sample,
tidal shear analysis (Leclercq et al. 2015) is a matter of a few
seconds. Once the web-type posterior is known, making a deci-
sion, which is the subject of the present letter, is almost instanta-
neous. Therefore, once the density field has been inferred, which
is useful for a much larger variety of applications, our method is

L17, page 3 of 4

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201526006&pdf_id=1


A&A 576, L17 (2015)

0 100 200 300 400 500
z [Mpc/h]

500

400

300

200

100

0

−x
[M

p
c/
h

]

α = 1.0

0 100 200 300 400 500
z [Mpc/h]

500

400

300

200

100

0

−x
[M

p
c/
h

]

α = 1.5

0 100 200 300 400 500
z [Mpc/h]

500

400

300

200

100

0

−x
[M

p
c/
h

]

α = 2.5

0 100 200 300 400 500
z [Mpc/h]

500

400

300

200

100

0

−x
[M

p
c/
h

]

α = 4.0

Fig. 2. Same as Fig. 1 for the primordial large-scale structure, at a = 10−3.

substantially cheaper than several state-of-the-art techniques for
cosmic web analysis (e.g. the method of Tempel et al. 2013,
2014, for detecting filaments).

4. Conclusions

In this letter, we proposed a rule for optimal decision making in
the context of cosmic web classification. We described the prob-
lem set-up in Bayesian decision theory and proposed a set of
gain functions that permit an interpretation of the problem in the
context of game theory. This framework enables the dissection
of the cosmic web into different elements (voids, sheets, fila-
ments, and clusters) given their prior and posterior probabilities
and naturally accounts for the strength of data constraints.

As an illustration, we produced three-dimensional templates
of structure types with various risk aversion, describing a volume
covered by the SDSS main galaxy sample and its surrounding.
These maps constitute an efficient statistical summary of the in-
ference results presented in Leclercq et al. (2015) for cross-use
with other astrophysical and cosmological data sets.

Beyond this specific application, our approach is more gener-
ally relevant to the solution of classification problems in the face
of uncertainty. For example, the construction of catalogues from
astronomical surveys is directly analogous to the problem we de-
scribe here: it simultaneously involves a decision about whether
or not to include a candidate object and which class label (e.g.
star or galaxy) to assign to it.
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