Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey - Archive ouverte HAL Access content directly
Journal Articles Monthly Notices of the Royal Astronomical Society Year : 2015

Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey

, , , , , (1) , , , , , , , , , , , , , ,
1
M. T. Soumagnac
  • Function : Author
F. B. Abdalla
  • Function : Author
O. Lahav
  • Function : Author
D. Kirk
  • Function : Author
I. Sevilla
  • Function : Author
B. T. P. Rowe
  • Function : Author
J. Annis
  • Function : Author
M. T. Busha
  • Function : Author
L. N. da Costa
  • Function : Author
J. A. Frieman
  • Function : Author
E. Gaztanaga
  • Function : Author
M. Jarvis
H. Lin
  • Function : Author
W. J. Percival
  • Function : Author
B. X. Santiago
  • Function : Author
C. G. Sabiu
  • Function : Author
R. H. Wechsler
  • Function : Author
L. Wolz
  • Function : Author
B. Yanny
  • Function : Author

Abstract

We address the problem of separating stars from galaxies in future large photometric surveys. We focus our analysis on simulations of the Dark Energy Survey (DES). In the first part of the paper, we derive the science requirements on star/galaxy separation, for measurement of the cosmological parameters with the gravitational weak lensing and large-scale structure probes. These requirements are dictated by the need to control both the statistical and systematic errors on the cosmological parameters, and by point spread function calibration. We formulate the requirements in terms of the completeness and purity provided by a given star/galaxy classifier. In order to achieve these requirements at faint magnitudes, we propose a new method for star/galaxy separation in the second part of the paper. We first use principal component analysis to outline the correlations between the objects parameters and extract from it the most relevant information. We then use the reduced set of parameters as input to an Artificial Neural Network. This multiparameter approach improves upon purely morphometric classifiers (such as the classifier implemented in SEXTRACTOR), especially at faint magnitudes: it increases the purity by up to 20 per cent for stars and by up to 12 per cent for galaxies, at i-magnitude fainter than 23.
Fichier principal
Vignette du fichier
stu1410.pdf (1.67 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

insu-03644923 , version 1 (28-04-2022)

Identifiers

Cite

M. T. Soumagnac, F. B. Abdalla, O. Lahav, D. Kirk, I. Sevilla, et al.. Star/galaxy separation at faint magnitudes: application to a simulated Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2015, 450, pp.666-680. ⟨10.1093/mnras/stu1410⟩. ⟨insu-03644923⟩
3 View
5 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More