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ABSTRACT

We present first results from the third GRavitational 1Ensing Accuracy Testing (GREAT3)
challenge, the third in a sequence of challenges for testing methods of inferring weak grav-
itational lensing shear distortions from simulated galaxy images. GREAT3 was divided into
experiments to test three specific questions, and included simulated space- and ground-based
data with constant or cosmologically varying shear fields. The simplest (control) experiment
included parametric galaxies with a realistic distribution of signal-to-noise, size, and elliptic-
ity, and a complex point spread function (PSF). The other experiments tested the additional
impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty about a
spatially varying PSF; the last two questions will be explored in Paper II. The 24 participating
teams competed to estimate lensing shears to within systematic error tolerances for upcoming
Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable
variety and innovation in the types of methods applied. Several teams now meet or exceed the
targets in many of the tests conducted (to within the statistical errors). We conclude that the
presence of realistic galaxy morphology in simulations changes shear calibration biases by
~1 per cent for a wide range of methods. Other effects such as truncation biases due to finite
galaxy postage stamps, and the impact of galaxy type as measured by the Sérsic index, are
quantified for the first time. Our results generalize previous studies regarding sensitivities to
galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all
methods’ results support the simple model in which additive shear biases depend linearly on
PSF ellipticity.
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processing —cosmology: observations.
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1 INTRODUCTION

Weak gravitational lensing, the small but coherent deflections of
light from distant objects due to the gravitational field of more
nearby matter (for a review, see Bartelmann & Schneider 2001;
Refregier 2003; Schneider 2006; Hoekstra & Jain 2008; Massey,
Kitching & Richard 2010), has emerged in the past two decades
as a promising way to constrain cosmological models, to study the
relationship between visible and dark matter, and even to constrain
the theory of gravity on cosmological scales (e.g. Hu 2002; Huterer
2002; Abazajian & Dodelson 2003; Zhang et al. 2007). Because
of this promise, gravitational lensing has already been measured
in many data sets, and there are several large surveys planned for
the next few decades to measure weak lensing even more precisely,
including Euclid' (Laureijs et al. 2011), LSST? (LSST Science
Collaborations et al. 2009), and WFIRST-AFTA® (Spergel et al.
2013), all of which are Stage IV dark energy experiments according
to the Dark Energy Task Force (Albrecht et al. 2006) definitions.

The most common type of weak lensing measurement involves
measuring coherent distortions (‘shear’) in the shapes of galaxies.
In order for the aforementioned surveys to make the most of their
ability to measure these distortions with sub-per cent statistical er-
rors, they must ensure adequate control of systematic errors. While
a full systematic error budget for weak lensing includes both as-
trophysical and instrumental systematic errors, a problem that has
occupied much attention in the community for over a decade is
ensuring accurate measurements of the shear distortions of galaxies
given that they have been convolved with a point spread function
(PSF) and rendered into noisy images.

With the rapid proliferation of shear estimation methods, the
weak lensing community began a series of blind community chal-
lenges, with simulations that included a lensing shear (known only
to the organizers) that participants must measure. This served as
a way to benchmark different shear estimation methods. The ear-
liest of these challenges were the first Shear TEsting Programme
(STEP1; Heymans et al. 2006) and its successor (STEP2; Massey
et al. 2007a). Then, it became apparent that many complex aspects
of the process of shear estimation would benefit from simpler and
more controlled simulations, which led to the GRavitational IEnsing
Accuracy Testing (GREAT08) challenge (Bridle et al. 2009, 2010),
followed by the GREAT10 challenge (Kitching et al. 2010, 2012,
2013).

Each of these challenges has been informative in its own way,
illuminating important issues in shear estimation while also gener-
ating significant improvement in the accuracy of weak lensing shear
estimation. For example, both the GREAT08 and GREAT10 chal-
lenges highlighted the role played by pixel noise in biasing shear es-
timates. While this signal-to-noise (S/N)- and resolution-dependent
‘noise bias’ was studied in specific contexts before GREAT0S and
GREAT10 (e.g. Bernstein & Jarvis 2002; Hirata et al. 2004), the
landscape changed after GREAT08, with several more general stud-
ies (Kacprzak et al. 2012; Melchior & Viola 2012; Refregier et al.
2012), some of which used the GREAT10 simulations as a test for
calibration schemes. However, despite the progress encouraged by
these challenges, there remained a number of outstanding issues
in shear estimation that needed to be addressed for the commu-
nity to ensure its ability to measure weak lensing in near-term and
future surveys. These issues include the impact of realistic galaxy

Uhttp://sci.esa.int/euclid/, http://www.euclid-ec.org
2 http://www.Isst.org/lsst/
3 http://wfirst.gsfc.nasa.gov

MNRAS 450, 2963-3007 (2015)

morphology; a number of studies have convincingly demonstrated
that when estimating shears in a way that assumes a particular
galaxy model, the shears can be biased if the galaxy light profiles
are not correctly described by that model (termed ‘model bias’;
Melchior et al. 2010; Voigt & Bridle 2010). More generally, any
method based on the use of second moments to estimate shears
cannot be completely independent of the details of the galaxy light
profiles, such as the overall galaxy morphology and presence of de-
tailed substructure (Massey et al. 2007b; Bernstein 2010; Zhang &
Komatsu 2011). Thus, the question of the impact of realistic galaxy
morphology (and the way that galaxies deviate from simple para-
metric models) on shear estimation is important to address in a
community-wide challenge. This is one of the key questions of the
GREAT3 challenge.

The GREAT3 challenge was also designed to address two ad-
ditional questions. One of these is the combination of multiple
exposures, which is necessary to analyse the data from nearly any
current or upcoming weak lensing survey. For Nyquist-sampled data
this is relatively straightforward, but for data that are not Nyquist-
sampled (such as some images from space telescopes), the problem
is more challenging (e.g. Lauer 1999; Fruchter 2011; Rowe, Hirata
& Rhodes 2011). The final problem addressed in GREAT3 is the
impact of PSF estimation from stars and interpolation to the posi-
tions of the galaxies. However, this paper will focus predominantly
on the question of shear estimation in general and realistic galaxy
morphology in particular, leaving the other questions for Paper II.

In Section 2, we describe how the challenge was designed and
run, how submissions were evaluated, and a basic summary of
the submissions that were made. We discuss the methods used by
participants to analyse the simulated data in Section 3. For certain
methods for which the teams made many submissions, we derive
lessons related to those methods in Section 4. We then present
the overall results for all teams in Section 5. Section 6 describes
some lessons learned about shear estimation from GREAT3, and
we conclude in Section 7. Finally, there are appendices with some
further technical details related to the challenge simulations, and
lengthier descriptions of the methods used by each team.

2 THE CHALLENGE

2.1 Theoretical background

Gravitational lensing distorts the images of distant galaxies. When
this distortion can be described as a locally linear transformation,
then the lensing effect is described as ‘weak’. In this case, it relates
unlensed coordinates (x,, y,; with the origin at the centre of the
distant light source) and the observed, lensed coordinates (x;, y;;
with the origin at the centre of the observed image), via

(Xu>:(1—)/1—'< -2 ><X/). )
Yu %) I+7y—«x Vi

The two components of the lensing shear (¥, y,) describe the
stretching of galaxy images due to lensing, whereas the convergence
k describes a change in apparent size and brightness for lensed
objects. This transformation is often recast as

1— _
(-th> :(I—K)( 81 82 > (-xl), (2)
Yu -& l+g i

in terms of the reduced shear, g; = y;/(1 — k) ~ y; in most
cosmological applications. Typically, it is the stretching described
by the reduced shear that is actually observed. We often encode
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the two components of shear (reduced shear) as a single complex
number, y =y +iy2 (g = &1 +ig2).

The lensing shear causes a change in estimates of the ellipticity
of distant galaxies. In practice, the effect is estimated statistically by
measuring galaxy properties that transform in simple ways under a
shear. One method is to model the galaxy image using a profile with
a well-defined ellipticity, written as € = &, + ie,, with magnitude
1 —>b/a
1+b/a
for semiminor and semimajor axis lengths b and a, and orientation
angle determined by the major axis direction. For a population
of randomly oriented source intrinsic ellipticities, the ensemble
average ellipticity after lensing gives an unbiased estimate of the
shear: (¢) ~ g.

Another common choice of shape parametrization is based on
second brightness moments of the galaxy image,

0. = [ ExIx)W(x)x;x;
YT [ d@xI(x)W(x)

3

le] =

)

where (x;, x;) correspond to the (x, y) directions, /(x) denotes the
galaxy image light profile, W(x) is an optional* weight function
(see e.g. Schneider 2006), and the coordinate origin is placed at
the galaxy image centre. A second ellipticity definition (sometimes
called the distortion to distinguish it from the ellipticity that satisfies
equation 3) can be written as
e:el+iezzw. 5)
On+0x»

The ellipticity & can also be related to the moments by replacing
the denominator in equation (5) with Q1 + Q2 +2(Q11 02 —
0%

If the weight function W is constant or brightness-dependent, an
image with elliptical isophotes has

1 —b?/a?
1+b%/a?
For a randomly oriented population of source distortions, the en-
semble average e after lensing gives an unbiased estimate of shear
that depends on the population root mean square (rms) distortion
{(€)?) as (e) = 2[1 — ((¢)*)]g.

See e.g. Bernstein & Jarvis (2002) for further details on com-
monly used shear and ellipticity definitions.

le| =

(6)

2.2 Summary of challenge structure

Here, we describe how the GREAT?3 challenge was structured; more
details are given in the handbook (Mandelbaum et al. 2014).

The GREAT?3 challenge was designed to address how three issues
affect shear estimation: (a) the impact of realistic galaxy morphol-
ogy, (b) the impact of the image combination process, and (c) the
effect of errors due to estimation and interpolation of the PSF. To
this end, the challenge consisted of five experiments.

(1) Control: parametric (single or double Sérsic) galaxy models
based on fits (Lackner & Gunn 2012) to Hubble Space Telescope
(HST) data from the COSMOS (Koekemoer et al. 2007; Scoville
et al. 2007a,b) survey, meant to represent the galaxy population

4 Optional for the purpose of this definition; but in practice, for images with
noise, some weight function that reduces the contribution from the wings of
the galaxy is necessary to avoid moments being dominated by noise.
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in a typical weak lensing survey, including appropriate size versus
galaxy flux S/N relations, morphology distributions, and so on. In
each image, the non-trivially complex PSF was provided for the
participants as a set of nine images with different centroid offsets.

(2) Real galaxy: differed from the control experiment only in the
use of the actual images from the HST COSMOS data set instead
of the best-fitting parametric models.

(3) Multiepoch: differed from the control experiment only in that
each field contained six images (representing observations that must
be combined) instead of one. For the space branches, the six images
were not Nyquist sampled.

(4) Variable PSF: differed from the control experiment only in
that the PSF varied across the image in a realistic way, and had to
be estimated from star images.

(5) Full: included the complications of the real galaxy, multi-
epoch, and variable PSF experiments all together.

In all cases, the goal was to estimate the lensing shear.” For each
experiment, there were four branches, which came from the combi-
nation of two types of simulated data (ground, space) and two types
of shear fields (constant, variable). For convenience, we will refer
to branches by their combinations of {experiment}—{observation
type }—{shear type}, e.g. control-ground—constant, and will use the
unique abbreviations CGC, CGYV, and so on. Of the 20 branches
(five experiments x two data types x two shear types), partici-
pants could submit results for as many or few as they chose (see
Mandelbaum et al. 2014, Fig. 5). A given branch included 200 sub-
fields, each with 10* galaxies on grids. To reduce statistical errors
on the shear biases, galaxies were arranged such that the intrinsic
noise due to non-circular galaxy shapes (‘shape noise’) was nearly
cancelled out.

Submissions to the challenge were evaluated according to met-
rics described in Section 2.3. Within a branch, teams were ranked
based on their best submission in that branch. Per-branch rankings
were used to award teams points, which were then added up across
multiple branches to give an overall leaderboard ranking. While the
leaderboard ranking was necessary for the purpose of carrying out
a challenge, the goal of this work is to study how teams performed
and derive lessons for the future based on analysis that goes far
beyond a simple ranking scheme.

There are a number of online resources related to the challenge
and the simulations. The main challenge web site® contains over-
all information. The leaderboard web site, linked from the main
challenge web site, contains the archived challenge leaderboards,
and additional post-challenge boards to which submissions were
made after the end of the challenge. It also links to download the
GREAT3 simulations and truth tables. The GitHub site’ contains
software to reproduce the simulated data and to analyse it using
simple methods, and a wiki with information for the participants.
Finally, caLsiv® is the simulation software that was used to make the
GREAT3 simulations, and its algorithms, design, and functionality
are described in Rowe et al. (2015).

Some physical effects that are not tested in the challenge include
object detection, selection, and deblending, because the galaxies
are located on grids; wavelength-dependent effects; instrumental

3 This is not the same as testing the ability to measure a per-galaxy shape.
Two different methods can recover a different per-galaxy shape, while still
estimating the overall shear accurately.

6 http://www.great3challenge.info

7 https://github.com/barnabytprowe/great3-public

8 https://github.com/GalSim-developers/GalSim

MNRAS 450, 2963-3007 (2015)
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and detector defects or non-linearities; star/galaxy separation; back-
ground estimation; complex pixel noise models; cosmic rays and
other image artefacts; redshift-dependent shear calibration; shear
estimation for galaxies with sizes comparable to the PSF; non-weak
shear signals (e.g. cluster lensing); and flexion.

Appendix A contains more detailed information about some as-
pects of the challenge that were not in the handbook. These in-
clude Appendix Al, on the intrinsic ellipticity distribution (p(¢))
of the galaxies; Appendix A2, which describes the distributions
from which the lensing shears were drawn; Appendix A3, which
presents distributions of optical and atmospheric PSF properties;
and Appendix A4, which shows the actual S/N distributions for
galaxies in GREAT3. The last point is particularly relevant for how
pixel noise should affect shear estimates in the challenge.

Finally, the GREAT3 Executive Committee’ (EC) distributed ex-
ample scripts to automatically process the challenge data, including
shear estimation, co-addition of multi-epoch data, and variable PSF
estimation. While the latter two will be discussed in Paper II, we
describe the algorithms in the shear estimation example script in
Appendix B.

2.3 Diagnostics

Here, we describe the diagnostics used to quantify the performance
of each submission to the challenge. The metrics for constant- and
variable-shear branches, discussed in detail in Mandelbaum et al.
(2014), were used to rank submissions. Here, we briefly define the
equations used.

2.3.1 Constant shear

For constant-shear simulations, each field has a particular value of
shear applied to all galaxies (Appendix A2). Participants submitted
estimated (‘observed’) shears for each constant shear value in the
branch. We relate biases in observed shears g° to the true shear
g™ using a linear model in each component,

g™ — g™ = mig™ +ai. (7

where i denotes the shear component, and m; and ¢; are the mul-
tiplicative and additive biases, respectively. From user-submitted
estimates of all g,f’bs in a branch, the metric calculation begins with
an unweighted least-squares linear regression to provide estimates
of m;, ¢; given the true shears (in Section 4.8, we discuss the role
of outliers in affecting the m; and ¢; estimates). The regression is
done in a coordinate frame rotated to be aligned with the mean PSF
ellipticity in each field, so that ¢ values will properly reflect the
contamination of galaxy shapes by the PSF anisotropy.

Having estimated m; and c¢;, we constructed the metric, Q., by
comparison with ‘target’ values Migrger> Crarget- These come from
requirements for upcoming weak lensing experiments; we use
Migrget = 2 X 103 and Crarget = 2 X 10~*, motivated by a re-
cent estimate of requirements (Cropper et al. 2013; Massey et al.

9 The EC created the simulations, ranking scheme, and other aspects of the
challenge, and had access to privileged information about the simulations.
Because of this access, teams to which they made significant contributions
did not receive points in the challenge, and were not ranked. Those teams
appear on the leaderboard with an asterisk for their score.
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2013) for the Euclid space mission. The constant-shear metric is
then defined as

2000 x 7
0. = . (8

n; 2 Ci 2

1 1

ar121in.c + § : ( ) + ( . >
imt.x Miarget Ctarget

The indices +, x refer to the two shear components in the rotated
reference frame described above. We adopt o2, . = 1(4) for space
(ground) branches, corresponding to the typical dispersion in the
quadrature sum of m; /Mrge; and €;/Ciarger due to pixel noise. This
metric is normalized by 7. such that methods that meet our chosen
targets on m; and ¢; in space-based data should achieve Q. >~ 1000.
In the ground branches Q. is slightly lower for submissions reach-
ing target bias levels, reflecting their larger o2, . due to greater
uncertainty in individual shear estimates for ground data. However,
Q. scores are consistent between space and ground branches where
biases are significant.

Given the nature of this metric definition, the uncertainty in Q.
is larger at high Q. than at small Q.. For the level of pixel noise
in the simulations from ground (space), the effective uncertainty on
Q. for Q. values of [100, 300, 500, 1000] is [3, 28, 80, 328] ([2, 19,
55, 229)).

2.3.2 Variable shear

For variable-shear simulations, the key test is the reconstruction
of the shear correlation function. Submission of results for these
branches begins with calculation of correlation functions by the
participant.'” The submission consists of estimates of the aperture
mass dispersion (e.g. Schneider et al. 1998; Schneider 2006), which
are constructed from two-point correlation function estimates, and
allows a separation into contributions from E and B modes.!' We
label these E and B mode aperture mass dispersions Mg and Mp.

The submissions were estimates of Mg ; for each of 10 fields
labelled by index j; this estimate is constructed using 20 subfields
in a given field. This choice provides a large dynamic range of spatial
scales in the correlation function, and thereby probes a greater range
of shear signals. The My ; are estimated in Ny, logarithmically
spaced annular bins of galaxy pair separation 6, from the smallest
available angular scales in the field to the largest.

The metric Q, for the variable-shear branches was constructed by
comparison to the known, true value of the aperture mass dispersion
for the realization of E-mode shears in each field. These we label
MG, true, j(0%). The variable-shear branch metric is then calculated as

1000 v
0, = . L)
1 Nbins | Nfields
Ur%lin.v + Z Z [ME,j(ek) - MEﬁtruc,j(ek)}

N,
norm k=1 ]:1

where Nuorm = NieldsNoinss 02 v = 4(9) x 107 for space (ground)
branches, and 17, is a normalization factor designed to yield Q, =~
1000 for a method achieving m; = my = My and ¢ = € = Carger-

The primary source of noise in the Mg ;(6;) is pixel noise, with
some residual shape noise playing a role despite the shape noise

cancellation scheme. After the end of the challenge, we found that a

10 Software for this purpose was distributed publicly at https:/github.
com/barnabytprowe/great3-public

1 For more discussion of the limitations on E- and B-mode separation in
GREAT3, please see Mandelbaum et al. (2014).
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small additional source of noise comes from the interplay between
the 6, bin size, the galaxy grid configuration, and approximations
used in the calculation of the correlation function and aperture
mass dispersion in corr2.'?> While this is a subdominant source of
noise (~1/4 of that due to measurement error), it does mean that
participants will find that their Q, results depend slightly on the
ordering of galaxies in their catalogue.

For the level of pixel noise in the simulations from ground (space),
the effective uncertainty on Q,, for Q, values of [ 100, 300, 500, 1000]
is [6,47, 118, 418] ([5, 36, 91, 326]).

2.3.3 Other diagnostics

For the constant-shear branches, we have a clean way to directly
study additive and multiplicative biases in the form of m; and c;,
where i = +, x (defined in the frame aligned with the PSF ellipticity,
and at 45° angles with respect to that direction). However, also
of interest are the m; and ¢; defined in the frame defined by the
pixel coordinates, for i = 1, 2. In the STEP2 challenge (Massey
et al. 2007a), many methods exhibited coherent differences in shear
systematics along the pixel axes and at 45° with respect to them,
presumably due to the different effective sampling of the galaxy
and PSF profiles. Since the PSF ellipticity direction has a random
orientation with respect to the pixel axes, differences between m;
and m, will average out, giving m.. &~ m,. Since differences between
my and m, may be interesting in understanding the performance of
a method, we will use m; and m, for some of our plots.

In addition, ¢; and ¢, may be of interest. While ¢, shows the influ-
ence of PSF anisotropy, additive systematics due to PSF anisotropy
will have a random sign and direction for each subfield in the pixel
coordinate frame, so ¢; and ¢, have an expectation value of zero.
Non-zero values may indicate selection biases with respect to the
pixel direction, or asymmetric numerical artefacts.

Given the more fundamental nature of m; and m,, and the need
to use ¢y to identify additive PSF systematics, we also consider
what we will call a ‘mixed metric’, Qnx, defined in analogy to Q.
(equation 8) as

2000 x .
Omix = . (10)

m; 2 Ci 2
2 j : i i
Glnin,c + ( ) + ( )
= S Ctarget

Miarget iz

2.4 Challenge process

During the challenge period, there were 1525 submissions'® with
non-zero score, from 24 distinct teams. Of these, two teams were
actually members of the GREAT3 EC making submissions based on
simple test scripts to validate the simulations or submission process;
16 were teams of participants; and 6 were teams that included at
least one member of the GREAT3 EC, and were thus excluded from
winning any points or the challenge itself.

Fig. 1 shows the number of submissions to the challenge as a
function of time, expressed in terms of weeks until the deadline.
The first entries were submitted near the beginning of the challenge
period, which ran from 2013 mid-October until 2014 April 30. The
submission rate was an increasing function of time particularly in

12 https://code.google.com/p/mjarvis/
13 The leaderboard website shows 1532 submissions, but seven had an in-
correct submission format, giving Q = 0.
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Figure 1. Number of submissions to the GREAT3 challenge as a function
of time, expressed in terms of weeks until the deadline. The rules for the
number of submissions per team per day were relaxed in the final week of
the challenge.

Table 1. For each branch, this table shows the winning team
and its score, the number of teams that submitted to that
branch (with the number having scores above 500 for the
submissions analysed in Section 5 shown in parenthesis),
and the total number of entries in the branch.

Branch  Winning Winning  No.of  No. of

team score teams  entries
CGC CEA-EPFL 1211 22(4) 250
CGV CEA-EPFL 1068 16 (5) 160
CSC Amalgam@IAP 1516 16 (3) 110
CSV Amalgam@IAP 1199 11(4) 96
RGC Amalgam@IAP 1121 20(4) 195
RGV CEA-EPFL 791 144 93
RSC Fourier_Quad 1919 12(3) 92
RSV MegalLUT 1667 9 (4) 83
MGC sFIT 1017 9(3) 71
MGV MegalLUT 1131 7(2) 53
MSC sFIT 841 6 (1) 48
MSV CEA-EPFL 1605 6 (5) 45
VGC sFIT 884 7(1) 60
VGV Amalgam@IAP 230 6 (0) 60
VSC Amalgam@IAP 1183 4(1) 25
VSV sFIT 1276 4(2) 17
FGC sFIT 800 2(1) 11
FGV sFIT 379 2 (0) 17
FSC sFIT 1184 2(2) 17
FSV sFIT 856 2(2) 25

the last month; the spike in entries in the last week was partly due
to a relaxation of the rules on the number of entries per team per
day.

Two teams entered all 20 branches, and 7/24 (30 per cent) of the
teams entered more than half the branches. Not surprisingly, many
teams chose to focus on the control and realistic galaxy branches,
which required the least amount of software infrastructure to par-
ticipate.

Table 1 shows the results for each branch, including the winning
team, the winning score (defined in Section 2.3), the number of
participating teams, and the number of entries. As shown, a variety
of teams with different methods won individual branches, rather
than one team dominating everything. For all but two branches,
VGV and FGYV, the winning scores were 2 800, meaning that within
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2000 Q vs. time for all submissions

Weeks from deadline

Figure 2. Q for all submissions as a function of time, expressed in terms of
weeks until the deadline. Later submissions by the same team that appear to
perform worse than earlier submissions typically went to more challenging
branches.

the ability of the simulations to determine shear systematic errors,
the winning submissions were effectively unbiased. Not only the
winning team but also typically several other teams had scores in
this range, representing an unprecedented quality of submissions
in a weak lensing community challenge. We will discuss why the
combination of variable PSF and variable shear was more difficult
in Paper II.

To motivate the approach, we take for the analysis, Fig. 2 shows a
scatter plot of metric Q (either Q. or Q, as appropriate) as a function
of time, for all submissions across all branches. Point styles indicate
the team; the legend has been suppressed because our purpose is
only to show that (1) there are a huge number of submissions with a
wide range of performance, and (2) sometimes even within a given
team, the results varied a great deal. We thus approach the analysis
in two stages. Our first step, in Section 4, is to analyse the results
for specific teams that made many submissions, to understand the
trends for that method and identify a fair subset of their submissions
(one per branch) to compare with those from other teams. Then, in
Section 5, we use this fair subsample of submissions, one per team
per branch, to learn lessons from the overall challenge results.

3 SHEAR ESTIMATION METHODS

In this section, we broadly categorize and describe the methods used
to analyse the GREAT3 data. Appendix C contains a more detailed
description of all methods. The main aspects of the methods used
by the teams in GREAT3 are summarized in Table 2, which forms
the basis for the discussion in this section.'*

We have assigned each of the 21 teams to a ‘class’ (listed in
Table 2) that describes how the method essentially works. There are
several options for the class.

14 A few teams listed on the GREAT3 challenge web site are not in this
table, either because they did not make any submissions, because the team
solely existed to demonstrate the use of the example scripts (Appendix B)
distributed by the GREAT3 EC (team ‘GREAT3_EC’), or because the team
was created by a GREAT3 EC member only to check the GREAT3 simula-
tions as part of the validation process (team ‘miyatake-test’).

MNRAS 450, 2963-3007 (2015)

(1) Maximum likelihood: maximum-likelihood model-fitting
methods, of which there are five.

(2) Bayesian methods: there are four of these, each with different
labels (e.g. ‘Bayesian hierarchical’, ‘Bayesian Fourier’, etc.) indi-
cating differences in how they work. The ‘Partially Bayesian’ label
for MaltaOx is meant to indicate a Bayesian marginalization over
nuisance parameters combined with mean likelihood estimation,
rather than a fully Bayesian approach.

(3) Moments: there are eight methods that work by combining
estimates of galaxy and PSF moments in some way. Of these, six
are real-space moments methods (called ‘Moments’) and two are
Fourier-space moments methods (‘Fourier moments’). Of the six
real-space moments methods, one involves as a key aspect of the
method a self-calibration scheme (‘Moments + self-calibration’),
and that self-calibration could be extended to non-moments-based
methods.

(4) Stacking: a single team used image stacking.

(5) Neural network and supervised machine learning (ML): three
methods rely heavily on ML.

The table also lists the weighting scheme that was used. Here, there
are a few options. Several teams used constant (equal) weighting,
in some cases allowing optional rejection using certain selection
criteria (‘Constant + rejection’). Many teams used inverse variance
weighting, where the variance is a combination of shape noise and
measurement error due to pixel noise. In the Bayesian methods,
the weights are often implicit rather than explicitly assigned. Some
teams experimented with multiple weighting schemes, in which
case their entry in the table is ‘Various’, and details are in the
appendix.

Another important entry in Table 2 is ‘Calibration philosophy’,
which relates to how or whether a team tries to calibrate out sys-
tematic errors, versus attempting to be unbiased a priori. Here there
are a few options.

(a) None: these teams apply no calibration corrections.

(b) External simulations: these teams generate their own simula-
tions in order to calibrate their shears. In one case (sFIT), these are
produced iteratively until they are found to sufficiently match the
data that are being analysed [ ‘External simulations (iterative)’].

(c) Ellipticity penalty term: one team, rather than applying cal-
ibrations after the fact, uses a penalty term on high ellipticity to
reduce certain calibration biases. This penalty term must be cali-
brated in some way, making it somewhat different in nature from
the next option.

(d) p(e) from deep data: some methods require an input intrin-
sic ellipticity distribution from deep data (or more precisely, for
BAMPenn, the full distribution of unnormalized moments). This
is qualitatively different from requiring external simulations, since
many surveys will have a deeper subset of the data that could be
used to derive this prior.

(e) Inferred p(e): one team tried to hierarchically infer the p(e)
and the shear from the data itself.

(f) Self-calibration: finally, two teams (MetaCalibration and Mal-
taOx) implemented a self-calibration scheme to derive calibration
corrections from the data itself.

Table 2 also lists other useful pieces of information about these
methods, as described in the caption.
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Table 2. Table summarizing the methods used by teams that participated in the challenge, including basic information such as team name; class
(overall type of method); weighting scheme; calibration philosophy (discussed in the text); and number of branches entered in the challenge (Npranch)-
‘Limitations’ refers to types of data to which the implementation used here is not applicable without significant further development. ‘Rank’ is
the leaderboard ranking for those that received points (-’ for those that did not, and ‘N/A’ for those that were ineligible due to participation of a
GREAT3 EC member). ‘exact PSF?” indicates whether they used the exact PSF or an approximation to it (e.g. sums of Gaussians). ‘New software’
indicates whether the software used to analyse the GREAT3 simulations was newly developed (‘yes’), included some existing infrastructure with
new software of non-trivial complexity (‘some’), or was entirely pre-existing (‘no’). Finally, we show the approximate processing time per galaxy
per exposure (on a single core) for science-quality shear estimates. Several fields are discussed in detail in Section 3.

Team Class Weighting Calibration  Limitations  Npanch  Rank  Exact  New Time per
scheme philosophy PSF?  software  galaxy
Amalgam @IAP Maximum Inverse Ellipticity None 16 2 Yes Some 0.1-1s
likelihood variance penalty
BAMPenn Bayesian Implicit p(e) from Variable 2 - Yes Yes <ls
Fourier deep data shear
EPFL _gfit Maximum Constant +  None None 8 6 Yes Yes 1-3s
likelihood rejection
CEA-EPFL Maximum Various None None 20 3 Yes Yes 1-35s
likelihood
CEA_denoise Moments Constant None None 8 - Yes No 0.03 s
CMU Stacking Constant External Variable 2 N/A Yes Some 0.03 s
experimenters simulations  shear
COGS Maximum Constant External None 12 N/A Yes Yes ls
(IM3SHAPE) likelihood simulations
E-HOLICS Moments Constant +  External None 12 8 Yes No 1-3s
rejection simulations
EPFL_HNN Neural Constant None None 7 - Yes Yes 2-3s
network
EPFL_KSB Moments Inverse None None 4 - Yes No 0.001-0.002 s
variance
EPFL_MLP/ Neural Constant None None 5 - Yes Yes 2-35s
EPFL_MLP_FIT  network
FDNT Fourier Inverse External None 12 N/A Yes Some ~1s
moments variance simulations
Fourier_Quad Fourier Various None None 6 5 Yes No 0.001-0.002 s
moments
HSC/LSST-HSM  Moments Inverse External None 4 N/A Yes Some 0.05s
variance simulations
MBI Bayesian Implicit Inferred Variable 4 9 No Some 10s
hierarchical pe) shear, PSF
MaltaOx Partially Inverse Self- None 3 7 Yes Some 0.05s
(LEnsFIT) Bayesian variance calibration
MegalLUT Supervised Constant +  External None 16 4 Yes Some 0.02s
ML rejection simulations
MetaCalibration Moments + Inverse Self- Variable 1 N/A Yes Yes 03s
self-calibration  variance calibration shear
Wentao_Luo Moments Inverse None None 4 - Yes Yes 1-2s
variance
ess Bayesian Implicit p(e) from Variable 2 - No Yes 1s
model-fitting deep data shear
SFIT Maximum Inverse External None 20 1 Yes Yes 0.8s
likelihood variance simulations
(iterative)
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4 INFORMATIVE RESULTS FOR SPECIFIC
METHODS

Before exploring the overall results of the challenge, we first con-
sider several methods in detail. For methods with many submissions,
it is important to understand overall behaviour of the method before
comparing with others. For this reason, we carry out two types of
tests.

(1) Controlled tests of the performance of the method as a func-
tion of the various initial settings and parameter values that deter-
mine its performance, for multiple submissions in a given branch.

(2) A comparison of submissions for that method across multiple
branches, while holding its initial settings and parameters fixed
(instead of using those that happened to give the best metric score
in each branch).

These results then serve as a basis for the fair comparison between
methods and across branches, which will be performed later in the
paper. For all the methods discussed, see Appendix C for a more
detailed description.

4.1 GFIT

4.1.1 Controlled tests of variation in GFIT parameters

In this section, we show results of a more detailed exploration of
the GriT software used by the EPFL_criT and CEA-EPFL teams (see
method descriptions in Appendices C3 and C4). In particular, we
investigate the dependence of the results on choices made in the
course of estimating the per-object shears, or the weighting used
to estimate an average shear for the entire field. Our comparison
focuses on the constant-shear branches, where we have additional
diagnostics such as the multiplicative and additive biases (see Sec-
tion 2.3 for definitions).

This comparison uses the submissions from EPFL_grit, but the
results are also applicable to CEA-EPFL submissions. The factors
that were considered in the comparison are the galaxy model, the
postage stamp size, precision on the total flux and centroid, max-
imum half-light radii of the bulge and disc, filtering of the galaxy
catalogue, constraints on positivity of bulge and disc flux, and oc-
casional other experiments, such as stacking the nine PSFs in the
starfield images, or running a denoising scheme.

We begin by analysing the 14 submissions in RGC. Correlating
the Q. values with the settings that vary for these submissions, we
find that the parameter that most directly predicts Q. is the postage
stamp size used for the model fitting (see top panel of Fig. 3). As
shown, using the full 48 x 48 postage stamp maximizes the Q.
score.

To understand this correlation, we consider the multiplicative
bias as a function of postage stamp size (middle panel of Fig. 3). As
shown, except for a few outliers, the multiplicative biases m. and
my that contribute to Q. increase from being consistent with zero to
2.0 £ 0.4 and 2.2 & 0.5 per cent, respectively, as the postage stamp
is reduced to half of its (linear) size. The statistical significance of
the difference between the results with the maximum and minimum
stamp size is more than the 3o that it appears to be in Fig. 3; given
the high (~0.75) correlation coefficient between the submissions,
the change in m is detected at approximately 8¢ significance.

For maximum-likelihood fitting methods, we expect a calibration
bias due to the effects of noise (‘noise bias’). One interpretation of
the RGC results at the maximal postage stamp size is therefore a
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Figure 3. Q. and Qnix (top), and the bias components m; (middle) and ¢;
(bottom), for the GriT method as a function of the postage stamp size used
for modelling the galaxy images in the RGC branch. The target regions are
shown as a grey shaded region, within which the vertical axis has a linear
scaling; outside of the shaded region, the scaling is logarithmic. Multiple
submissions with the same stamp size have slight horizontal offsets for
clarity. The error bars are correlated between the submissions, so the figure
cannot be used to assess statistical significance of differences between them.
See the discussion in the text for quantitative calculations of statistical
significance. The m; and ¢; panels only show errors on a single quantity
(i = +), for clarity.
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(cancelling) combination of noise bias with other potential biases,
such as those expected due to an imperfect galaxy model.

As the postage stamp size is reduced, the likelihood surface for
the shear estimate changes due to reduced information about the
light profile, and this change will generally depend on the galaxy
size and shape, postage stamp size, and the noise level. This change
in the likelihood surface will in general change the location of the
maximum likelihood, causing a potential bias for such methods.
We refer to the resulting bias on ensemble shear estimates' as
‘truncation bias’. For this method, the sign of the effect is apparently
increasingly positive as stamp sizes decrease, though that does not
necessarily have to be the case for all methods.

We can also see signs that m; and my, the calibration bi-
ases defined in the pixel coordinate system, may be related as
my; ~ my + 0.007 (1.50 significance). A difference between the
calibration bias along the pixel directions (m;) and along the diag-
onals (m;) would be consistent with the results of previous work
(High et al. 2007; Massey et al. 2007a), and could plausibly be ex-
plained either by the different effective sampling of the galaxy and
PSF profile along those directions, or by the fact that postage stamp
itself extends further in the diagonal directions. For the maximal
postage stamp size, m; and m, have opposite signs, which yields
m, and my near zero. For this reason, Q. > QOn;x for the maximal
postage stamp; in this case, Qnx is a better estimator of the level of
systematics in GFIT.

We also investigated the additive bias and its variation with
postage stamp size in the bottom panel of Fig. 3. Results consistent
with zero, ¢, = (=1 £ 1) x 107*, are achieved at the maximal
postage stamp size, but additive bias becomes steadily more nega-
tive until it exceeds our target value for the smallest postage stamp
sizes, where ¢y = (=5 £ 1) x 107*. This result suggests that addi-
tive systematics also exhibit truncation bias (with 7o significance
after accounting for the correlation between submissions). How-
ever, the best-fitting values of ¢;, ¢;, and ¢, are within the target
region and statistically consistent with zero.

Fig. 3 also shows that a few submissions with large postage stamp
sizes had worse than typical results. For the largest postage stamp
size, these variations in Q. are due to variations in the amount of
filtering imposed on the output catalogue before averaging to get a
mean shear for the field. The filtering typically involves the value of
the best-fitting radii, the sum of the fit residuals (related to fit qual-
ity), and the S/N, and usually involves removing several per cent
of the galaxies in each field. For the next-largest stamp size (44),
the submissions with worse results involved experimenting with fit
settings (e.g. allowing components with negative flux), with use of
denoised images, and with stacking the nine provided PSF images
instead of using just one.

Among the space branches, CSC has many GFIT entries with dif-
ferent postage stamp sizes, though the maximum is 80 x 80 (out
of a possible 96 x 96). As for the ground, postage stamp size is
the most important factor, with Q. as a function of this parameter
in Fig. 4. In this case, the best postage stamp size of 40 x 40 does
non-negligibly truncate the light profiles of a fair fraction of the
galaxies, whereas the largest postage stamp size used (80 x 80) has
a substantially lower Q. due to its multiplicative calibration bias
of my = —2.0 £ 0.3 per cent and m, = —1.3 £ 0.3 per cent.

15 Note that with perfect models and in the absence of noise, truncation
should not in general cause a bias. Truncation bias could therefore be seen
as a modulation of the model and/or noise biases as the weighting of the
pixels changes.
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Figure 4. Q. and Onix for GrIT as a function of the postage stamp size used
for modelling the galaxy images in the CSC branch.

These biases are reduced to my = —0.3 = 0.3 per cent and
my = +0.5 £ 0.3 per cent for the best stamp size, an >11c change
when accounting for the strong correlation between the submis-
sions.

The natural interpretation is that the various sources of bias in
the space simulations for the largest stamp size result in a neg-
ative multiplicative bias of (m) ~ —1.7 £+ 0.3 percent (where
(m) = [my + my]/2), but a positive truncation bias cancels this
out for smaller postage stamp sizes. The fact that the bias becomes
more positive for smaller stamp sizes is consistent across ground
and space simulations.

The potential sources of bias in the 80 x 80 case include noise
bias, some truncation bias compared to the full 96 x 96 case,
and model bias due to an inexact match between the parametric
model in the simulations versus those used by GriT. In all cases,
there is a detection of additive systematics, with ¢, ranging from
(7 & 1) x 10~ for the 80 x 80 stamp size, to (3 & 1) x 10~ for
stamps smaller than 60 x 60. The decrease in ¢, due to truncation
bias is significant at the 9o level.

4.1.2 Fair cross-branch comparison

The best results from the criT team used quite different postage
stamp sizes for each branch. Since the galaxy populations are, in
a statistical sense, consistent when comparing across all ground
branches and all space branches, a fair cross-branch comparison
would use consistent settings for all ground branches and for all
space branches. Here, we present the results of this comparison.
For ground branches, all branches except for CGC had a submis-
sion with stamp size of 32 x 32, and CGC has one with 30 x 30,
which is close enough for this comparison. Fig. 5 shows the Q
values for all GriT submissions in all ground branches, particularly
indicating those submissions that are part of the fair cross-branch
comparison. Note that the Q. and Q, values do not relate to shear
systematics in quite the same way, so we cannot directly compare
across constant and variable shear branches. However, it is clear
in general that the submissions in this fair comparison sample per-
form respectably (200 < Q < 600) but do not typically include the
best submission in each branch. The results for the mixed metric
Onmix in that figure (top right) for constant-shear branches actually
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Figure 5. Top left: histogram of Q value (either Q. or Qy depending on the branch) for the GriT method for all submissions in ground branches from CEA-EPFL
and EPFL_crT teams. The large dots located on the histograms indicate the submissions that are part of the fair cross-branch comparison, with the same choice
of postage stamp size. Top right, bottom left, bottom right: the same, but for Qpix, (m), and cy (respectively), for constant-shear branches. In the bottom plots,
the points have horizontal error bars indicating their statistical uncertainty, and the shaded regions indicate the target values of (m) and c. Outliers have been
removed from the bottom two panels so that the main part of the distribution can be clearly seen.

shows consistency across branches for the selected submissions,
with 250 < Omix < 350.

The bottom row of Fig. 5 shows the distribution of multiplica-
tive biases averaged over both components, (m) = (my. + my)/2,
and additive biases aligned with the PSF (c, ; no significant ¢, was
detected for this or any method) for all submissions in CGC and
RGC. For (m), given the fixed GFIT analysis settings, the differences
between the red points in CGC and RGC indicate additional mul-
tiplicative model bias due to real galaxy morphology of (m)rgc
— (m)cge = 1.9 = 0.4 per cent. There may also be model bias
in CGC due to the parametric models used by GFIT not precisely
matching the ones in the GREAT3 simulations. The CGC versus
RGC comparison therefore reflects only additional model bias due
to real galaxy morphology, rather than all sources of model bias.

When considering the points that indicate the submissions in the
fair comparison sample, the additive biases are consistent with zero
for CGC but a significant detection for RGC is seen, suggestive that
model bias due to realistic morphology can result in additive errors
from imperfect PSF deconvolution. However, it is worth bearing in
mind that the postage stamps used in this cross-branch comparison
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are significantly truncated. In all these ground branch submissions,
there will thus be some truncation bias that might interact with other
biases such as model biases. The individual effects cannot be wholly
isolated, but the compound effects are clear.

For space branches, the ‘fair comparison’ submissions had
postage stamp sizes of 44 x 44, representing significant trunca-
tion compared to the full size of 96 x 96. The fair comparison
results do not exhibit the very high Q values of the best submissions
(>1000) but are, however, in the range 500 < Q < 800. Comparing
CSC and RSC suggests a multiplicative model bias due to realistic
galaxy morphology of (m)rsc — (m)csc = 0.7 £ 0.2 per cent, but
no additive model bias.

4.1.3 Summary

In summary, GrIT results are significantly affected by the postage
stamp size used for modelling, with small stamp sizes resulting in
what we call truncation bias. This (generally positive) truncation
bias can offset the negative noise bias that is a natural consequence
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of using a maximum-likelihood fitting method. The next most inter-
esting factor is the filtering of the catalogue to exclude galaxies on
the basis of fit quality or fit parameters, with typically a few per cent
of galaxies being excluded.

Results for a consistent choice of stamp size suggest differences
in (m) between the control and realistic galaxy experiments of the
order of A (m) =~ 1-2 per cent (greater for ground than for space) due
to model bias from realistic galaxy morphology. This conclusion
is based on the fact that the galaxy and data properties in these
branches are the same, except for the way of representing the light
profiles (parametric models versus HST images). Thus truncation,
noise, and other biases should be consistent between the two sets
of results. Differences in ¢, for the control and realistic galaxy
experiments depend on whether the simulated data represents a
space survey or a ground survey.

We note the general point that, using this data set, we cannot
cleanly separate model bias in true isolation, as compounding inter-
plays may exist between model bias, truncation bias, noise bias, and
other biases. This would be an interesting subject for future study.
For the purpose of controlling for the effects found in this analysis
of GFIT results, in the general analysis in Section 5, we will use a set
of GFIT submissions with consistent postage stamp sizes (one set for
ground, and another for space). These will be the same submissions
used in Section 4.1.2.

4.2 Amalgam@IAP

4.2.1 Controlled tests of variation in Amalgam@IAP options

The Amalgam@IAP analysis pipeline (see Appendix C1) has a
significant number of parameters that can change. These include the
postage stamp size, subpixel resolution, and order of interpolation
used to combine star images for PSF estimation; the type of filtering
of the galaxy catalogues; the modelling window (the maximum
allowed region to use for modelling, which was either fixed to the
postage stamp size or was permitted to vary with a maximum value
equal to the postage stamp size); the use of regular versus modified
x? to mitigate the effects of galaxy blends (see Appendix C1); the
use of an additional penalty term on Sérsic index and/or aspect ratio,
see equation (C3); and the choice of effective shape noise o in the
weighting used to combine individual galaxy shape estimates (see
Appendix C1.3).

Early in the challenge, it was found that increasing the sampling
density of both the PSF and the galaxy models (2.5 x on each
axis compared to the values that would automatically be set by the
regular versions of psFEx and SEXTRACTOR) significantly improved
the scores, at the price of increasing computing time by an order of
magnitude.

In RGC, we carried out multifactor ANOVA to understand
the most important factors determining the performance of the
Amalgam @IAP team. Unfortunately, even with nearly 40 submis-
sions, the eight-dimensional parameter space was not sampled well
enough to get a clear answer. The results suggest that oy was the
most important factor determining performance, with choice of form
for the x? (regular preferred over modified) and use of penalty term
(penalty on aspect ratio preferred over not) being important with
marginal significance.

Given the importance of o, Fig. 6 shows the variation of our
metrics with this parameter. As shown in the top panel, Q. sharply
decreases for very small o, and reaches a maximum for o ~ 1.
For infinite o ¢ (constant weighting), there are two submissions with
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for clarity.
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quite different Q. values, 849 and 78, which we discuss in more
detail below.

The decrease in Q. for very low o is quite interesting. As o
approaches zero, the weighting scheme gives a strong preference to
very high-S/N galaxies. In real data, there is no advantage to giving
such a preference because of shape noise. However, in GREAT3, we
have cancelled out the shape noise by including 90° rotated pairs,
so in principle, a perfect shear estimate for just the two highest S/N
galaxies would perfectly determine the shear for the whole field. The
low Q. in this case implies that either the covariance matrix used
for the weighting is poorly determined or has some correlation with
shear direction, or that the shear estimates for high-S/N galaxies are
poor. The high-S/N galaxies should have little noise bias, but may
have model bias due to a mismatch between the input parametric
models and the ones fitted by the Amalgam @IAP team. Another
possible explanation relates to the adaptive selection of modelling
window size (up to but not beyond the size of the input postage
stamps). If the algorithm chooses too-small postage stamps for the
highest S/N galaxies, it could introduce truncation biases as seen
in GrFIT results (see Section 4.1). Since a similar trend in Q. was
seen in CGC, the problem is not plausibly due solely to realistic
galaxy morphology. Unfortunately given the data that we have, we
are unable to tease apart these effects.

The other panels in Fig. 6 show the m; and ¢; values as a function
of o, to explain the trends in the Q. plot. For very low o (up-
weighting the high-S/N galaxies), the multiplicative biases can be
as bad as —7.6 = 0.5 per cent, with a very high detection signifi-
cance for the trends in m;. For constant weighting, the submission
with near-zero m; and ¢; includes a penalty term on the aspect ratio,
whereas the poorly performing submission does not (giving a 10c
change in m;). In the bottom panel, as o goes from 0.05 up to 1 and
finally to oo (corresponding to strong S/N upweighting, weighting
with a substantial shape noise term, and constant weighting, respec-
tively), ¢, goes from (3.2 & 0.2) x 1073, to consistent with zero,
to negative values, (—4 & 1) x 10~*. The statistical significance
of these changes is >10c. This suggests that ¢ for this method is
positive (negative) for the high- (low-) S/N galaxies.

We now address the issue of the penalty term on aspect ratio,
another parameter of interest that causes highly significant changes
in multiplicative and additive biases as discussed above. The idea
of the penalty term is that for galaxies that have low S/N and
poor resolution, the ellipticity is so poorly determined that there
is a very large tail to high ellipticity (which is a manifestation of
noise bias). Hence, the idea is to penalize high ellipticity values
by adding a term to the x2, which will have little effect on high-
ellipticity objects with high S/N. This was important particularly
for fields with poor seeing and/or substantial defocus that enlarged
the PSF. An example is shown in Fig. 7. The top panel shows the
fitted ellipticity distribution in a good-seeing (blue) and poor-seeing
(red) field in GREAT3 without the penalty term, and the bottom
panel shows the same when using the penalty term on aspect ratio.
The distribution for the poor-seeing image has a pronounced high-
ellipticity tail that is nearly removed by the penalty term, yet the
shape of the distribution in the good-seeing image is less altered by
the addition of this term.

In some sense, the addition to the term in the x? is equivalent to
multiplying the likelihood, i.e. imposing a prior on the ellipticity. It
seems that this is a way to remove or reduce noise bias in all fields
(with stronger impact on those that have poor seeing), eliminating
the need for explicit calibration factors. For GREAT?3, the best value
of shape noise o to use in the weighting scheme and the form of the
penalty term to use in the x> was clearly shown to do an excellent
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Figure 7. Fitted ellipticity distributions for the Amalgam @IAP team for a
good-seeing (blue) and poor-seeing (red) subfield in GREAT3, in the CGC
branch. The top (bottom) panel shows the results without (with) a penalty
term on aspect ratio.

job at shear estimation for the particular p(¢) and galaxy property
distributions used here. However, it is unclear whether these results
would necessarily be consistently reproducible for other data sets
with different intrinsic p(e), or those with a p(¢) that correlates
with other galaxy properties in a way that is not reproduced here.
For this reason, further simulations would be needed to evaluate the
generality of this procedure for real data with a variety of properties,
and confirm that the exact o and form of the penalty term gives
similar results in cancelling out noise bias.

4.2.2 Fair cross-branch comparison

For the Amalgam@IAP team, it was difficult to identify a single
group of settings used for all branches. Instead, four groups of
settings with submissions in a few branches were identified.

(1) x? penalty term on aspect ratio O aspect; 0s = 0.5 for weighting.
(2) x? penalty term on 0 aspect; uniform weighting (o = 00).

(3) x? penalty term on O aspect and Sérsic index ng; oy = 0.5.

(4) No priors on model parameters; o, = 0.5.

The settings also differed in minor ways that have little impact on
performance.

Fig. 8 shows histograms of Q., (m), and c values for all Amal-
gam @JAP submissions in all constant shear branches, also indicat-
ing those submissions with the aforementioned consistent settings
with points. As shown, for branches that include submissions with
setting 1, that submission is typically among the best in the branch,
with RSC being the exception to this rule. This is consistent with
our previous results indicating that oy ~ 0.5 and the x 2 penalty term
on aspect ratio were important factors affecting the results.

Comparing the results for setting 1 and 2 in RGC, the only con-
stant shear branch to include submissions with both settings, their
performance seems quite consistent with each other. However, in
variable shear branches (not shown), setting 1 leads to better per-
formance, confirming the importance of the weight including both
shape and measurement noise rather than using equal weighting.
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Figure 8. Top: histogram of Q. values for all submissions from the Amal-
gam@IAP team for constant shear branches. The coloured points indicate
submissions that are part of the fair cross-branch comparisons with con-
sistent settings, with the four settings described in the text indicated with
different shaped points. Middle, bottom: the same, but for (m) and c. The
points have horizontal error bars indicating their statistical uncertainty, and
the shaded regions indicate the target values of (m) and c4. Outliers have
been removed from the bottom two panels so that the main part of the
distribution can be clearly seen.
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Comparing settings 1 and 3, we see that for CGC, setting 1 leads
to better performance due to a substantially smaller calibration bias.
This suggests that use of a Sérsic n penalty term is unimportant or
perhaps even harmful, though its impact is somewhat less on vari-
able shear branches (not shown). This finding may simply reflect the
fact that the variable shear metric is less sensitive to multiplicative
bias m.

Finally, settings 1 and 4 gave similar results, with comparable m;
and ¢;. While the use of penalty terms on e i helpful, that is
especially true for higher o than the value used here.

In general, the results for these fairly chosen sets of submissions
are worse in CGC than in RGC. The primary reason is an average
multiplicative bias of (m) = 0.8 £ 0.2 per cent in CGC, while (m)
is consistent with zero in RGC. Since the simulation designs in
the control and realistic galaxy experiments correspond apart from
galaxy morphology, this difference between CGC and RGC sug-
gests a model bias due to realistic galaxy morphology that is of that
order. This bias may be cancelled out by some other bias in RGC
(perhaps noise bias, truncation bias, or residual model bias due to
mismatch between input and output parametric models). In contrast,
the additive systematics for CGC versus RGC (setting 1) are consis-
tent within the errors. For space branches, the multiplicative biases
differ for RSC and CSC by (m)rsc — (m)csc = 0.80 £ 0.15 per cent,
suggesting that model bias due to realistic galaxy morphology has
a similar magnitude for both space and ground data.

4.2.3 Summary

Here, we summarize the key lessons from analysis of the Amal-
gam@IAP results. First, the main factors that determine perfor-
mance are the magnitude of shape noise used in the weighting
scheme (o) and the use of a penalty term on the aspect ratio to
reduce the incidence of spurious highly elliptical, lower S/N and
resolution objects. Using the best choices for these parameters in all
branches resulted in overall good performance, though with hints of
a model bias for ground and space data due to realistic galaxy mor-
phology that is slightly below a per cent. Also, strong variation in
¢ with the weighting scheme suggests that the additive systematics
are a strong function of the galaxy S/N.

Because of the importance of o, and penalty terms in determining
performance, for the overall analysis and comparison with other
methods, we use a set of submissions with the same value of o = 0.5
and a penalty term on the aspect ratio, with small variations in other
less important parameters. '®

4.3 MegaLUT

4.3.1 Controlled tests of variation of parameters

The MegalLUT team (see Appendix C17) made many submissions
with varying choices related to the learning sample generation,
shape measurement, input parameters for the artificial neural net-
work (ANN), architecture of the ANN, and finally the rejection of
faint or unresolved galaxies. Here, we will explore the dependence
of their results on these choices.

16 For three variable-shear branches, there were no submissions with
os = 0.5. To enable comparison in those branches, the Amalgam@IAP
team made submissions after the end of the challenge using the same cata-
logues as during the challenge, reweighted using og = 0.5.
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Figure 9. Top: m; values for four MegaLUT submissions in CGC with
different choices for how catalogues were filtered, but otherwise the same
settings. Bottom: ¢; values.

First, we consider the filtering of the catalogues, comparing four
submissions to CGC that used the same settings for all parameters
except the filtering. The m; and ¢; values for these four submissions
are shown in Fig. 9, with the Q. values indicated in the legend. As
shown, the results for the top three options (all with default filtering
for positive flux and profile increasing) give very similar results,
regardless of other choices like rejection based on maximum shear
values, or clipping large shears (setting them to a maximum value
of 0.9). However, removing the default filtering and only rejecting
based on |g;| or |g2| > 1 gives significantly worse Q.. This is due
to both m; and c.. increasing in magnitude. This submission is only
mildly correlated with the others, and the m; and ¢; changes are
only marginally significant (2¢0'). On a minor note, there is a 2030
hint of non-zero ¢; and c,, which (if real) may reflect asymmetry
in selection criteria. Note that the default filtering option removes
typically <1 per cent of the galaxies.

The next test was on CSC, comparing two otherwise similar
submissions with different choices at the training stage. The training
sample shears were uniformly distributed with |g| < 1 and with
|g] < 0.7. The Q. values were 289 and 228, respectively, primarily
because of a larger magnitude of the (negative) calibration bias in
the latter case. This change in m is not very statistically significant
(<20), which is interesting because it suggests a lack of sensitivity
to this aspect of the training.

Also in CSC, we compare two submission that used different
statistics of the image to describe the shape. In one submission, the
adaptive moments routines in GaLsiM were used, effectively fitting
the image to an elliptical Gaussian; the other submission used the
moments of the autocorrelation function (ACF; van Waerbeke et al.
1997) of the image. The results are shown in Fig. 10.
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Figure 10. Top: m; values for two MegaLUT submissions in CSC with dif-
ferent methods of measuring galaxy shapes, but otherwise the same settings.
Bottom: ¢; values.

The Q. values are 289 and 129, respectively, due to a 3o differ-
ence in m; values (the significance is larger than it appears on the
plot due to correlations between the submissions). Use of the ACF
gives a more negative calibration bias of (m) = —2.5 £ 0.5 per cent,
compared to (m) = —1.1 &= 0.5 per cent without its use. Apparently
the ACF is not an unbiased way of compressing the information in
the image, consistent with what was seen for two methods using the
ACF in GREAT10 (Kitching et al. 2012).

A final study performed in CSC relates to other ways of filtering
the catalogues after shear estimates have been made, comparing
the results of the default filtering with two other options; excluding
small objects, and using convex hull peeling (Eddy 1982). The
exclusion of small objects changes m; and c; only slightly. However,
convex hull peeling gives substantially worse results that are also
noisier, with Q. reduced from around 300 to 113, and (m) going
from —1.1 £ 0.5 to 3 & 1 per cent (4o significance).

For RSC, we compared two submissions with different train-
ing options. In one case (‘half noise’), the training set images
had noise that was half the level in the GREAT3 images; in the
other case, it was ‘low noise’, 1/10 the level in the GREAT3 im-
ages. Fig. 11 shows that the latter gives significantly better perfor-
mance, Q. = 221 instead of 139. The ‘half noise’ case has slightly
worse m; values, and substantially worse additive systematics of
cy = (10 £ 1) x 107* versus ¢, = (=3 £ 2) x 107 in the
low-noise case, a 5o difference given the correlations between the
submissions). The increase in m; with increasing noise in the train-
ing sample images could be due to the resulting noisiness in the
input features of the ANN training. This noisiness smears out any
sharp structures that the ANN regression should fit, leading to bi-
ased ANN predictions. We speculate that the effects on ¢, may
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Figure 11. Top: m; values for two MegalLUT submissions in RSC with
different choices for how much noise to include in the training sample.
Bottom: ¢; values.

relate to errors in centroiding that are larger along the PSF direction
somehow being amplified if the training sample is also noisy, but
this effect requires further study to fully understand.

The final test in RSC relates to the use of clipping the shears,
meaning setting those galaxies with estimated |g| > giip t0 |g] = gelip
instead of using the estimated value. We compare two submissions
with g = 0.6 and 0.9 and otherwise similar settings, and find Q.
values of 76 and 105, respectively. While the additive systematics
are virtually identical, the submission with stronger clipping has
worse calibration bias ({m) is more negative: —4.5 4 0.5 per cent
instead of —3.0 & 0.5 per cent, significant at more than 200 given
the high correlation between the submissions). Not surprisingly,
aggressive clipping of shear magnitudes biases the estimated cos-
mological shear low.

4.3.2 Fair cross-branch comparison

We also show results for a fair cross-branch comparison using sim-
ilar settings for the training set, filtering, and other parameters of
interest. In this case, |g| in the simulations was uniformly distributed
in a unit disc of radius 0.7; the simulations had half the noise of the
GREAT3 simulations; galaxies with estimated g; or g, with magni-
tude larger than 1 were rejected, but no other rejection scheme was
used; and shears were clipped to a maximum of 0.8. As for the other
cross-branch comparisons, we show histograms of all submissions
and points indicating the ones in the fair comparison set, in Fig. 12.

As shown in the top panel of Fig. 12, the MegaLUT submis-
sions in the cross-branch comparison set are typically among their
top submissions. The top values of Q. are in the range 200-700,
whereas the top values of Q, are in a higher range, 400-1400. For
all combinations of (experiment, observation type) to which this
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Figure 12. Top: histograms of Q values (either Q. or Qy depending on
the branch) for the MegaLUT team. The coloured points indicate the sub-
missions that are part of the fair cross-branch comparison with consistent
settings. Middle, bottom: the same, but for (m) and ¢ (respectively), which
involves using constant-shear branches only. The points have horizontal
error bars indicating their statistical uncertainty, and the shaded regions in-
dicate the target values of (m) and c... Outliers have been removed from the
bottom two panels so that the main part of the distribution can be clearly
seen.
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team submitted, the results for variable shear were better than for
constant shear. This may reflect the fact that the best results typically
had ~1-2 per cent multiplicative calibration biases, to which Q. is
substantially more sensitive than Q,. For constant-shear branches,
the results for the mixed metric Qp,;x were very similar to those for
the standard Q.. Another interesting trend across branches is that,
with the exception of RSV, MegaLUT did better in the control ex-
periment than in the realistic galaxy experiment, perhaps reflecting
a preference for the parametric models used to generate the training
sample (which we explore in detail in Section 5.3).

The middle panel of Fig. 12 shows (m) averaged over compo-
nents. As shown, for both control and realistic galaxy experiments,
the multiplicative bias (m) is typically positive for ground-based
data (around 1 percent) and negative for space-based data (—1.5
to —3 per cent). The magnitude of the bias is slightly larger for the
realistic galaxy experiment than for the control experiment. The dif-
ferences are of (m)rgec — (M)coe = 1.4 £ 0.4 per cent for ground
and (m)rsc — (m)csc = —1.7 = 0.3 per cent for space. This may
reflect differences in model bias from realistic galaxy morphology.

Finally, the bottom panel of Fig. 12 shows the additive bias c_.
We see a statistically significant difference in additive biases for the
control and realistic galaxy experiments, which is partly responsible
for the worse performance in realistic galaxy branches compared
to control branches. This is a manifestation of model bias due to
realistic galaxy morphology.

4.3.3 Summary

To summarize the MegalLUT results, we find that good results re-
quired identification and rejection of a small fraction of problematic
galaxies. Use of the image ACF led to substantially worse perfor-
mance than use of the adaptive moments (from a fit to an elliptical
Gaussian, using code in GALsIM). An attempt to use convex hull
peeling led to substantial calibration biases and overall noisiness.
Use of training images with 1/10 (rather than 1/2) the noise level
of GREAT?3 reduced the additive systematic errors. Finally, clip-
ping the shears substantially (to a maximum value of |g| = 0.6)
led to negative calibration biases and overall worse performance.
The MegalLUT method had overall better performance in variable-
shear branches due to the pervasive ~1 per cent calibration biases,
which hurt their performance preferentially on the constant-shear
branches. This multiplicative calibration bias has opposite signs
for ground and space data (but similar magnitude). We saw hints
of additive and multiplicative model bias due to realistic galaxy
morphology, which we will explore in more detail in Section 5.3.

While using low-noise training data led to improved performance,
there was not a fair set of submissions across all branches that used
low noise. Thus, for the overall analysis in Section 5, we will use a
set of submissions with half noise. However, it is important to bear
in mind that this degrades the performance of the method.

4.4 Fourier_Quad

For Fourier_Quad (see Appendix C13), the key difference between
submissions relates to the weighting scheme used when combining
per-galaxy shear estimates. Three options were used for GREAT3.

(i) No explicit weighting: since the galaxy light profile ampli-
tudes scale with the flux, if this is not divided out, a lack of explicit
weighting corresponds to implicit weighting by (S/N). In GREAT?3,
this improves performance given our use of shape noise cancella-
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tion, in a way that is not viable in real data where shape noise does
not cancel.

(ii) Identifying the pairs of 90° rotated galaxies and dividing the
G, G, and N for each object (see Appendix C13) in the pair by the
squared galaxy flux. This weighting scheme is also not viable for
real data.

(iii) Dividing the power spectrum of the galaxy image by the
square of the galaxy flux, which corresponds to effectively un-
weighted per-galaxy shear estimates.

For the constant-shear branches, higher scores were achieved us-
ing the first weighting scheme, followed closely by the second. For
example, in CGC, the top Q. scores using the first two weighting
schemes were 1202 and 1122, respectively; in RGC, 888 and 764;
in CSC, 1318 and 1245; in RSC, 1919 and 1726. Clearly the per-
formance was excellent with both weighting schemes, with m; and
¢; values at or near the target range. However, since these are not
a viable approach in real data, all comparisons with other methods
(in Section 5) will use the third weighting scheme.'”

For two reasons, Fourier_Quad did not get high scores in variable-
shear branches. First, unlike most of the other methods, the shear
estimators of Fourier_Quad do not directly correspond to galaxy
ellipticities, so the method does not get the full advantage of hav-
ing zero intrinsic E-mode correlation in variable-shear branches.
Secondly, the way of calculating shear correlation functions in
Fourier_Quad is still suboptimal, as described in Appendix C13.
Since we wish to use results that correspond to what would be used
in real data, we do not use their variable-shear submissions for our
overall analysis.

4.5 sFIT

For the sFIT team (see Appendix C21), multiple submissions in each
branch reflect more complete or sophisticated sets of simulations
from which to derive multiplicative and additive calibration factors
to apply to per-galaxy shear estimates. Thus, it is generally the case
that the most fair submission to use in each branch is the one that was
submitted last, except in a few branches with some experimental
submissions at the end.

However, comparing the results for individual submissions within
a branch provides information about the sizes of various biases. For
example, in CGC, the Q. value changed from 579 to 974 from the
first to the last submission. The initial attempt came from applying
calibration based on simulations that approximately matched dis-
tributions in size, Sérsic index, and noise level, but with Gaussian
PSFs rather than the real PSFs. Despite the simplifications in the
initial simulations used to derive the calibration factors, the best-
fitting m; values were ~0.5 & 0.5 per cent in each component, and
¢+ was consistent with zero. It is likely that the calibration correc-
tion in this branch is dominated by noise bias corrections. Later
improvements involved oversampling the Sérsic profiles, a better
PSF model (double Gaussian, which is still not as complex as the
real PSF model'®), and improved Sérsic n distribution based on
CSC, which primarily improved the score by reducing the multi-
plicative bias to 0.3 & 0.5 per cent. For the final submission, the

17 The submissions with that weighting scheme were made after the end of
the challenge, but in the interest of trying to make a fair comparison with
other methods, we will use them.

18 Due to the computational expense of rendering images with a full optics
and atmospheric PSF, the simulations used to derive the calibrations by the
SFIT team did not use the full PSF model for ground branches.
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average multiplicative calibration factor over all the subfields (with
a different value of calibration depending on the PSF full width at
half-maximum — FWHM) was approximately 1.06, and the mag-
nitude of the typical additive bias correction (which depends on
the PSF FWHM and its ellipticity) was of the order of 5 x 107*.
The final results in CGV, with Q, = 841.4, resulted from directly
applying the calibration factors from the final submissions to CGC,
as is appropriate given the similarities in branch design.

In CSC, the initial basic calibration (derived in a rough way as
for CGC) led to Q. = 698. Further iterations involved narrowing
distributions of Sérsic n and S/N (because the original ones from
fits to the GREAT3 data had an unphysical tail due to noise), and ul-
timately achieved Q. = 920. The processing used a 45 x 45 postage
stamp, not the full 96 x 96, which should result in truncation bias as
in Section 4.1. However, since the calibration simulations also use
small postage stamps, the truncation bias should be automatically
corrected. The magnitude of the total multiplicative bias correction
for this final submission was approximately 1.02, with an additive
bias correction of the order of —2 x 107%.

In the realistic galaxy experiment, we first consider RGC. Inter-
estingly, the first submission (with Q. = 305.4) used calibrations de-
rived from simulations with real galaxy images in caLsim. However,
the next attempt directly used the calibrations from CGC, which do
not include realistic galaxy morphology, and achieved Q. = 806.9.
This change tells us that for the sFIT method of fitting Sérsic pro-
files, the model bias due to realistic galaxy morphology is not very
large in ground-based data, because it is in principle uncorrected in
these results. After modifying the simulation inputs to better match
the p(e) and size distribution in RGC, the results were as high as
1003, with (m) = 0.2 & 0.5 per cent, and ¢, = (1 £ 1) x 10~*. This
suggests that residual model bias due to realistic galaxy morphology
is only important at the 1073 level for this method, compared to 10~2
for the methods discussed previously. The best-scoring submissions
in RGV used the calibration from RGC.

In RSC, interestingly, simulations based on real galaxy images
were necessary to improve Q. above ~350. Use of COSMOS im-
ages led to an immediate boost of Q. to 759 in the first attempt,
which is a statistically significant change arising from (m) chang-
ing from —0.9 & 0.3 per cent to —0.2 = 0.3 per cent, with nearly the
same additive bias, ¢, = (5.2 4 0.8) x 10~*. The significance of
the change in (m) is >200 due to the very high correlation between
the submissions. This suggests a statistically significant, sub-per
cent model bias due to realistic galaxy morphology for this method
in space data. Further attempts to improve the simulated p(¢) to
match the GREAT3 simulations led to additional improvements to
Q. = 825, with the additive bias remaining unchanged. One possi-
ble cause for this residual bias is that the calibration simulations did
not use a fully realistic PSF, which could result in slightly incorrect
additive bias corrections.

4.6 MBI

As described in Appendix C15, the MBI team made submissions
using a few variations of their method.

For the Optimal Tractor and Sample Tractor, they used the
maximum-likelihood estimate of the lensed ellipticity and the aver-
age of samples from the posterior probability distribution functions
(PDFs) (respectively) to derive the mean shear for the field, typi-
cally with similar performance. For example, in CGC, the scores for
the Optimal Tractor submissions were 15 and 53, reflecting multi-
plicative biases of 24 and 8 per cent, and non-negligible additive
systematics. The results for the Sample Tractor submissions were in
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the same range. The results in RGC for these two cases were worse
than in CGC.

However, hierarchically inferring the intrinsic ellipticity distri-
bution using importance sampling from the posterior PDF for the
mean shear, with a Gaussian p(¢) in each component, improved
scores by factors of ~ 3-10 in the ground branches. These score
improvements come from a decrease in multiplicative biases to the
range 1-3 per cent, and a reduction in additive systematics to within
the target range. The exception to this trend is CSC, where the use
of hierarchical inference did not yield significant improvement (Q.
scores were typically in the range 90-200 regardless of method).
However, there the assumption that the PSF can be described as
a sum of three Gaussian components is more dubious than in the
ground branches, so PSF modelling may be the key limitation in
that branch.

The results in the ground branches for the Important Tractor (hi-
erarchical inference) submissions suggest that this new method may
indeed be able to reduce some intrinsic limitations of maximum-
likelihood fitting methods (e.g. noise bias). Noise bias primarily
arises when transforming a probability distribution for a galaxy
shape estimate into a single point estimator. Combining the proba-
bility distributions for all galaxies (resulting in increased S/N) and
applying a hierarchically inferred prior p(¢) yields improved results.

The submissions from MBI included several variants of the hi-
erarchical inference. The first, called ‘multibaling’ (hierarchically
inferring the p(¢) common to five subfields), led to some improve-
ments in scores, up to a factor of 2. In contrast, using the deep fields
to infer the p(e) did not result in an improvement in Q. over hier-
archical inference assuming an uninformative hyper-prior. Finally,
the MBI team made submissions with informative prior PDFs on
the lensing shear, with four different values that seem to bracket
a peak in Q. in the CGC branch. The highest Q.-scores obtained
this way (in CGC and MGC) were around a factor of 4 higher
than that for an asserted uniform prior PDF for the shear compo-
nents. For example, with their wide, default, narrow, and narrower
assumed values for o, the Q. values were 94, 146, 301, and 24,
corresponding to multiplicative biases in the range 4, 3, —0.4, and
—14 per cent, respectively. In GREAT3 constant-shear simulations,
the true pyue(|g]) o< |g| (see Appendix A2), whereas the MBI team
used Rayleigh distributions. Their ‘wide’ and ‘narrower’ distribu-
tions are particularly mismatched in shape to the true one, so the
poor Q. scores are not surprising.

After the challenge, the MBI team investigated inferring the opti-
mal value of o, from the data directly (as opposed to from Q.). This
yields a factor of two improvement over an asserted uniform prior
PSF for the shear components. It is unclear how much better one
can do in this way on GREAT3 simulations because of the unusual
p(lgl), which differs from the functional form chosen by the MBI
team (and makes sense for real data).

For the overall analysis in Section 5, we use the MBI results with
hierarchical inference. While multibaling and using deep fields to
get the p(e) may become helpful in future, they were not fully
explored in GREAT3, so we do not use them for the overall
comparison.

4.7 COGS

The COGS team made a number of submissions, using the IM3SHAPE
algorithm (Zuntz et al. 2013), that are described in Appendix C7.
The submissions that used input settings and methodology suitable
for scientific analysis are labelled u7, c1, 2, and c3. The labels c1-
c3 denote three different schemes used to calibrate for multiplicative
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Figure 13. Averaged multiplicative bias (m) = (my + my)/2 for COGS

submissions to CGC and RGC, under differing schemes for the removal of
noise bias (see Section C7).

biases that are expected in Maximum-Likelihood shape estimation.
No correction was applied for additive bias.

In Section 5, and thereafter, where we wish to draw fair com-
parisons between branches and between methods, only COGS sub-
missions that used the c3 calibration are used. This choice is made
as c3 comes closest to the approach that would be adopted when
applying iM3sHAPE to real data (see Appendix C7).

The different submissions make it possible to test for the effect of
different choices made in the noise bias calibrations, and to test for
model bias due to realistic galaxy morphology by comparing CGC
and RGC. Fig. 13 shows the significant impact of noise bias calibra-
tions on (m) = (m4 + my)/2 for COGS submissions to CGC and
RGC. The 3 calibration, derived from the deep data in CGV but
with some outlier rejection in deep field fits (see Appendix C7), con-
trols multiplicative biases in CGC to within statistical uncertainties.
For u7, i.e. without any attempt to calibrate multiplicative bias, we
find (m) = 2.8 £ 0.3 per cent for CGC and (m) = 1.4 &= 0.3 per cent
for RGC. These results represent a combination of noise, model,
and other biases in the uncalibrated COGS submissions.

For each pair of submissions grouped by calibration strat-
egy, we also find a consistent difference in the level of mul-
tiplicative bias between CGC and RGC results: (m)rgc —
(m)cce = —1.4 £ 0.5 per cent. This difference in (m) can be
interpreted as a difference in model bias due to realistic galaxy
morphology, for the iM3sHAPE galaxy model chosen by the COGS
team. It is similar in magnitude to the effect found in other model-
fitting methods.

4.8 The role played by outliers

Several teams identified images with particularly challenging PSFs.
Here, we consider the role played by outliers in the challenge results,
given that our metrics Q. and Q, (Section 2.3) allow teams to weight
galaxies within subfields, but not to assign weights to the per-field
shears before construction of the metric. The rationale behind this
choice was that, with each subfield having fairly similar pixel noise
and the same number of galaxies, the shear statistics should be
determined equally well for each subfield. However, if a method
has a systematic problem with a subfield, they cannot indicate this
by giving a low (or zero) weight, unlike in real data where they
could choose to discard a subset of the data.

As an example, the top panel of Fig. 14 shows the per-subfield
submitted shear from RGC for the ‘ess’ team. The plotted quantities
are used to derive m; and ¢; for the Q. metric. This team has several
subfields with highly discrepant submitted shears, well beyond the
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Figure 14. Top: the difference between submitted and true shears versus
the true shears for each subfield in RGC, for both shear components. The
best-fitting line is also shown on the plot, along with the m, ¢, and Q. values.
These results are for the best submission from the ‘ess’ team. Middle: the
same, for the best submission in that branch from Amalgam @IAP. Bottom:
images of the PSFs for the 11 subfields for which the ‘ess’ results are
discrepant at the level of |[Ay| > 0.01 in at least one shear components in
>75 per cent of their submissions. Subfield indices are shown on the plot.
The images are shown with a self-consistent linear flux scaling and with the
total PSF flux normalized to 1, so subfields with worse seeing will generally
have a lower peak flux value.
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expected standard deviation of <0.001 per subfield. This branch is
the worst case for this team, which had fewer outliers in CGC.

To explore the effect of outliers, we did a systematic test for
outliers in the submitted shears, identifying (for each branch and
team) those fields for which the submitted shears were discrepant
by more than |Ag| = 0.01 in more than 75 per cent of submis-
sions. In general, these subfields were consistent across methods;
that is, if two teams had a certain number of outlier fields in a
given branch, they were almost always the same set of subfields.
Those subfields were commonly ones with higher values for the
PSF defocus (or, for the ‘ess’ team, higher values of trefoil); we
defer a more detailed exploration of the impact of defocus on shear
systematics to Section 5.5. For the ‘ess’ team, the reason for the
outliers shown in Fig. 14 is fairly clear: they used a sum of three
Gaussian components to describe the PSF, which makes it particu-
larly difficult to model PSFs with defocus or trefoil. In contrast, the
middle panel of that figure shows a comparable plot for the Amal-
gam@IAP team, which modelled the full PSF, and does not show
significant outliers. Finally, the bottom panel shows images of the
PSF for the 11 subfields in RGC for which the ‘ess’ results were
seriously discrepant. As shown, in about three cases the PSF has
the characteristic ‘donut’ shape of highly out-of-focus images; such
data would likely be eliminated from a shear analysis in a real data
set. These subfields were problematic for several other methods. In
other subfields, there is a triangular shape characteristic of trefoil,
which seems to have been less problematic for other methods that
have a more flexible representation of the PSF.

For those teams and branches for which outlier fields were iden-
tified, we recalculated the m;, ¢;, and Q. values after excluding the
outlier fields. We found that while errors from the linear regression
onm; and ¢; decreased substantially (sometimes tens of percent after
excluding only a few per cent of the subfields), the changes in m;, c;,
and Q; were in general not coherent. In many cases, results for dif-
ferent submissions from the same team in the same branch would
change in different directions. There were three combinations of
branch and team with coherent changes in results after excluding
outliers (in two cases the results were almost always worse, and in
one case they were almost always better).

Several other teams had problems with outliers that were not
identified in the previous test. (Identifying them as outliers would
require a smaller threshold on |Ag| and on the number of times
the field has a discrepancy for it to officially be called an outlier.)
These include MBI, which (like ess) used a sum of Gaussians to
describe the PSF; and MegalLUT. We recalculated the results for
these teams after excluding the fields with the 10 per cent worst
defocus in CGC. For MBI, the results of excluding the subfields
with the worst defocus did have a coherent effect, but with opposite
signs in the control and realistic galaxy experiments, increasing Q.
in the former by as much as a factor of 2 and lowering it in the latter
by a similar amount. We speculate that the difficulty in modelling
these PSFs may not lead to some systematic overall effect because
the hierarchical inference of p(¢) might be partially compensating
for imperfect PSF model fits by adjusting the galaxy model fits
accordingly. For MegalLUT, the changes in results after excluding
the high-defocus subfields were substantially smaller than for MBI.

Due to the generally inconclusive results of excluding outliers,
with no team showing a strong trend towards improved overall re-
sults, for the rest of this paper we do not exclude outlier fields.
However, in Appendix D we also tabulate the outlier-rejected esti-
mates of (m) and c for the ess, MBI and MegaLUT submissions,
these being the teams most affected by outliers.
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We note that in future challenges it may be a good idea to permit
participants to assign weights to their submitted per-subfield shears,
so they can indicate regimes in which their PSF modelling or shear
estimation does not work. Our results also suggest that PSF mod-
elling with a low-order decomposition into sums of Gaussians may
be inadequate to describe realistic PSFs, and can significantly affect
the shear estimates.

5 OVERALL RESULTS

In this section, we present results for the control and realistic galaxy
experiments for all teams.

5.1 What results are shown

To avoid showing many submissions from each team in each branch,
we adopt a fair and consistent way to select a single submission per
branch from each team. For the teams discussed in Section 4, we
have already stated what submissions will be used here. For the
remaining teams, the selection was done as follows.

(i) FDNT: we use Fourier-domain nulling technique (FDNT)
v1.3, with a self-consistent set of resolution and signal-to-noise
ratio (SNR) cuts (submissions with names that include ‘r12_snl5’).

(ii)) E-HOLICs: we use their ‘snfixed200’ submission, which
have a self-consistent set of noise bias corrections.

(iii) MaltaOx: we use the best results for LENSFIT with oversam-
pled PSFs and self-calibration included.

(iv) ess: we only use their RGC results, with the priors on p(g)
derived from the deep fields (submission name ‘nfit-rgc-06-nfit-
flags-02").

(v) CMU experimenters: only one submission per branch.

(vi) CEA_denoise, MetaCalibration, EPFL_MLP / EPFL_
MLP_FIT, EPFL_KSB, EPFL._HNN, Wentao Luo: best submission
in each branch.

(vii) GREAT3-EC (or re-Gaussianization): these results used the
shear estimation example script described in Appendix B. As noted
there, for several reasons the results are not science-quality shear
estimates and therefore the results have no reflection on science
papers that use this algorithm. However, since it is a stable algorithm
in the public domain, and one of the few moments-based methods,
we include it in this section to provide a basic point of comparison.

Results for the following teams are not shown in this section:
miyatake-test (for reasons described in Section 3), BAMPenn, and
HSC/LSST-HSM. The BAMPenn results included some bugs that
mean the results do not correctly reflect the real performance of the
method. The HSC/LSST-HSM submissions used the HSC/LSST
software pipeline with the same shear estimation method as in the
GREAT3 example scripts purely as a sanity check of the pipeline.

5.2 Basic Q results

In this subsection, we present the Q results for all teams. Fig. 15
shows Q. and Q, for the control and realistic galaxy experiments.
Several trends from Section 4 are evident here. For example, the
results for sFIT are quite consistent across all branches shown here.
The MegalLUT results are consistently better for variable shear than
for constant shear, presumably because of a low-level m-type bias, to
which Q. is more sensitive than Q. The results for Amalgam @IAP
and CEA-EPFL are good in many branches, but exhibit significant
fluctuations due to partial cancellations of biases. The results for
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Figure 15. Q. (top) and Qy (bottom) for constant- and variable-shear
branches in the control and realistic galaxy experiments. The error bars
show the possible range of Q values for a submission with shear calibration
biases that would nominally give a particular Q value. As shown, the sizes
of these ranges depend strongly on Q, and are smaller for space than for
ground branches.

Fourier_Quad with a realistic weighting scheme are quite good,
but degraded compared to the results with the unrealistic weighting
schemes.

The error bars in Fig. 15 show that for lower Q values, the uncer-
tainty in Q is very small. However, near the target Q values, small
uncertainties in m and ¢ become large uncertainties in Q. These
error bars are quite non-Gaussian, so for example the difference be-
tween Q = 500 and 1000 for control space branches is significantly
more than the 20 suggested by the plot. It is apparent that in many
branches, 2-3 teams performed well enough that the differences
between their Q values (and between the target of ~1000) are not
statistically significant.

One basic question is whether the results in the constant and
variable shear branches are consistent. We cannot directly compare
Q. and Q,, because they respond to systematic errors in different
ways. However, for a given constant-shear submission, we can use
the recovered m and ¢ values to predict Q, by simulating variable
shear submissions with those m and ¢, and then checking their Q.
Comparing the predicted Q, with the actual one (for the same ex-
periment and observation type) is a valid consistency check. We
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Figure 16. Comparison between the Q, predicted from the constant-shear
branch results (CGC), and the actual Qy results for variable shear (CGV).

show this comparison for CGC and CGV in Fig. 16, with a rea-
sonable level of consistency within the relatively large errors on
the Qy, and at most a 2¢ discrepancy for one team. The plots for
the other experiments and observation types show similar constant
versus variable shear consistency.

5.3 Multiplicative and additive shear biases

This section will focus on Fig. 17, which shows the multiplicative
and additive shear biases (m and c) for the constant-shear branches
in the control and realistic galaxy experiment. All m and ¢ values
are also tabulated in Appendix D. Unlike O, m and ¢ have well-
understood error bars. On these plots, the error bars are different
sizes for different methods. In some cases, it is only an apparent
difference (due to the mixed linear and logarithmic axes), but there
is some variation in the scatter in shears that we will explore in
Section 5.6.

We begin by discussing the top-left panel of Fig. 17, which shows
(m) (averaged over components) versus ¢ for CGC. Not surpris-
ingly, the teams that are located near the centre of this plot (small |m|
and |c|) are the ones with high Q. factors for this branch (Fig. 15).

A few methods (COGS, MegaLUT, MetaCalibration) are notable
in having multiplicative biases consistent with being in the target
region, but highly significant detections of additive bias. Both COGS
and MetaCalibration include multiplicative bias corrections, but
no additive bias corrections were implemented by the end of the
challenge period.

5.3.1 Impact of morphology

Comparing the left- and right-hand sides of Fig. 17 would reveal
the impact of realistic galaxy morphology. However, to facilitate an
easier comparison, Fig. 18 explicitly compares (m) (averaged over
components) and ¢ values for control versus realistic galaxy exper-
iments, with results tabulated in Table D3. For ground-based simu-
lations, the (m) comparison is in the top-left panel. Many methods
are consistent with the 1:1 line, meaning that the calibration bias
does not show any detectable impact from realistic galaxy mor-
phology. Moderate differences in model bias due to realistic galaxy
morphology can be seen for many teams, with typically a ~ per cent
level impact of realistic galaxy morphology on multiplicative
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calibration biases, although the sign of the change in (m) depended
on method.

The top-right panel of Fig. 18 shows how (m) changes from
control to realistic galaxy experiment for space-based simulations.
Again, some methods exhibit no significant model bias due to real-
istic galaxy morphology (but note that sFIT included this effect in
their simulations, and explicitly calibrated it out), while others have
typically ~1 per cent level calibration changes.

The bottom-left panel of Fig. 18 shows ¢, for CGC versus RGC,
with everything from complete consistency to strong differences in
¢, in these branches, implying that realistic galaxy morphology can
in some cases cause additive biases.

Finally, in the bottom-right panel of Fig. 18, the ¢ are consistent
between control and realistic galaxy experiments for space-based
simulations for most methods. It seems that for space simulations,
removing the PSF anisotropy is similarly difficult for both paramet-
ric and realistic galaxy models.

5.3.2 Impact of ground- versus space-based PSF

Comparing the top and bottom rows of Fig. 17 reveals the effects
of using a space-based PSF rather than a ground-based PSF. Note

that the numerical values of the ¢, and (m) changes are shown in
Table D3. Focusing first on the control experiment (left-hand side),
the ¢, values shifted to the right (more positive) in space data for
the majority of the methods. Note that if ¢, scales linearly with PSF
ellipticity (a model that we will validate in Section 5.4), then ¢, for
the space branches should be larger than in the ground branches by a
factor of ~2. This may explain the changes in ¢, for several teams,
but not all, implying that in some cases the additive systematics
have some additional dependence on the form of the PSF beyond
its ellipticity.

Comparing multiplicative biases for CGC and CSC, they are ei-
ther statistically consistent between space and ground or more nega-
tive for space branches; curiously, they did not become more positive
for any teams. Given the wide diversity of methods and the apparent
lack of commonality between many that exhibit similar behaviour
between ground and space data, it is difficult to draw conclusions,
but the pattern is indeed interesting.

These results were for the control experiment. If we compare
RGC versus RSC (right-hand panels), we see that the differences in
¢, and (m) between space and ground simulations in the realistic
galaxy experiment are similar to what was seen for the control
experiment for all teams except CEA_denoise. This finding suggests
that the effect of the type of PSF (space versus ground) on additive
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panel compares results for control versus realistic galaxy experiments. The axes are linear within the target region (|m| <2 x 1073 and |c| < 2 x 107#, shaded

grey) and logarithmic outside that region. The black dashed line is the 1:1 line.

and multiplicative biases does not typically depend on whether
the galaxies have realistic morphology or are simple parametric
models.

5.3.3 Use of pixel coordinate system

The top-left panel of Fig. 17 shows m versus ¢ for CGC in the
coordinate system defined by the PSF anisotropy, whereas Fig. 19
shows the same in the pixel coordinate system. In a few cases (e.g.
CEA-EPFL, Fourier_Quad, and MetaCalibration to some degree
though itis noisier), m; and m, have opposite signs, and thus average
out to something closer to zero (after rotating to the PSF anisotropy
coordinate frame) for m and m,, resulting in Qpix < Q..

5.4 Understanding the linear model

In this section, we explore the linear model for shear systemat-
ics, equation (7), by considering some alternative models of shear
measurement bias.

It is commonly assumed that the main source of c-type biases
is leakage from PSF anisotropy into galaxy shear estimates, which
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should be proportional to the amplitude of the PSF ellipticity. (How-
ever, there are physical models that violate this assumption, nor is
this assumption completely obvious for all methods.) If the assump-
tion is correct, we can write an alternative model

g?bs _ g;rue — mig}rue + aig,'PSF' (1 1)

Here, the a; pre-factors are average values across an entire galaxy
population that likely depend on the distribution of SNR, resolution,
morphology, and PSF type. In the coordinate system defined by the
PSF anisotropy, gt = |g™F| and g"" = 0. We can therefore fit
to this new model, and if the additive errors are proportional to the
PSF anisotropy, then we should find ¢ o< a., where the constant of
proportionality is an effective mean |g"F| for that branch.

Fig. 20 compares c; and a, for CGC (top) and RSC (bottom),
though the results are quite similar for CSC and RGC as well. The
best-fitting line relating ¢ and a.. goes through nearly all the points,
indicating that the linear model works well (except for EPFL._HNN)
for a wide variety of shear estimation methods. The slopes of the
best-fitting lines for CGC, RGC, CSC, and RSC are 0.025, 0.016,
0.039, and 0.037, respectively, corresponding to the effective mean
per-branch |gPSF|.
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Figure 19. Shear biases for CGC, similar to Fig. 17 but using m; and my
(defined using the pixel coordinate system).

a, is essentially the fraction of PSF anisotropy that leaks into
galaxy shear estimates. For the methods that have ¢, within the
target region, the a, values indicate that typically <1 per cent of
the PSF shear contaminates the galaxy shears. Several methods are
in the range of 1-10 per cent leakage, and the worst case scenarios
involve leakage of tens of per cent. For data with a narrower (wider)
range of PSF anisotropies but otherwise similar properties (so that
a, is the same), the additive bias ¢ will be better (worse) than is
shown here. (Note that the histogram of PSF shears in GREAT3 is
in Appendix A3.)

In real data, selection biases that correlate with PSF direction
also induce additive systematics. While these operate at some level
in GREAT3 due to different weights being assigned to galaxies
depending on their direction with respect to the PSF, in real data
selection biases should be more important given the need to identify
galaxies. In that case, this simple linear model may no longer be
valid. It seems reasonable that selection biases will cause ¢ to scale
with |g"SF[, but it is not obvious that the scaling should be linear.

The success of the simple linear PSF contamination model of
equation (11) in describing additive bias in GREAT3, evidenced
by Fig. 20, is striking. However, we note that the GREAT3 simu-
lations were designed without many effects found in real data that
potentially cause additive bias (see Section 2.2 for a list) but are not
directly related to the PSF. These may cause additive biases to show
more complex dependences in real data.

Another question about the linear model for shear calibration
biases is whether these methods have a non-linear response to
shear. This question was already addressed in the STEP2 challenge
(Massey et al. 2007a). In that case, the shears were positive in the
CCD coordinate system, and the non-linearity test involved a term
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Figure 20. For CGC (top) and RSC (bottom), we compare the additive
bias ¢y in the standard linear bias model, equation (7), against a4 for
the alternative model in equation (11). a4 is a constant of proportionality
relating additive shear systematics to the PSF ellipticity. The axes are linear
for |ay| <2 x 1073 and |c; | < 2 x 10™* (where the latter is our target
region for additive systematics, shown in grey) and logarithmic outside that
region; we use vertical lines to indicate the linear-logarithmic boundary in
a . The best-fitting slope relating ¢ and a. is shown as a dashed magenta
line. It only appears curved because we show combined log and linear axes
with an unequal aspect ratio.

proportional to g2 .. In GREAT3, the per-component shears can
be positive or negative, so the simplest low-order non-linear terms
are proportional to g . or sign(guue)g2,.- We can think of these as
being the next order beyond linear of a series expansion of some
unknown function representing the shear response.

We carried out fits with an additional term defined in either of
these two ways, and checked for non-zero pre-factors for the non-
linear terms. In general, the results for all methods are consistent
with zero. When considering constant shear branches in the control
and realistic galaxy experiments, there are 81 submissions (across
all branches and teams) that we use in this section, and therefore 162
fits when we use both shear components. Regardless of which form
we use for the non-linear term, its pre-factor differs from zero at
>20 for nine of the 162 fits, or 5.6 per cent, which is consistent with
what we expect if no methods have non-linear response. Moreover,
these >20¢ deviations are not consistently found in any particular
team, but are for a range of teams. We conclude that the GREAT?3
results show no sign of a non-linear shear response for any method.

MNRAS 450, 2963-3007 (2015)
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However, with a maximum value of |gyu.| < 0.05, we are not very
sensitive to non-linear shear response, and studies that go into the
cluster shear regime may need to redo this test.

5.5 Dependence of results on detailed PSF properties

In this section, we check how results for each method depend on
the PSF properties within the branch. Note that the PSF properties
in the control and realistic galaxy experiments are discussed and
shown in Appendix A3 and Fig. A3.

For this test, we split the subfields within a branch into those with
atmospheric PSF FWHM, defocus, or |g"F| above and below the
median values. Then we refit the submitted shears for those subsets
to estimate m; and ¢; values. We can compare the m; and c; for those
with better versus worse values of seeing, defocus, and PSF shear,
and compare with the overall m; and c; for the branch.

5.5.1 Atmospheric PSF FWHM

We begin in CGC, splitting into samples with better or worse atmo-
spheric PSF FWHM (seeing). The results are in Fig. 21, in which the
top panel compares the (m) values for the better and worse seeing
half of the subfields (with numerical values tabulated in Table D4).

The teams for which (m) differs for better versus worse seeing
have a more negative (positive) calibration bias for better (worse)
seeing.

The bottom panel of Fig. 21 shows that many teams have con-
sistent ¢, for better and worse seeing, with the rest having a more
strongly positive c.. for the better seeing subfields. The worse ¢
values for better seeing subfields may come from the fact that the
optical PSF (which is often more elongated than the atmospheric
component) dominates. Indeed, the correlation coefficient between
PSF FWHM and |g™F| in CGC (RGC) is —0.23 (—0.25), with a
significance of p = 0.001 (3 x 10~*). Thus, the worse seeing sub-
fields have a consistently rounder PSF, which can reduce additive
systematics.

The results for both the (m) and c, trends were similar in RGC
to what we have shown here for CGC, which is a point that we will
revisit in some of our later tests.

5.5.2 Defocus

In Fig. 22, we show how c; in CGC changes when we split at
the median absolute value of defocus (with results tabulated in
Table D4). The results for many methods exhibit a more strongly
non-zero ¢, for stronger defocus. It is not surprising that additive
systematic errors are worse when out of focus, because defocus
amplifies the effect of other aberrations like coma and astigmatism
on the PSF (Schechter & Levinson 2011), giving a noticeably more
elliptical PSF. Appendix A3 shows that we allowed a relatively wide
range of defocus values in the ground branches, which explains why
its effects are noticeable despite the fact that the atmospheric PSF
is normally thought of as being dominant.

The multiplicative biases m.. and m, (not shown) do not typically
change when splitting by defocus, except for sFIT and MetaCalibra-
tion, with smaller changes for MBI and Amalgam @IAP. For MBI,
the representation of the PSF as the sum of three Gaussians may
be the limiting factor in describing out-of-focus PSFs. For sFIT,
the problem may arise from the use of simple PSFs (rather than a
range of complex PSF with varying defocus) for the simulations
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Figure 21. For CGC, we show how (m) (top) and c; (bottom) change
when we split the subfields in the branch into 50 per cent above and below
the median atmospheric PSF FWHM. The axes are linear within the target
regions for m and ¢, and logarithmic outside them, with the target regions
shaded in grey. The thick blue arrows point towards the direction of reducing
shear systematics, i.e. towards the centre. In all panels, any points that
represent a significant change in the plotted quantity for better or worse
seeing subfields also have an arrow showing how the results have changed
compared to using the whole field. The legend gives the Q. value for the
original submission from each team.

used to calibrate the shears. Explicitly deriving calibrations for dif-
ferent PSFs may ameliorate this problem. A similar issue is likely
at play for MetaCalibration, which derived an average shear re-
sponse using all subfields, rather than one for each PSF. It is unclear
why the calibration changes with defocus for Amalgam @IAP, but
it may be because of difficulties in finding a well-defined maximum
likelihood for many galaxies in the more strongly defocused cases.

In space simulations (CSC), splitting by defocus had qualitatively
similar effects on shear systematics as for CGC. However, the shifts
are smaller in magnitude for space simulations, likely because the
range of defocus is much smaller for space simulations than for
ground ones (see Appendix A3).

Our findings are similar in the realistic galaxy experiment, sug-
gesting that the dependence of shear systematics on defocus is
independent of realistic galaxy morphology.
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Figure 22. For CGC, we compare additive biases ¢4+ when splitting the
subfields into those with defocus above or below the median. The axes are
linear within the target region (shaded grey), and logarithmic outside them.
The thick blue arrows point in the direction of reduced shear systematics.
Any points that represent a significant change compared to results for the
entire branch have an arrow showing that change, as well.

10! : : : :

EPFL_.MLP

Fourier Quad
CEA-EPFL

MBI

COGS

Wentao Luo

CMU experimenters
sFIT

E-HOLICs
MetaCalibration
MegalLUT

FDNT

MaltaOx

CEA denoise
Amalgam@IAP
EPFL_KSB
EPFL_HNN
re-Gaussianization

100 L 1

o, per galaxy per component
qo00@OmD<evdom<«d00qdqeOonlENRJ

107t . TT— ‘
0 200 400 600 800 1000

c

Figure 23. Scatter in the estimated shears (per galaxy and per component)
versus Q. for each method in CGC. The horizontal line indicates a typical
level of shape noise in realistic galaxy samples.

5.5.3 PSF ellipticity

When splitting the subfields by |gpsk|, the results are consistent
with those of Section 5.4, where additive systematics were shown
to scale linearly with the PSF ellipticity.

5.6 Effective noise level of estimated shears

Here, we explore the effective noise level of the estimated shears.
In principle, galaxy shapes were arranged in a way that cancels out
shape noise, so that the dominant source of error in the estimated
shears is measurement error due to pixel noise. However, the shape
noise cancellation is imperfect at low S/N, so that the submitted
shears include some shape noise as well. Fig. 23 shows the per-
galaxy and per-component scatter (o) in the estimated shears for
CGC, estimated from fitting the model of equation (7) and finding
the scatter in the shear estimates for the subfields (then dividing
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by V10 to get a per-galaxy value). This scatter thus includes both
the measurement error and any residual shape noise due to noise
in the weights, which can be seen as an additional manifestation of
susceptibility to pixel noise. There is a weak relationship between o,
and Q., with all methods that have Q. 2 300 having 0.1 S o, < 0.25.
Methods with lower Q. scores have higher scatter by as much as
a factor of 40; the exceptions to this rule are re-Gaussianization
and EPFL_KSB, which notably are fairly simple moments-based
methods. In a few cases, outliers are an issue, but even with 50
clipping, the trend at low Q. is quite evident. This figure for RGC
looks very similar. For the space simulations, the effective per-
galaxy S/N was slightly higher, reducing the o, values slightly, the
overall trend is the same.

The straightforward interpretation of these results is that for meth-
ods with Q. 2 300, the per-object measurement error is typically
subdominant to shape noise, whereas some methods with lower Q.
allow significant leakage of pixel noise into the estimated shears.

5.7 Catalogue-level tests

For several teams, we carried out catalogue-level tests that involve
using subsets of the galaxies. For example, we split the galaxies
into subsamples with S/N above and below the median; and like-
wise for resolution factor defined as in Hirata & Seljak (2003) using
the adaptive second moments, and Sérsic index!® n. These splits use
the true (not estimated) values of these parameters, to preserve shape
noise cancellation. The methods used for this test are CEA-EPFL,
MegalLUT, Fourier_Quad, re-Gaussianization, and sFIT, which in-
clude a range of shear estimation methods. For Fourier_Quad, we
re-estimated ensemble shears for the galaxy subsets as in equation
(C11).

In general, biases such as noise bias depend on both the flux-based
S/N and the resolution. Thus, a split by a single galaxy property
may not isolate a particular bias. Instead, these splits are a way
to estimate how much the shear systematics might change for a
particular method when dividing the galaxy sample in a way that
changes the mean S/N, resolution, or Sérsic n.

Fig. 24 shows the results for (m) (left) and ¢ (right) after dividing
the galaxy sample in CGC in these three ways. In each case, we
plot the results for subsamples against each other, so a method that
is robust to changes in these quantities would be on the 1: 1 line.
Methods that are not on that line must by definition move either to
the upper left or lower right. We consider each method in turn.

The (m) and c results for CEA-EPFL show only a mild depen-
dence on S/N, but a much greater dependence on resolution and on
Sérsic n. MegaLLUT has less statistically significant trends, with the
most clear ones being the change (m) with S/N and the change in ¢,
with Sérsic n. The multiplicative bias (m) for Fourier_Quad is quite
robust to splitting by any of the three parameters, but ¢, shows sig-
nificant changes for S/N splits, with the change for Sérsic n being
less significant. Re-Gaussianization exhibits significant dependence
on all of S/N, resolution, and Sérsic n, qualitatively consistent®
with the findings in Mandelbaum et al. (2012), but little change in
c. Finally, for sFIT, both (m) and ¢, change when splitting by all

19 For galaxies that were represented in GREAT3 as a two-component model,
a single-component Sérsic was used for this split.

20 The magnitude of the trends is not consistent, but this could be because
of the ways in which the example script used for this test differs from a
science-quality measurement; see Appendix B.
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Figure 24. For CGC, we compare the (m) (left) and ¢ (right) values that we get by splitting the galaxies at the median value of S/N (top), resolution (middle),
and Sérsic n. The legend indicates the team and the Q. value for the original submission using all galaxies. Arrows on each plot are shown for those teams
for which the results for the subsamples differ from the overall results by more than 10 per cent, and are drawn from the overall value to the results for the

subsamples.

three parameters, though the changes with S/N are marginal in sig-
nificance. Given that this team explicitly derived calibration factors
to remove additive and multiplicative biases from the entire popu-
lation (not as a function of galaxy properties), these trends are not

MNRAS 450, 2963-3007 (2015)

surprising. There is no reason to expect the calibration factors to be
valid for subsamples. This exercise merely emphasizes the neces-
sity of rederiving them when using subsamples, or even changing
weighting schemes.
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If we check in RGC whether the changes in these methods are
consistent across control and realistic galaxy experiments, then we
cannot do the comparison for sFIT due to a lack of catalogues for
that submission. However, of the remaining methods used, only the
re-Gaussianization results when splitting the galaxy sample are the
same in CGC and RGC, which is interesting given the significant
model bias due to realistic galaxy morphology seen for this method
in Section 5.3. The results for CEA-EPFL when splitting by reso-
lution and Sérsic n are the same in RGC as in CGC, but the change
in (m) when splitting by S/N has the opposite sign as in CGC. The
MegalLUT method shows much stronger trends in both (m) and ¢
in RGC when splitting by all three parameters than in CGC. Fi-
nally, for Fourier_Quad, the sign of the c; changes when splitting
by resolution and Sérsic n is reversed in RGC compared to CGC.

In CSC, we can check how the use of space simulations changes
the results when dividing the galaxy sample (for all but re-
Gaussianization, which only has results on ground branches). The
CEA-EPFL and sFIT team results show different signs and/or mag-
nitudes of changes in shear systematics when splitting by galaxy
properties in CSC versus in CGC. For MegalLUT, the value of ¢
changes when splitting by S/N and resolution more significantly
in CSC than in CGC. For Fourier_Quad the difference in ¢, be-
tween subsamples in resolution and Sérsic n changes in sign in
CSC compared to CGC. These findings suggest that essentially all
teams considered here have trends in shear systematics with galaxy
properties that are different in space versus in ground data.

5.8 Comparison with GREAT08 and GREAT10 results

In this section, we compare quantitatively with the results from
GREATO08 (Bridle et al. 2010) and the GREAT10 galaxy challenge
(Kitching et al. 2012), to the limited extent that is possible given the
different challenge designs and the lack of error analysis in previous
challenge results.?!

For GREATOS, the fairest comparison is between GREAT3 CGC
and GREATO08 RealNoise_Blind bulge + disc galaxy results. We
cannot compare Q values since they are defined in a different way, so
instead we compare (m) and ¢, bearing in mind that even this com-
parison is complicated by the broader, more realistic distributions
of galaxy properties in GREAT3. In the left-hand column, middle
row of figure C3 in Bridle et al. (2010), the number of methods that
have |(m)| < 0.05, 0.02, and 0.005 is 7, 2, and 0. In GREAT3, these
numbers are 12, 10, and 6, using only the fair comparison sample
results used throughout Section 5 rather than the best submission
per team for this branch. We are also ignoring the uncertainty on
these (m) values for consistency with how we did the calculation
for GREATO8 given its lack of error estimates. The upper-left panel
of figure C4 (b+d) in Bridle et al. (2010) suggests that eight (four)
methods have |c,| < 1 x 1073 (2 x 107*), whereas in GREAT3
CGC these numbers are nine (three). The latter comparison is par-
ticularly complicated by different choices for the PSF ellipticity
distribution in these challenges, since we showed in Section 5.4
that for essentially all methods, ¢ is linearly proportional to PSF
ellipticity.

For GREAT10, the simplest comparison is with the inferred m
and c values in table 3 of Kitching et al. (2012), again ignoring
noise due to the fact that no uncertainties are quoted. However, two
of the better-performing submissions in that table have no m or ¢

2l Given the previous challenge data volumes and SNR levels, the uncer-
tainties cannot be significantly smaller than the uncertainties in GREAT3.
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estimates, since they used a power spectrum analysis. In the absence
of more information we will include them in the best category that
we consider, |(m)| < 0.005 and ¢, < 2 x 10~*. Given this choice,
the number of methods in GREAT10 with |(m)| < 0.05, 0.02, and
0.005 is 7, 5, and 2, which should again be compared with 12, 10,
and 6 in GREAT3. All 12 methods in table 3 of Kitching et al. (2012)
had ¢ values within 2 x 10~, with the range of PSF ellipticities
being different from that in GREAT3, but not to a very large extent.

The GREAT3 results show that significant progress has been
made in controlling multiplicative biases since GREATO08 and
GREAT10, with the situation for additive biases being less clear.
However, additive biases are easier to identify in real data (for ex-
ample, using star—galaxy cross-correlations), so this situation fairly
reflects the community’s focus on the more pernicious multiplica-
tive biases. Given that, as discussed in Appendix A4, the GREAT?3
simulations have a realistic S/N distribution with an effective cut-
off of 12, this improvement in control of multiplicative biases is a
significant achievement reflecting tremendous progress in the weak
lensing community as a whole.

6 LESSONS LEARNED ABOUT SHEAR
ESTIMATION

In this section, we discuss lessons learned about shear estimation
based on the analyses in Sections 4 and 5. Our focus is on results
that are more general than just a single method; conclusions for
individual methods can be drawn from earlier plots and discussion.

6.1 What do we learn about shear estimation in general?

Many teams that participated in GREAT3 used model-fitting meth-
ods, which must make choices about which pixels to use for the
fitting. The results in Section 4.1 highlight the importance of trun-
cation bias due to use of overly small modelling windows. Trun-
cation bias can potentially be several per cent (multiplicative bias),
and also is a source of additive bias; its magnitude makes it relevant
for present-day surveys, and could potentially be worse in the case
of blends (which might lead to the choice of a more restricted mod-
elling window). These model-fitting methods make choices about
which models to use, with two popular options being a single Sérsic
model (Amalgam @IAP, sFIT, MBI) and a sum of a bulge and disc
Sérsic models with fixed n (COGS, GriT). The good performance of
these methods suggests that use of Sérsic profiles can reduce model
bias that is observed with, e.g. shapelets or other models that do not
describe galaxy light profiles as well as Sérsic profiles.

Several methods of calibration were successful for model-fitting
methods: external simulations for which the inputs were itera-
tively updated until the output galaxy properties match those in
the GREAT3 data (sFIT), derivation of calibration corrections from
a deep subset of the same data (COGS), and addition of a penalty
term to the x? to reduce noise bias (Amalgam @IAP). External sim-
ulations are always limited by their realism, though use of iterative
methods seems to be helpful. Calibration corrections from deep
data do not, in principle, require external validation. Addition of a
penalty term to the x> does require external simulations to check
that the penalty term really removes the noise bias.

Our results in Section 5.4 confirm the applicability of the linear
model for shear calibration biases in the |g| < 0.05 regime for all
methods that participated in GREAT3. Several methods showed
tendencies for multiplicative biases defined in the pixel coordinate
system to differ between the component along the pixel axes and
along their diagonals, similar to what was seen in e.g. Massey
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et al. (2007a). In all cases, the additive biases ¢, were linearly
proportional to the amplitude of the PSF ellipticity (of the order of
0.1 per cent of the PSF ellipticity for the best methods, and more
typically 1-5 per cent). It is possible that some biases in real surveys
but not GREAT3 would violate this pattern (e.g. selection biases that
depend on the PSF anisotropy).

The results for many methods show a dependence on PSF prop-
erties like the FWHM, defocus, and ellipticity. In some cases, the
results seem to have been calibrated to work on average, so that they
are worse for better or worse quality data than for the challenge over-
all. Defocus tends to result primarily in additive (not multiplicative)
systematics. Some methods are particularly sensitive to outliers in
defocus, which results in more complicated-looking PSFs; it is dif-
ficult to assess to what extent that sensitivity is intrinsic to the PSF
correction method (because those PSFs violate one of its assump-
tions) versus arising from how the PSFs are modelled (because of
limitations of the PSF modelling software). Some future surveys
will have additional diagnostic data regarding PSFs; these results
suggest that it may be helpful to incorporate this information in the
PSF modelling and shear estimation process.

When splitting galaxy samples by S/N, resolution, or Sérsic n,
we observe statistically significant trends for the five methods that
were considered; these trends are sensitive to real galaxy morphol-
ogy (control versus realistic galaxy experiment) and the type of
data (space versus ground). In contrast, the variation in shear sys-
tematic errors due to data properties like atmospheric PSF FWHM
or defocus was fairly robust to realistic galaxy morphology.

Comparing ground versus space data, additive systematics seem
to be more important for the latter. In space branches, several teams
saw their ¢ become significantly more positive, which contributed
towards there being almost entirely positive c.. submissions in space
branches. However, not all the teams with negative c in the ground
branches submitted to the space branches.

Finally, the effective noise level of the shear estimates (measure-
ment error due to pixel noise) showed a weak inverse relationship
with Q. For the majority of the methods (especially those with
QO 2 200), the values of o, per component were fairly consis-
tent across methods. This confirms the general tendency to select
shear estimation methods based on their multiplicative and additive
biases, rather than separately considering their measurement errors.

6.2 The impact of realistic galaxy morphology

Many methods, including some that performed extremely well,
show a small but statistically significant change in model bias due
to realistic galaxy morphology, with order of magnitude 1 per cent.
Realistic galaxy morphology can also result in additive systematics.
Our findings for the order of magnitude of this effect for multiple
methods is consistent with the finding for the mM3sHAPE software
(Kacprzak et al. 2014). For some methods, realistic galaxy mor-
phology was more important for space branches than for ground
(e.g. the sFIT team had to explicitly calibrate out the bias due to
realistic galaxy morphology only for space).

One key limitation in lessons learned about realistic galaxy mor-
phology in GREAT?3 is that, since its impact is relatively small
(typically detected at ~30), it is hard to distinguish between space
and ground results or clearly identify trends with other data proper-
ties. However, this in itself is good news for future surveys, since it
provides an indication that model bias due to realistic galaxy mor-
phology may rank behind other effects, such as noise bias, in terms
of its direct impact on shear measurements.

MNRAS 450, 2963-3007 (2015)

In real data with a substantially deeper source population than
is represented in the sample of galaxies from COSMOS used as
the basis for the GREAT?3 simulations, these results will have to be
revisited due to the larger fraction of irregular galaxies at higher
redshift (e.g. Bundy, Ellis & Conselice 2005).

7 CONCLUSIONS

We have presented results for the control and realistic galaxy ex-
periments of the GREAT3 challenge, the goal of which was to test
ensemble shear estimation given a galaxy population with a realis-
tic distribution of size, S/N, ellipticity, and morphology, and with
a (known) fairly complicated PSF. A key result is that, within the
ability of the simulations to determine systematics at this level and
bearing in mind that some effects are not included in them, a range
of methods can now carry out shear estimation with systematics
errors around the level required by Stage IV dark energy surveys.

We have explored how the results for each team depend on the
galaxy and PSF properties; and explored the impact of realistic
galaxy morphology by comparing the control and realistic galaxy
branches. Our conclusions on these points are summarized in Sec-
tion 6, with the main one being that shear systematic errors due
to realistic galaxy morphology are, for those methods for which
we have a clear detection, typically of the order of ~1 per cent.
While significant enough that future surveys must take these effects
into account, this source of model bias error is subdominant when
compared to the level of noise bias expected for similar galaxy pop-
ulations to those in GREAT3 (e.g. Kacprzak et al. 2012; Melchior &
Viola 2012; Refregier et al. 2012). In Paper II, we will use the other
branches of the challenge to explore whether these overall results
from Section 6 carry over to the case where the PSF is not known.

Treating the participants as a fair subset of the community,
it seems that model-fitting methods now dominate the field in
both popularity and (broadly) performance. Some differences be-
tween methods may relate to implementation details rather than
true issues with a method. Unlike a decade ago, moments meth-
ods are now a minority. However there are some highly interest-
ing alternative methods, for which we have seen the introduction
and/or evident maturity in GREAT3 [some based on Bernstein &
Armstrong (2014); MetaCalibration; self-calibration for LENSFIT
as carried out by the MaltaOx team; hierarchical inference as
done by the MBI team; ML based methods like MegaLUT; and
Fourier_Quad], adding variety and quality to the field. This includes
the introduction of some teams that just infer ensemble shears (MBI,
BAMPenn, ess, Fourier_Quad) rather than per-object shears; how-
ever, a demonstration of these methods on variable shear data will
be crucial for their more general acceptance.

Choices related to calibration of shears were quite varied, with
some teams that aim for an unbiased measurement (e.g. BAMPenn,
ess, MBI) and others that apply calibrations in a variety of ways.
Aside from external simulation-based calibrations, which are sub-
ject to the limitation that the calibrations are only as good as the
simulations, a few more sophisticated options were tried. These in-
clude iterative external simulations that get updated until the outputs
match those in the data set that is being analysed (sFIT), analysis of a
deep subset of the same data (COGS), and self-calibration using ma-
nipulations of the images themselves (MaltaOx, MetaCalibration).
These alternatives appear promising, and avoid some of the ob-
jections to the most basic brute-force calibration. The utility of
the deeper data to several teams, either for calibrations or deriving
galaxy property distributions, suggests that future surveys may find
it useful to have a deeper subsurvey, as indeed many already intend
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to do. Several teams used self-calibration methods (MetaCalibra-
tion and MaltaOx) and hierarchical-inference (MBI) methods that
in principle could be used to remove the biases in many other shear
estimation methods. These newer methods were not among the very
top performers, but did impressively well for new implementations,
so it will be interesting to follow their future development.

We also have a number of conclusions about GREAT-type chal-
lenges based on the GREAT3 challenge process. Unfortunately, the
variable shear simulations were less powerful than originally in-
tended at detecting systematic biases in the shear fields. Despite our
best efforts in attempting to define a metric with a reasonably small
variance, Q, was noisier than Q., the constant-shear metric. How-
ever, for the methods that submitted results to constant and variable
shear branches, the results were consistent with the estimated shears
having the same underlying biases (within the errors), as we would
expect. Future challenges that want to determine biases with vari-
able shear fields may require substantially larger data volumes than
in GREATS3. Future challenges may also want to allow participants
to assign weights to downweight data that they do not want to use,
rather than requiring shear estimates for all fields.

After the end of the challenge, we found that use of a metric
based on systematics in the coordinate system defined by the PSF
anisotropy resulted in accidental preference for methods with cali-
bration biases in the coordinate system defined by the pixel frame
that were related as m; ~ —m,. While this had little effect on the
challenge itself, it highlights the fact that a challenge with a public
leaderboard including Q values (even without any multiplicative
and additive biases) cannot be considered truly blind. Participants
sometimes made choices based on feedback from the leaderboard,
which at times was useful in helping them avoid completely futile
pathways, but at times may have involved tuning to low levels of
noise rather than making real conclusions. Thus, if the goal is a truly
blind challenge (which helps evaluate existing methods rather than
assisting the development of new ones), then we recommend that
future challenges consider some change in the public leaderboard.
For example, the public leaderboard could use a subset of the data,
with the real leaderboard that uses all the data being released only
after the end of the challenge. An alternative would be to tell par-
ticipants a range in which their Q values fall (e.g. 0 < Q < 200,
200 < Q < 400, and so on). Both options would give participants a
basic idea of their results (allowing them to check, e.g. shear conven-
tions and avoid submitting junk by accident) while not encouraging
them to potentially tune to the noise.

A final point for future challenges and even planning for future
surveys relates to the importance of the S/N definition. It is quite
common to use galaxies above some S/N limit, but in GREAT3, we
found that depending on the S/N definition, the effective S/N can
vary by nearly a factor of 2. For example, as stated in the handbook,
we initially set an S/N > 20 limit to ensure that most teams would be
able to compute shears for all galaxies, with shape noise effectively
cancelled. The disadvantage of this limit was that we would not
dig too deeply into the noise bias-dominated regime. However,
we found in practice (see Appendix A4) that our S/N estimator
was so optimal as to be completely unachievable in practice, given
that it assumes perfect knowledge of the light profile. Our tests
showed that the lower S/N limit using more practical estimators
is around 12. On the positive side, this meant that the results have
a more realistic level of noise bias, but on the negative side, it
meant that the simulations were less powerful in constraining shear
systematics. This finding highlights the importance of how S/N is
defined both for future challenges and for parameter forecasts and
mission specifications for future lensing surveys.
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In conclusion, GREAT?3 has led to substantial progress in quan-
tifying shear systematics for a wide range of methods, including
traditionally recognized effects like noise and model bias due to
mismatch between assumed and real galaxy light profiles in the
control branch, but also newer effects like truncation bias and model
bias due to realistic morphology, the latter of which was enabled
by the use of HST data for the simulations. The results show that
the field has made significant advances in the years since the end of
the GREAT10 challenge, particularly in controlling multiplicative
biases, and that community challenges can be beneficial by inspir-
ing the creation or development of new shear estimation methods.
Within this field, there are both new and established methods that are
now capable of handling weak lensing data from upcoming Stage
IIT surveys, provided adequate care is taken over identified sources
of bias. Although development will be needed in many areas, the
GREATS3 results provide new reasons to be optimistic about deliv-
ering reliably accurate shear estimates at Stage IV survey accuracy.
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APPENDIX A: GREAT3 CHALLENGE DETAILS

In this appendix, we summarize some details of the GREAT3 chal-
lenge that were not included in the handbook.

Al Galaxy intrinsic ellipticity distribution

The galaxy intrinsic ellipticity distribution, or p(¢), is important,
since many methods make assumptions about or try to infer it. We
measure this distribution for the GREAT3 galaxy samples using
parametric fits to COSMOS galaxies.

The galaxy selection in each subfield has three goals: first, it
should roughly preserve the joint size, S/N, morphology, and ellip-
ticity distributions of real galaxy samples; secondly, each subfield
should have a similar S/N cutoff (which depends on the PSF as well
as the pixel noise); and finally, the galaxies should be sufficiently
resolved that essentially all methods can measure them. In ground
branches, where the PSF size varies substantially from subfield to
subfield, it is not obvious that the galaxy population will have the
same p(¢) in each subfield after these cuts.

In Fig. A1, we show the p(¢) for several subfields in CGC and
CSC, with several apparent trends.

First, the p(e) are similar for space and ground branches. Sec-
ondly, within different subfields in CSC, there are small fluctua-
tions in the p(e), but these appear consistent with noise. For ground
branches, the PSF FWHM results in quite different populations be-
ing represented in each subfield. For this figure, we deliberately
show one subfield with atmospheric PSF FWHM around the me-
dian, along with the subfields with the minimum and maximum
values of PSF FWHM. Thus, we have maximized population dif-
ferences due to our FWHM-dependent galaxy selection process.
However, (¢) is only slightly smaller in the worst seeing subfield
than for the more typical and best subfields, and part of the differ-
ence here is due to statistical fluctuations. The results are similar
for the realistic galaxy experiment, and for variable shear branches.
Thus, the p(¢) are largely stable within and across branches. More-
over, they are reasonably consistent with a linear combination of
observationally motivated distributions for bulges and discs derived
in a completely different way and used in Miller et al. (2013), as
shown on the plot.
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Figure Al. The intrinsic ellipticity distribution p(e) for CGC (top) and
CSC (bottom), for three subfields. For CGC, the legend shows the subfield
index and atmospheric PSF FWHM. Both panels show intrinsic ellipticity
distributions for disc and bulge galaxies from Miller et al. (2013).

The resolution cut s slightly ellipticity-dependent for the smallest
galaxies, as shown in Fig. A2 (the 2D distribution of half-light radius
and ellipticity). In general, < 5 per cent of the galaxies are small
enough to be affected by this problem. Also, this effect is irrelevant
in space branches, where the cuts remove very few galaxies.

A2 Lensing shears

Here, we describe the distributions from which the lensing shears
were drawn.

In constant-shear branches, the lensing shears had random orien-
tations, with magnitudes between 0.01 < |g| < 0.05. The distribution
of magnitudes within this range is p(|g|) oc|g|, which emphasizes
higher shear values and thus increases our sensitivity to systematic
errors in the shear.

In variable shear branches, each galaxy had an applied shear
and magnification according to a shear power spectrum. The shear
power spectrum came from interpolation between tabulated ones
for a particular cosmological model with three median redshifts
Zmea = 0.75, 1.0, and 1.25. However, the power spectrum was al-
tered in two ways. First, the amplitude was doubled, to increase our
sensitivity to multiplicative biases. Secondly, to make the power
spectrum one that cannot be guessed by participants, we added a
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Figure A2. The 2D histogram of galaxy half-light radius r /> and ellipticity
magnitude |¢| for subfield 51 in CGC, which has atmospheric PSF FWHM
around the median value.

term corresponding to a sum of shapelets with randomly chosen am-
plitudes (of the order of 10 per cent of the original power spectrum
amplitude). For more details, see the publicly available simulation
scripts on the GREAT3 GitHub page.

A3 Atmospheric and optical PSF properties

While the handbook contained details on many inputs to the PSF
models, here we show the outputs that are relevant for tests carried
out in this paper, especially in Section 5.5.

Fig. A3 shows the distributions of the seeing (atmospheric PSF
FWHM) in two branches; the defocus for ground and space-based
simulations; and finally the effective PSF ellipticities including all
components. As shown (top left), the seeing distributions in CGC
and RGC are consistent, modulo small noise fluctuations. This con-
sistency is important for the comparison between control and real-
istic galaxy experiments, since consistency in PSF properties leads
to consistency in the simulated galaxy populations.

The top-right panel of Fig. A3 shows the distribution of defocus
values for the optical PSF in the ground-based simulations. CGC
and RGC are again consistent, with most subfields have a maximum
defocus of 1/2 wave, but with a tail to higher values. The subfields
that seemed most problematic in Section 4.8 are those with higher
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Figure A3. Distributions of PSF properties across all subfields in various branches. Top: seeing (left) and defocus distributions (right) for CGC and RGC.
Bottom left: defocus distributions for CSC and RSC; note the smaller dynamic range compared to the ground branches. Bottom right: distribution of PSF shear

in the four constant-shear branches in the control and realistic galaxy experiments.
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defocus values, which suggests that identifying and removing such
data could be advantageous. The bottom-left panel shows the de-
focus distribution for simulated space-based data, and as expected,
the simulated distribution is roughly a factor of 10 narrower than for
ground data. Moreover, CSC and RSC are consistent, which facili-
tates comparison between control and realistic galaxy experiments.

Finally, Fig. A3 (bottom right) shows the distributions of effective
PSF shear for four branches. Typically this quantity is < 0.05,
consistent with real data; two-sided KS tests show that the PSF
shears are consistent between pairs of branches that are meant to
represent the same data type (e.g. CSC and RSC, CGC and RGC).
In both ground and space simulations, there is a positive correlation
between the absolute value of defocus and g™F, ~0.33 in both cases
(with a p-value of the order of 1077).

A4 Galaxy S/N distributions

The galaxy S/N distribution in the GREAT3 simulations is im-
portant because it determines the level of noise bias, an important
systematic error for shear estimation. The handbook states that the
galaxies have S/N > 20, which is higher than the cutoff that is used
by many methods in real data. However, the S/N estimator used to
impose that cutoff is an optimal one that assumes perfect knowledge
of the galaxy profile (which is unachievable in real data). Thus, to
relate the quoted S/N cutoff to what is used in real data, we must
use a more realistic S/N estimator.

For this purpose, we considered two S/N estimators. One
is the S/N within an elliptical Gaussian aperture determined
using the best-fitting elliptical Gaussian model for the PSF-
convolved galaxy. Another is the ratio of SEXTRACTOR outputs
FLUX_AUTO/FLUXERR_AUTO. Fig. A4 shows S/N distributions us-
ing the second definition for several subfields in ground (top) and
space (bottom) branches.

As shown, the S/N distribution is quite uniform across subfields
in space branches. The 5th percentile for S/N is ~12. In contrast,
the S/N distribution for ground branches varies with the subfield;
the ones shown here are the same as in Fig. A1, with maximal vari-
ation in the atmospheric PSF FWHM. Subfields with worse seeing
typically have higher average galaxy S/N. The 5th percentile S/N
value is 11.3, 12.0, and 13.5 for subfields with the best, median, and
worst atmospheric PSF FWHM. If we use the elliptical Gaussian-
based S/N estimate, then the plots shift slightly to the right (higher
S/N), with a lower limit of ~14 instead of 12 for space branches.
This is still a far cry from the nominal S/N > 20 limit using the
optimal estimator, which highlights the need for care in comparing
predictions with different estimators.

APPENDIX B: EXAMPLE SCRIPTS

The GREAT3 EC distributed a shear estimation example script
(called simple_shear.py) on the GREAT3 GitHub page. This exam-
ple script estimates per-galaxy shears for all galaxies and outputs
them as catalogues in the format expected by the publicly available
pre-submission scripts. Teams could take this code to do the book-
keeping while substituting their per-galaxy shear estimation routine
in place of the one in the example script.

The example script uses the GaLsiM (Rowe et al. 2015) implemen-
tation of the re-Gaussianization (Hirata & Seljak 2003) PSF correc-
tion method; see those papers for more details of the algorithm and
implementation. Because the script is a simple and fast example (not
meant to get a science-quality shear estimate), it applies only a sim-
ply derived calibration correction that does not include all known
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Figure A4. The distribution of galaxy S/N using the second S/N estimator
described in the text, for three subfields in CGC (top) and CSC (bottom).

systematics. For the ‘shear responsivity’ (Bernstein & Jarvis 2002)
describing how galaxies with a particular distortion respond to a
lensing shear, the script uses an overly simplistic expression rather
than a more accurate one (both available in the above reference). It
also uses a simple but inaccurate way of estimating the rms distor-
tion of the galaxy population, rather than more accurated but more
complicated methods that are available in the literature (e.g. Reyes
et al. 2012) as an input to the responsivity calculation. Finally, the
default settings for initial guess of object size lead to convergence to
a local minimum for the space branches that cuts out the outer parts
of the PSF, resulting in very wrong shear estimates (but accurate
centroid estimates). Fine-tuning the initial guesses is necessary for
this script to give reasonable results on space simulations.

APPENDIX C: SHEAR ESTIMATION METHODS

C1 Amalgam@IAP

C1.1 PSF modelling

The PSF modelling was performed using the psrex package®
(Bertin 2011) to compute the PSF model for the star postage stamps.

22 http://astromatic.net/software/psfex
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The PSF modelling procedure starts by normalizing and re-centring
point-source images to a common ‘PSF grid’ using a regular image
resampling technique. The coefficients of a set of basis functions of
point-source coordinates X (@) (simple polynomials) are adjusted
in the x 2 sense to every PSF “pixel’ to compute a coarse PSF model
and its spatial variation, in the form of a set of tabulated PSF com-
ponents ¢..

The model is further refined by adding corrections A¢_ by min-
imizing the following cost function over all pixels i € D from all
point sources s:

i — Js ¢ Xc (/] L/'l' J+ A é,‘ . 2
B, =305 P LT XD [0,0) ¢ A1)
s i€Ds i

Ad. 2
+Z Il ¢2(|| ’ 1

9y

C

where p; is the value of pixel i, with uncertainty o ;, and f; the flux of
point source s. 0 sets the amplitude of the regularization term. In
practice, o 4, ~ 1072 represents a good compromise between fidelity
and robustness of the solution.

The prime indicates a resampled version of the PSF components;
e.g. the value of pixel i with coordinates x; in the image of PSF
¢ resampled at the point-source position x; with PSF sampling

step 7,
¢l(x) =Y h (x; —n(xi —x.) ¢;,
J

where h4(x) is the interpolation function.

The version of psrex used for the GREAT3 challenge is identical
to v3.17.1 except for the interpolation function, which is either a
Lanczos-4 or Lanczos-5 kernel instead of the default Lanczos-3.
Support for measurement vectors as PSF dependency parameters
(PSFVAR_KEYS) was added early in the challenge to allow PSFEX to
map PSF variations as a function of any set of columns in an ASCII
list, through SEXTRACTOR’s ASSOC mechanism.

The psrex configuration used for GREAT3 differs from the de-
fault one in a few minor ways. The first difference is in the use of
superresolution, adopting a constant sampling step 1 of 0.6 image
pixels for all branches. This sampling step offers the best compro-
mise between robustness and accuracy given the limited number
of PSF images for branches with a constant PSE. Also, the full
star postage stamp size is used for each branch. PSF variations are
modelled using zeroth and fifth-degree polynomials of star coordi-
nates for constant and variable PSF branches, respectively. Finally,
the noise on point source images is assumed to be purely additive,
setting PSF_ACCURACY to 0.

C1.2 Galaxy shape measurement

Galaxy shapes are measured using SExTRACTOR?® v2.19.15 (Bertin
& Arnouts 1996; Bertin 2011). The measurement process involves
independently fitting each galaxy image with a Sérsic model con-
volved with the local PSF model from psrex. To avoid galaxy de-
tection problems, the Amalgam @IAP team used a detection image
to explicitly tell SExTRACTOR about the gridded galaxy positions.
The vector of Sérsic model parameters 6 includes the (x, y) cen-
troid position, amplitude, effective radius, aspect ratio, position

23 http://astromatic.net/software/sextractor
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angle and Sérsic index. Physically meaningful constraints (e.g. am-
plitude >0) are imposed on all parameters except position angle
through a change of variables # — 6. For instance, for the aspect
ratio (parameter 6 ,gpec;) the Amalgam @IAP team instead constrain

the transformed parameter 6, ., defined as

, In 6ygpecc —1n0.01

_ . C2
aspect n In100 — In gaspecl -

Individual ellipticities from the aspect ratio and position angle of
the best-fitting galaxy model are used directly. SEXTRACTOR also
extracts the associated uncertainties and their correlation coefficient
from the covariance matrix of the fitted parameters.

The fit itself is achieved by minimizing a quadratic cost func-
tion with the Levenberg—Marquardt algorithm using the LEvMAR?*
library. The cost function is the weighted sum of squared residuals
plus a quadratic penalty term

’ 2
E@) =0+ (9075’““ (C3)
i 6i
where the sum is over galaxy model parameters i. The version of
SExTRACTOR used by default has oy, = oo for all parameters (no
penalty).

The fitting process typically converges in 50—100 iterations. Com-
pared to the latest publicly available version of the package, the fol-
lowing changes were made to the SExTrACTOR code for GREAT3.

(i) Fitting area (normally set automatically) is limited to the size
of the GREAT3 galaxy images to avoid overlapping with neigh-
bouring galaxies.

(i1) Sampling of the model is forced to 0.3 image pixel, instead
of the default which depends on the input PSF model.

(iii) The step used in difference approximation to the Jacobian in
LEVMAR is set to 1074,

(iv) Penalty parameters for the aspect ratio are set to piq,.,,, = 0
and o0y, =1 to disfavour very large ellipticities for the most
poorly resolved objects, without significantly affecting the results
for more resolved galaxies.

(v) The default, modified x? (which is more robust for partially
overlapping objects) is replaced with a regular x .

Finally, the SExTRACTOR configuration used by the Amalgam @IAP
team reflects the details of the GREAT3 simulations: the background
is set to 0 ADU; the GAIN is set to 0 (equivalent to infinite); and the
MASK_TYPE detection masking parameter is usually NONE.

C1.3 Galaxy weighting

The Amalgam @IAP team used a modified inverse-variance weight-
ing scheme based on the full covariance matrix from SEXTRACTOR
(approximated by the Hessian calculated by the LEvM AR minimiza-
tion engine) to account for possible covariance between parameters
and for differences in the recovery of e; and e, components. This co-
variance matrix forms the basis for the per-galaxy shear covariance
matrix. To avoid giving too much weight to high-S/N objects, the
Amalgam @IAP team added a constant o to the diagonal entries.
For constant-shear branches, they used the full per-object covari-
ance C; to estimate the shear as

24 http://users.ics.forth.gr/ lourakis/levmar/
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using the 2-vector e; and 2 x 2 matrix C ~!. In practice, the dif-
ference between using the full covariance matrix and its isotropic
approximation was small.

For variable shear branches, the Amalgam@IAP team used the
provided corr2 code with isotropized scalar weights defined as

2

U)[ = =
2 2 ’
o7+ 07, + 202

where the denominator represents the quadrature sum of measure-
ment error and shape noise.

C2 BAMPenn

This team used the Bayesian Fourier Domain (BFD) method from
Bernstein & Armstrong (2014), which relies on weighted moments
calculated in Fourier space and a prior for the noiseless distribu-
tion of galaxy moments (e.g. from deep data). Weighting is implicit
rather than explicit in this Bayesian calculation. The ensemble shear
from the mean of the Bayesian posterior should be unbiased in the
limit that many galaxies are used for shear estimation, potentially
avoiding noise biases that can plague maximum-likelihood meth-
ods. It does not result in a per-object shear estimate.

The submissions made during the challenge period came from an
immature software pipeline and had errors that were identified after
the fact. Currently, the machinery is in place only for a constant-
shear analysis, not variable shear.

C3 EPFL_GFIT

All submissions by the EPFL_criT team used the GrIT method. A
few submissions also used a wavelet-based DWTWIENER denoising
code from Nurbaeva et al. (2011), integrated into GriT. The GFIT
method uses a maximum-likelihood, forward model-fitting algo-
rithm to measure galaxy shapes. An earlier version of GrT, used
in the GREAT10 galaxy challenge (Kitching et al. 2010, 2012),
was described in Gentile, Courbin & Meylan (2012). The version
used in GREAT3 is completely new, written in PYTHON and relies
on the NUMPY, scipy and pYFITS libraries. The software has a modu-
lar design, so that additional galaxy models and minimizers can be
plugged in fairly easily. The behaviour of GriT is controlled though
configuration files.

GFIT requires catalogues generated via an automated process from
input galaxy and PSF mosaic images by SExtracTOrR (Bertin &
Arnouts 1996). The following galaxy models, for which images are
generated using GALSIM, are currently supported.

(a) A pure disc Sérsic model.

(b) A sum of an exponential Sérsic profile (Sérsic n = 1) to model
the disc and a de Vaucouleurs Sérsic profile (n = 4) to model the
bulge. The disc and bulge share the same centroid and ellipticity.

(c) A model similar to the previous but with a varying disc Sérsic
index.

Almost all GREAT3 submissions used the second galaxy model,
with the following eight parameters: galaxy centroid, total flux, flux
fraction of the disc, bulge and disc radii, and ellipticity.

Fitting can be performed with two minimizers, using input
SEXTRACTOR catalogues to get initial guesses for galaxy centroids,
fluxes and sizes. The first minimizer is the scipy Levenberg—
Marquardt non-linear least-squares implementation. The second is
a simple coordinate descent minimizer (SCDM), a loose imple-
mentation of the Coordinate Descent algorithm. In the SCDM, the
model parameters are sequentially varied in a cycle, to explore all
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directions in parameter space. After each cycle, the change in the
objective function is measured and the sense of variation maintained
orreversed. The step size for each parameter is dynamically adjusted
based on previous iterations. The algorithm is, by nature, slow but
quite robust, with a failure rate below 1/1000 on GREAT3 images.
Several stopping conditions are available and can be combined.

The EPFL_gfit submissions used a simple weighting scheme
that was one of the options used by CEA-EPFL (below), involving
constant weighting for all galaxies except those that have unusually
large fit residuals, which are rejected entirely (typically <1 per cent
of the galaxies).

C4 CEA-EPFL

The CEA-EPFL team used an object-oriented framework written in
PYTHON and usable in other contexts than GREAT3 with minimal
changes, including

(i) Galaxy shape measurement (GrT from Section C3).

(ii) Weight calculation (SFILTER).

(iii) PSF estimation (star shape measurement, PSF interpo-
lation, principal component analysis (PCA) decomposition and
reconstruction).

(iv) Image co-addition routines.

(v) Wavelet-based tools for deconvolution, denoising, co-
addition, and superresolution.

GFIT was described in Section C3, but the remaining pipeline ele-
ments used in GREAT3 are described below.

C4.1 Weighting scheme

The SFILTER tool uses catalogues produced by GFIT to assign a weight
to each galaxy.

In GREATS3, two weighting schemes were used. The simpler
scheme involved eliminating entries with large fit residuals by giv-
ing them weights of zero. The more complex scheme involved
assigning weights based on PCA analysis of the rms between
ellipticities fitted by Grir on GREAT3 data and those obtained
after running GrIT on GREAT3-like simulated data. The galaxy
simulations were created using GaLsiv with GREAT3-like PSF,
noise and S/N; the galaxy parameters were motivated by the out-
puts from a GrFT analysis of the RSV branch. A PCA decom-
position was then performed on a vector with first component
|Ael = /(€10 — €1.in)* + (€2.01 — €2,1n)*. The other PCA com-
ponents were either (a) flux, disc and bulge radii, disc fraction, GFIT
output parameters or (b) SExtrRacTorR FWHM, size, S/N, flux, and
GFIT disc and bulge radii.

The first component, | Ae|, was plotted against various PCA com-
ponents to select a cutoff value v that separated regions of low and
high |Ae|. A weight w),, Was assigned to all galaxies with v < vy,
with w;o = 0.6 for choice (b), and w,w = 0.2 for choice (a).

C4.2 PSF estimation

For the three experiments with constant PSFs that were provided
for the participants, the CEA-EPFL team used the provided PSFs
directly. The spreDICT tool was used to estimate the PSF at the
positions of galaxies in the variable PSF and full experiments. The
version of sprREDICT used in GREAT3 supports two PSF models.

MNRAS 450, 2963-3007 (2015)
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(1) An elliptical Moffat profile, based on maximum-likelihood
fitting using GALSIM to generate images. This was used in a few
submissions to the ground branches.

(ii) A data-driven model based on PCA decomposition of se-
lected PSF images (with sufficiently high S/N, either >20 or >30)
into either 10, 15, or 20 PCA components.

More details of these algorithms will appear in Paper II.

C4.3 Differences between GREAT3 submissions

The differences between submissions in a given branch arose mainly
from the size of the postage stamps used for the fits; constraints
placed on galaxy model parameters; minimizer options; weight
functions; choice of galaxy models (though most used the second
one in Section C3); and occasionally attempts to include wavelet-
based denoising.

C5 CEA_denoise

The CEA_denoise team denoised the GREAT3 galaxy images us-
ing a publicly available, multiscale wavelet-based code MR_FILTER,
based on Starck, Pires & Réfrégier (2006). They then measured
unweighted second moments of the denoised galaxy images and
noiseless PSF images using SExTracTOR. Finally, they corrected for
PSF convolution by subtracting the PSF moments from the galaxy
moments, as proposed by Rhodes, Refregier & Groth (2000) and
Melchior et al. (2011).

The CEA_denoise team varied the denoising options (such as
using two versus three wavelet scales), and selected the denoising
methods by comparing the original and filtered galaxies by eye.
Strong denoising often resulted in blurry galaxies with correlated
noise features around the galaxies.

No weighting was applied to the measured shears.

C6 CMU_experimenters

The stacking method used by CMU_experimenters was a simple
modification of the example script described in Appendix B. The
basic steps were galaxy registration, stacking, and PSF correction
of the stacked image.

First, CMU_experimenters measured the weighted first moments
(centroids) for all galaxy images. They used the default GALsSIM in-
terpolation routines to shift each galaxy so the centroid would be
at the exact centre of the postage stamp. Next, they stacked all 10*
galaxies in a single GREAT3 image using a simple unweighted
average. Finally, they used caLsiM routines for PSF correction (re-
Gaussianization) to estimate the PSF-corrected distortion é. The
shear estimate for the field is simply g = /2, since the stacked ob-
ject is effectively round in the absence of a shear. There is a calibra-
tion factor of 1.02 for the intrinsic limitations of re-Gaussianization
(Mandelbaum et al. 2012).

C7 COGS

All submissions from the COGS team used the M3SHAPE galaxy
model fitting code described in Zuntz et al. (2013).

C7.1 Galaxy model fitting

The COGS team used a two component galaxy model, with a de
Vaucouleurs bulge (Sérsic n = 4) and an exponential disc (n = 1).
The two components were constrained to have the same half-light
radius, centroid, and ellipticity. The seven free parameters in the fit
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were therefore total flux, bulge-to-total flux ratio, radius, centroid
(x, y), and ellipticity.

The best-fitting model was identified by minimizing the squared
residual between data and model image, using the LEVMAR imple-
mentation of the Levenberg—Marquardt algorithm (see Zuntz et al.
2013 for details). The parameter settings and optimizer termina-
tion criteria are given in the M3sHAPE initialization file>® used for
GREATS3. The full galaxy postage stamps were used for all fits.

One important parameter for IM3SHAPE is the UPSAMPLING, the in-
ternal superresolution at which profiles are drawn and Fast Fourier
Transform (FFT) convolutions performed. For speed, early sub-
missions used the native resolution, which causes artefacts in the
modelling and increases biases. Later COGS submissions set UP-
SAMPLING = 7. These submissions required similarly upsampled
PSF images, which were generated via bicubic interpolation across
the noise free PSF images provided with the GREAT3 data. These
entries with UPSAMPLING = 7 can be considered to be the baseline
set of COGS submissions with high-precision input settings. These
submissions are referenced by their label u7 in this paper.

C7.2 Noise bias calibration

Some M3sHAPE submissions include a multiplicative calibration fac-
tor to correct for expected noise biases in Maximum-Likelihood
shape estimation. These can be grouped under the following three
labels.

(i) cl: a correction for an isotropic multiplicative bias
(m) = 0.0230 is applied. This expected noise bias was estimated in
simulations performed by Kacprzak et al. (2014, table 2) using a
galaxy population that differs somewhat from that in GREAT3.

(i) c2: a correction for an isotropic multiplicative bias
(m) = 0.0330 is applied. This bias was estimated using the CGV
deep data. The ellipticity of galaxies in the CGV deep fields was
measured using IM3SHAPE (with upsamMPLING = 7). These images
were then degraded by adding noise to match the regular (non-
deep) GREAT3 images, and re-measuring the ellipticities. By fitting
a polynomial including a constant, linear, and cubic term to &; gecp
VETSUS £1 degraded» the COGS team estimated a calibration factor m(e)
and then calculated an expected calibration bias of (m) = 0.033
based on p(&g4eep). The CGV deep data was used since it exhibited
less variation in the image properties than the deep CGC data. This
possibly relates to the relatively strong seeing variation identified
in the deep CGC data, discussed in Appendix C20.

(iii) c3: a correction for an isotropic multiplicative bias
(m) = 0.02943 is applied. This factor was estimated using the
CGYV deep data in a similar manner to c2, but using only galaxy
models with best-fitting |g4eep| < 0.9 in the deep data to estimate
m(¢e). This removal of outliers was found to provide a better fit to
the (most numerous) galaxies with lower ellipticity values.

No calibration was made for additive biases due to noise, although
these are expected where PSFs are anisotropic (Kacprzak et al.
2012).

C7.3 Differences between GREAT3 submissions

The main differences between submissions were the correction of
bugs in the interface between iM3sHAPE and the GREAT3 data for-
mat, the upsampling, and noise bias calibrations applied. Early

25 https://github.com/barnabytprowe/great3-public/wiki/COGS-.ini-file
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submissions used low-accuracy settings for rapid basic validation
of the GREAT3 data, and are unsuitable as a basis for careful sci-
entific analysis.

However, the later set of submissions (with labels U7, c1, c2, and
c3 as described above) can be used for fair scientific comparison,
and to explore systematic errors in the IM3SHAPE approach more
generally. All galaxies were given uniform statistical weights when
generating submissions.

C8 E-HOLICS

The E-HOLICs method (Okura & Futamase 2011, 2012, 2013) is a
moment-based method based on the KSB method (Kaiser, Squires
& Broadhurst 1995). One important improvement of the E-HOLICs
method compared to KSB is its use of an elliptical (not circular)
weight function.

In the E-HOLICs analysis of GREAT3 data, all galaxies that were
used for the analysis were uniformly weighted. However, galaxies
with estimated ellipticities > 1 were rejected (i.e. given zero weight).
The E-HOLICs team applied a correction for systematic error due
to pixel noise as derived in the above references, with different
submissions having different corrections.

C9 EPFL_HNN

The EPFL_HNN method deconvolves the data by the given PSF,
represented by linear algebra formalism as a Toeplitz matrix. This
allows for solution of the convolution equation by applying the
Hopfield Neural Network (HNN) forward recurrent algorithm. At
each iteration, the selected neurons of the network (image pixels) are
updated to minimize the energy function. To measure the ellipticity
of galaxies in deconvolved images, the second-order moments of
the image ACF are used (Nurbaeva et al. 2014).

HNN is an unsupervised neural network, so input galaxy stamps
could be initialized to zero. To reduce CPU time, the observed data
was used as input. The output consists of reconstructed images of
the deconvolved galaxies, their ACFs, and an ellipticity catalogue.
All galaxies received equal weighting when calculating the average
shears, and no calibration correction was applied.

Differences between submissions in each branch include:

(i) the size of the effective galaxy postage stamp size;

(i1) the pixel updating value (a smaller number gives finer re-
construction, while increasing the iteration number and CPU time);
and

(iii) filtering (removing the galaxies for which the HNN algo-
rithm failed to converge).

C10 EPFL_KSB

The EPFL_KSB team used an implementation of the KSB method
(Kaiser et al. 1995; Luppino & Kaiser 1997; Hoekstra et al. 1998)
based on the KSBf90 pipeline (Heymans et al. 2006). The KSB
method parametrizes galaxies and stars according to their weighted
quadrupole moments. In the standard KSB method, a Gaussian filter
of scalelength r, is used, where r, is galaxy size. The EPFL_KSB
team also tried other weighting functions.

The main assumption of the KSB method is that the PSF can
be described as a small but highly anisotropic distortion convolved
with a large circularly symmetric function. With that assumption,

GREATS3 results I 2999

the shear can be recovered to first-order from the observed ellipticity
of each galaxy via

] psm
y = P):I (e()bs _ e*) , (C4)

Psmx

where asterisks indicate quantities that should be measured from
the PSF model at that galaxy position, P*" is the smear polar-
izability (see Heymans et al. 2006 for definitions) and P, is the
correction to the shear polarizability that includes the smearing
with the isotropic component of the PSE. The ellipticities are con-
structed from weighted quadrupole moments, and the other quan-
tities involve higher order moments. All definitions are taken from
Luppino & Kaiser (1997). The shear contribution from each galaxy
is weighted according to the quadrature sum of shape noise and
measurement error, calculated as in appendix of Hoekstra, Franx
& Kuijken (2000).

Submissions from this team fall into two categories: those using
the standard KSB Gaussian filter, and those using a combination
of KSBf90 and a multiresolution wiener filter with bspline wavelet
transform (MR_FILTER; Starck et al. 2006). The latter submissions
tended to perform better. Among the first type of submissions, the
better-performing ones use a polynomial fitting formula for P,
based on the galaxy size and S/N, and rejection of galaxies with
extremely large values of P, .

C11 EPFL_MLP

The EPFL_MLP team’s method involved training a Multilayer
Perceptron (MLP) Neural Network to measure galaxy shapes. The
MLP is a feed-forward neural network with one hidden layer (Rojas
1996; Haykin 2009). The arctangent function is used as an activa-
tion function. The input data are the set of neurons, represented
by the galaxy image pixels. The output is the ellipticity catalogue.
The MLP is trained on simulated data with the standard back-
propagation algorithm.

MLP works in two passes. During the forward pass, the weight
matrix is applied to the training set, the output is compared to the
desired result to obtain the error gradient and to average them over
the batch set. During the backward pass, the weight updates Aw
are calculated from the gradient descent method using the learning
rate.

This method uses a batch learning scheme, where the input data
is a batch of galaxy stamps and the weights are updated based on
the error rate averaged over the batch.

For each submission, the EPFL._MLP team varied the following
parameters: the number of neurons in the hidden level, the learning
rate, the epoch number (an epoch corresponds to one forward pass
and a backward pass), the batch number (batch learning improves
stability by averaging), the momentum rate (u indicates the rela-
tive importance of the previous weight change on the new weight
increment).

The training set consists of galaxy images, simulated using
GaLsiM with the following parameters: disc and bulge half-light
radii, ellipticity modulus |e|, orientation angle, galaxy total flux,
bulge ratio, and S/N ratio.

Both bulge and disc have the same centroid and ellipticity. No
weighting was applied to shear estimators, and no calibration factors
were applied.

MNRAS 450, 2963-3007 (2015)
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C12 FDNT

This team used an implementation of the FDNT (Bernstein 2010).
This method estimates a per-galaxy shear in the Fourier domain after
PSF effects have been removed by Fourier division (equivalent to
deconvolution in real space). This team’s approach was to then apply
bias corrections based on image simulations. The bias is a function
of (1) S/N, (2) resolution, (3) PSF shape, (4) radial flux distribution
of the galaxy, and (5) radial flux distribution of the PSF. Additive
bias was found to be directly proportional to the PSF shape.

In some cases, galaxies were weighted according to the combi-
nation of shape noise (determined from the deep data) and shape
measurement uncertainty. All FDNT submissions (v0.1 through
v1.3) have the wrong bias corrections applied, and hence all results
submitted during the challenge period are not indicative of the real
performance of this method once this error is corrected.

C13 Fourier_Quad

This team used Fourier-space methods described in a sequence of
papers (Zhang 2008, 2010, 2011; Zhang & Komatsu 2011; Zhang,
Luo & Foucaud 2015). The shear estimators for the two components
of the reduced shear g; and g, are defined based on the Fourier trans-
form of the galaxy image. There are three quantities: G, G, and
N, based on multipole moments of the spectral density distribution
of the galaxy image in Fourier space,

G = —%/dzk (k; = k3) T (k)M (k)
G, = — / d*k k. k, T (k)M (k)
ﬁZ
N = / d’k [kz - 71«4} T (k)M (k), (C5)
where

T(k) = |Wy)|” / |Wese(ho)|*

M) = |FEa)” — | 72| (C6)

and f5(k), k), Wese(k), and Wﬁ (k) are the Fourier transforms
of the galaxy image, an image of background noise, the PSF image,
and an isotropic Gaussian function of scale radius B, respectively.
The latter is defined as

1 |x|?
We(x) = pETE exp (—z—ﬂz) . (C7

The factor T (k) is used to convert the form of the PSF to an isotropic
Gaussian function. The value of B should be at least slightly larger
than the original PSF Wpgr to avoid singularities in the conversion. If
the intrinsic galaxy images are statistically isotropic, the ensemble
averages of the shear estimators defined above recover the shear to
second order in accuracy, i.e.

(Gj)
(N)

for j = 1, 2. Note that ensemble averages are taken for G, G,, and
N separately; these should be weighted averages, as we will discuss
in Section C13.1. In practice, G|, G, and N are calculated using
discrete Fourier transforms.

In the presence of source Poisson noise, the method is modi-
fied/extended by adding more terms into the shear estimators to
keep them unbiased. Statistically, the Poisson noise has a scale-
independent spectral density in Fourier space. Its amplitude can

=g +0(g,) (C8)
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be estimated at the large wavenumber limit, at which the source
spectrum is subdominant due to filtering by the PSF. The estimated
Poisson noise spectrum can then be subtracted from the spectral
density of the image on all scales. This operation is particularly
suitable for these shear estimators, as the ensemble averages are
taken directly on the spectral density. Finally, the same procedure
should be repeated in the neighbouring image of background noise,
as the Poisson noise in the source image is partly due to the back-
ground photons. Removing the source Poisson noise effect requires
modification of the definition of M (k) in equation (C6) to

Mk) = | P50 = FS — | 720" + F* (C9)
with

S Ed)

|kj|>ke

X

|kj|>k

S.B (ClO)

where k. is a value at which the Poisson noise amplitude dominates
over the source signal, typically ~3/4 of the Nyquist wavenumber.

C13.1 GREAT3 Experience

In GREAT?3, the PSF for constant-shear branches was determined
by stacking the spectral densities of the nine provided PSF images.
Several different weighting schemes were used, for each of which
the weight is a function of the total source flux F (rather than the
shape parameters) to avoid introducing systematic biases. Shear
estimation for the jth component was carried out via

Z GjiWi
L
> NW;

Since the background noise in GREAT3 images is uncorrelated,
its power spectrum in Fourier space is scale-independent. Thus,
its contamination can be directly removed using the source image
itself, without using a neighbouring background image, rewriting
equation (C9) as

=g;. (C11)

~ 2
M) = |FS(k)|" — F°. (C12)
Three weighting options were tried.

(i) W =1, for which the contribution to the shear signal scales
as (S/N)?, guaranteeing equal weights for the galaxies in each 90°
rotated pair and maximizing shape noise cancellation. However, in
terms of contribution to the ensemble shear signal, the bright galaxy
pairs are much more important than the faint ones.

(ii) W = (S/N)~2 for galaxies that can be easily identified as 90°
rotated pairs by sorting the galaxy luminosity distribution. For two
galaxies in a pair, their average flux is used for calculating W. For
galaxy pairs that are too faint to be identified, W = (Suin /N)2,
where Sy, 1s the minimum galaxy flux from the identified pairs.

(iii) W = (S/N)~2 for all galaxies without identifying pairs.

The first two weighting options are effective in GREAT3 due to its
shape noise cancellation, which is not relevant for real data. The
last weighting scheme is applicable to real data, though it is not yet
optimal.
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To calculate the shear—shear correlation function using the shear
estimator defined in equation (C5), the Fourier_Quad team would
ideally use (Zhang & Komatsu 2011)

> G(x)G(x; + Ax)

(v + Ax) = < . C13)
> NG)N(x; + Ax)

The above formula is similar (but not equivalent) to the usual shear—
shear correlation calculation using ellipticities € , and weights W,

(yi@)yj(x + Ax)) =

D eixer(xi + AX)W(x)W(x; + Ax)

! ) (C14)
D WeWx, + Ax)

1

To use the GREAT3 pre-submission script, the Fourier_Quad
team converted G, G», N to per-galaxy ¢, &2, Wvia g; = G;/N and
W = N. This choice had several drawbacks, the main one of which
is that for lower S/N sources, Gy, G,, N can take both positive
and negative values, due to the subtraction of the background noise
contribution in equation (C12). As aresult, the &, , can be extremely
noisy (|e; 2| > 1), which is not a problem if the shear correlation is
calculated using equation (C13). The proof of concept for variable
shear estimation using this method is the subject of ongoing work.

C14 HSC-LSST-HSM

The HSC/LSST-HSM team attempted to reproduce the results of
the publicly released shear estimation example script, but using
the HSC/LSST pipeline for the bookkeeping and a slightly older
version of the re-Gaussianization method (Hirata & Seljak 2003).
From a scientific perspective, the results should be the same, so this
is primarily a sanity check that the HSC pipeline has no bugs that
would cause re-Gaussianization to perform differently.

The HSC/LSST pipeline was used for the preliminary parts of the
data processing, which in this case was mostly just bookkeeping.
Only the first PSF image in the constant PSF branches was used,
after shifting it by (—0.5, —0.5) pixels using fifth-order Lanczos
interpolation to match the conventions of the HSC/LSST pipeline.
Objects were selected by cutting out postage stamps according to
the provided galaxy catalogue; the HSC/LSST pipeline object de-
tection routines were not used. Then, an early implementation of
re-Gaussianization that is part of the HSC pipeline was run. Shear
responsivity, weighting, and an additional calibration factor of 0.98
were all done in a way identical to the publicly released example
script that uses the GaLsiM implementation of re-Gaussianization.

C15 MBI

The MBI team carried out a hierarchical (multilevel) Bayesian joint
inference (MBI) of the shear and the intrinsic ellipticity distribu-
tion given the image pixel data, assuming simply parametrized
galaxy models, simply parametrized PSF models, and a simply
parametrized p(e). The team’s goal was to begin the exploration of
this new approach to shear measurement in a realistic setting, with-
out expecting to be competitive given the simplicity of its PSF and
galaxy models, but hoping to learn something by comparing vari-
ous hierarchical inferences with the standard maximum likelihood
estimates. A paper describing this method (Schneider et al. 2014)
gives an overall picture of the MBI framework and several ideas
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for improvements beyond the implementation used in the GREAT?3
challenge.

The MBI team modelled the PSF with a mixture of three Gaus-
sians using the star image data. Galaxies are modelled as elliptical
Sérsic profiles (using constrained Gaussians mixtures; Hogg & Lang
2013) with six parameters: position, effective radius, Sérsic index,
and two (lensed) ellipticity components. The TRACTOR software de-
veloped by Lang and Hogg (Lang et al., in preparation) was used
for these low-level individual galaxy inferences: the posterior PDF
for each galaxy’s model parameters is sampled using the ensemble
Markov Chain Monte Carlo (MCMC) sampler EMcCEE (Foreman-
Mackey et al. 2013) starting near the mode of the posterior found
by a simple non-linear least squares optimizer. These individual
galaxy model inferences are carried out in embarrassingly parallel
fashion.

The intrinsic (pre-lensing) galaxy p(¢) is modelled as a Gaussian
in both components, centred on zero and with width .. This pa-
rameter is inferred jointly for both shear components for each field
by importance sampling?® the EMCEE outputs with a flat hyperprior
on log o, (assuming an uninformative prior on lensed ellipticity),
using the standard relation between shear, intrinsic, and observed
ellipticity. The best results use this simple Gaussian prior; a double
Gaussian did not improve accuracy. For GREAT3 submissions, the
MBI team reported the posterior mean estimates of the shear com-
ponents. They only entered the constant-shear and constant-PSF
branches of the challenge, where their simple assumptions are valid
and no PSF interpolation is required. Of the six branches fitting this
description, they did not submit to two (RSC and MSC) due to lack
of time.

MBI team submissions are labelled as follows.

(i) Optimal Tractor: the shear estimator is the mean of the max-
imum likelihood galaxy lensed ellipticity estimates for all galaxies
in the field.

(ii) Sample Tractor: the shear estimator is the mean of all samples
from all galaxies’ lensed ellipticity posterior PDFs.

(iii) Important Tractor: Submissions derived from the importance
sampling analysis, assuming an independent Gaussian p(¢) in each
field.

Some submissions experimented with other aspects of the method.
For example, those labelled ‘multibaling’ involved inferring a p(¢)
common to five fields at a time. Submissions labelled ‘deep’ used the
deep fields to obtain a hyper-prior on the p(¢) width parameter o,
which was then asserted during the importance sampling of the wide
fields. The MBI team additionally experimented with informative
prior PDFs for the lensing shear, asserting the shear components to
have been drawn from a Gaussian distribution centred on zero with
width 0.

The MBI team attempted no explicit calibration of any kind.
Finally, we note that their approach is general, and can easily be
attached to other shape measurement algorithms.

C16 MaltaOx

The Malta-Oxford team based their measurements on the LENSFIT
algorithm (Miller et al. 2013). This method measures the likelihood

26 Generally, importance sampling is a process for estimating the properties
of some distribution despite only having samples generated from a different
distribution. Because of this difference, the samples that are drawn must be
reweighted.
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of PSF-convolved galaxy models fitted to the pixel data for indi-
vidual galaxies, adopting a Bayesian marginalization over nuisance
parameters but using a frequentist likelihood estimate of ellipticity
for each galaxy. Shear for the constant-shear branches was estimated
from the weighted mean of galaxy ellipticity values.

The galaxy models were two-component exponential disc plus
de Vaucouleurs bulge, with fixed relative ellipticity and scalelength.
The galaxy position, scalelength, total flux and bulge fraction were
nuisance parameters. For GREAT?3, the priors for the marginaliza-
tion over galaxy scalelength were obtained by running LENSFIT on the
GREAT?3 deep data, and fitting a lognormal distribution to the mea-
sured scalelengths, accounting for the ellipticity-dependent size cut
(Appendix A1) in the fitting process. The ellipticity prior was sim-
ilarly derived from LENSFIT fits to the GREAT3 deep data, although
it only enters the final shear estimate as part of the weight function.
The individual galaxy weight is an inverse variance weight, defin-
ing the variance as the quadrature sum of ellipticity measurement
variance and shape noise (see Miller et al. 2013 for details).

For CGC and RGC, where noise-free PSFs were provided, the
MaltaOx team used a modified version of the LENsFiT PSF modelling
code to convert the nine images for each subfield into a single
oversampled PSF model in a pixel basis set. In the one variable
PSF branch that they entered, they used the most recent LENSFIT PSF
modelling code without modification. However, the data format
required many modifications to work with this code, so they lacked
time to optimize the assumed scalelength of variation of the PSE.

When used for CFHTLenS (Heymans et al. 2013), noise bias
was calibrated using simulations that matched the observations. For
GREATS3, the MaltaOx team wanted to test a new self-calibration
method (to be described in a future paper), integral to the likelihood
measurement process, that does not rely on external data or sim-
ulations. The final MaltaOx submissions used this self-calibration
method. A final post-measurement step to isotropize the weights, to
remove S/N-dependent orientation bias, was also applied.

C17 MegalLUT

MegalLUT uses a supervised ML technique to estimate galaxy shape
parameters by measuring the PSF-convolved, noisy galaxy images.
The method can be seen as a detailed empirical calibration of a priori
inaccurate shape measurement algorithms, such as raw moments of
the observed galaxy image. The distinctive feature of MegalLUT is to
completely leave it to the ML algorithm to ‘deconvolve’ and correct
crude shape measurements for the effects of the PSF and for noise
bias, instead of calibrating only the residual biases of a priori more
accurate techniques. In this way, the input to the ML algorithm is
close to the recorded information of each galaxy, avoiding potential
information loss from deconvolutions. A further advantage of this
approach is its very low computational cost, due to the use of simple
shape measurements.

C17.1 MegaLUT implementation for GREAT3

To build the learning samples on which MegalLUT is trained for
GREATS3, the MegaLUT team used simple Sérsic profiles to repre-
sent the galaxies. They can therefore train the algorithm to directly
predict the Sérsic profile parameters, in particular the ellipticity.
For branches with constant known PSFs, this training was per-
formed separately for each PSF. The measurements are based on
SEXTRACTOR (Bertin & Arnouts 1996), the adaptive moments imple-
mented in GaLsim (Hirata & Seljak 2003; Rowe et al. 2015), and, for
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some submissions, on moments of the discrete ACF (van Waerbeke
et al. 1997). The most fundamental change in MegaLUT with re-
spect to its implementation for GREAT10 (described in Tewes et al.
2012) is the ML itself. MegaLUT now uses feed-forward ANNS,
which are trained interchangeably via the SkyNet (Graff et al. 2014)
or FANN (Nissen 2003) implementations. The method works in ef-
fectively the same way for control and realistic galaxy branches,
and for ground- and space-based branches.

For multiepoch branches, the MegaLUT team co-added the im-
ages with the stacking algorithm provided by the GREAT3 EC.
For the pre-deadline submissions, the co-addition process was not
simulated in the learning sample, and MegalLUT could therefore
not learn about related biases, which will be the subject of further
work. Regarding the variable PSF branches, the MegalLUT team
developed an approach that incorporates PSF interpolation into the
ML. In essence, the galaxy position is included as an input to the
ANN, which is trained using PSFs at various locations. Prior to
the deadline, this treatment of variable PSF branches was not suf-
ficiently mature to be used as a proof of concept of this novel
approach.

The MegaLUT team submissions do not use the deep data sets,
and do not weight the per-galaxy shear estimators, aside from rejec-
tions following simple criteria. The time per galaxy listed in Table 2
for this method, 20 ms, includes the overhead involved in generating
a typical-sized training data set as well as the training of the ANN.
However, once the ANN has been trained, the shear estimation per
galaxy takes roughly 3 ms.

C17.2 Differences between submissions

Multiple submissions within a branch differ in the learning sample
generation, the shape measurement, the selection of ANN input
parameters, the ANN architecture, and the rejection of faint or
unresolved galaxies. The distribution of shape parameters of the
learning sample does not have to closely mimic the ‘observations’,
as it does not act as prior. For those parameters that do affect the
shape measurement output, the distributions used to generate the
learning sample merely define the region in parameter space over
which the ML can perform an accurate regression.

C18 MetaCalibration

The philosophy behind the MetaCalibration method is that since
shear systematics depend on the galaxy population and PSF model,
all shear systematics corrections should be determined directly from
the images themselves (rather than from independently generated
simulations). In practical terms, the method involves constructing
a model of the image with the shear as a parameter. Varying the
shear parameter allows a direct measurement of the shear response
from the difference between pipeline outputs with and without the
additional shear. For GREAT3, this team using re-Gaussianation as
the shear estimation method, but in principle MetaCalibration could
be used for any method.

In detail, inspired by Kaiser (2000), the MetaCalibration team
constructs the model sheared image by deconvolving the original
image by the PSF model, applying a small shear to the deconvolved
image, and then convolving the result with a slightly enlarged ver-
sion of the original PSF. The final, lossy step is required because
the applied shear moves noisy modes inside the PSF kernel win-
dow; reconstructing a sheared version of the original image would
require access to information on scales hidden by the original PSE.
The measured sensitivity is correct for the version of the image
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with the enlarged PSF, so the final shear measurements are per-
formed on the reconvolved image, with an enlarged PSF but no
applied shear. This procedure should allow us to measure shear cal-
ibration biases for any shear measurement pipeline; for GREAT3,
the MetaCalibration team used the GaLsiM implementation of re-
Gaussianization, but the approach could be applied to self-calibrate
any other shear estimation method.

Since the per-object response is quite noisy, using a per-object
response or even a per-image mean over 10 000 galaxies proved
unstable. The entire set of images for a given branch was used
to model the shape of the likelihood curve and derive the shear
response.

This approach was used to directly calibrate out multiplicative
systematics from the data. An extension of the method to remove
additive bias was not implemented before the end of the challenge.
Also, the anisotropic correlated noise in the images with added shear
was not whitened or made four-fold symmetric; there are plans to
test the effects of this limitation as well, with an updated version of
GALSIM that can impose symmetry on the final noise field.

C19 Wentao_Luo

This team used an independent implementation of the re-
Gaussianization method (Hirata & Seljak 2003). Given the choice of
applying the PSF dilution correction to the re-Gaussianized image
or the version after application of a rounding kernel, they used the
latter as it was found during tests on STEP2 (Massey et al. 2007a)
images to give better performance. For the rounding kernel, a5 x 5
kernel was constructed following Bernstein & Jarvis (2002).

Due to convergence issues, only ~60 per cent of the galaxies
had estimated shapes, and a further size cut reduced the number to
~30 per cent, resulting in quite noisy submitted results.

Submissions were made using two weighting schemes. The first,
from Mandelbaum et al. (2005), is inverse variance weighting us-
ing the quadrature sum of shape noise and measurement error due
to pixel noise. The second is an ellipticity-dependent weight from
Bernstein & Jarvis (2002) (w = 1/4/e* + 2.2502, using the mea-
surement error due to pixel noise). The former led to better results
than the latter, by roughly a factor of ~2 in Q score.

The shear responsivity (to convert from distortion to shear) was
calculated as in Bernstein & Jarvis (2002), and no additional cali-
bration factors were applied.

C20 ess

The ess team implemented the Bayesian model-fitting (BMF) shear
measurement algorithm introduced by Bernstein & Armstrong
(2014). For general details about the implementation,?’ see Sheldon
(2014). The only details of importance that are not in Sheldon (2014)
are about PSF fitting, prior determination and choice of models.

For constant PSF branches, the ess team fit three unconstrained
Gaussians to one of the provided PSF images using an Expectation
Maximization (EM) algorithm chosen for its high level of stability.
For subfields without strong defocus, the residual of the model with
the PSF was typically consistent either with random noise or had
a triangular shape perhaps due to trefoil in the PSF (which cannot
easily be represented by the adopted PSF model). In fields with
strong defocus, the residuals were quite bad; see Section 4.8 for a
further discussion of this point.

2T https://github.com/esheldon/ngmix
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A number of different galaxy models were used, including full
Sérsic profiles, but the best performing on the realistic galaxy
branches was a simple exponential disc. The fits were carried out
using the full 48 x 48 postage stamps. Fits to the deep field im-
ages were used to estimate priors on the size and flux. The joint
size-flux distribution averaged over all deep fields in the branch
was then parametrized by sums of Gaussians, again fit using an EM
algorithm.

For ellipticity, the ess team tried fitting the deep fields and using
the galaxy model fits provided by the GREAT3 team based on
fitting the COSMOS HST data at full resolution to a Sérsic model
(Lackner & Gunn 2012). The latter approach led to better results
than the former.

Because the Bernstein & Armstrong (2014) algorithm breaks
down at high shear, the ess team iterated the solution on the constant-
shear fields, expanding the Taylor series about the result from the
previous iteration. In the absence of additive errors, this iteration
converges in three iterations even for ~10 per cent shears, but since
the results did have some additive bias, full convergence was not
possible.

The ess team worked primarily with the realistic galaxy branch
because performance on the control branch was rather poor. Their
estimates of galaxy properties on the deep fields for the CGC branch
suggested a strong variation in their statistical properties both within
the branch and compared to RGC. Priors are crucial for Bernstein
& Armstrong (2014), and this variation may have resulted in poor
performance. The RGC deep fields seemed more uniform in their
properties according to this team’s analysis. An analysis after the
fact using the truth tables showed that the atmospheric PSF FWHM
for the deep fields in both branches had the same mean value, but a
dispersion of 0.12 versus 0.08 arcsec for CGC and RGC, supporting
the claim that the deep fields in CGC exhibited more variation than
in RGC.

C21 sFIT

The sFIT (shapes from iterative training) method is a set of prin-
ciples to use simulations to characterize systematic errors in shear
estimation. The principles of the method are as follows.

(a) Shear estimation consists of two steps: initial ellipticity esti-
mation (which must be highly repeatable) and application of cali-
bration.

(b) Shear calibration is derived via image simulation.

(c) Simulated galaxies must have properties matching those in
real data (in this case, the GREAT3 data).

(d) Each step in image processing affects the calibration factor.
This includes image coaddition, PSF estimation and interpolation,
handling of undersampling, etc.

A more detailed description will be presented in Jee & Tyson (in
preparation).

C21.1 Implementation of the sFIT Method

For shear calibration using image simulations, the three important
questions are: (1) how well does the simulation match reality? (2)
How far can the galaxy model be simplified? (i.e. minimization of
the number of calibration parameters), and (3) What is the require-
ment for the initial ellipticity measurement method?

Initial ellipticity measurement: the sFIT team uses forward-
modelling to obtain the initial ellipticity estimate for each galaxy, by
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convolving the galaxy model with the PSF and minimizing the dif-
ference between the simulated and actual galaxy image. The choice
of galaxy model is important. The sFIT team experimented with
a wide range of galaxy models, examining their stability (conver-
gence rate), speed, bias, and measurement noise. Perhaps the sim-
plest parametrization is an elliptical Gaussian as used in the Deep
Lens Survey (DLS; Jee et al. 2013). The strength of this model
includes the high convergence rate, speed, and small measurement
error. The drawback is that it requires rather a large calibration fac-
tor, of the order of 10 per cent. Although in principle a calibration
factor can be derived for this choice, it is preferable if the corrections
that are being applied are small. Another option is the bulge+disc
model, which may be regarded as the opposite extreme to the ellipti-
cal Gaussian approach. This sophisticated representation of galaxy
profiles reduces the bias, but with an unacceptably poor convergence
rate (fails for ~20 per cent of the GREAT3 galaxies) and slow speed
(~10 s per object). The increase in the number of parameters also
increases noise bias for faint galaxies. The compromise that was
adopted for GREATS3 is a single Sérsic representation, which is
a one-parameter extension to the elliptical Gaussian model used
for DLS. Without any external calibration, the model introduces
a reasonably small multiplicative bias (~2 per cent). The model
converges ~98 per cent of the time, and takes ~1 s per galaxy.

Image simulation method: the SFIT team used GaLsiM to perform
its image simulations. Although the team already has a high-fidelity
image simulator used for DLS, there are merits in using GaLsim for
the GREAT?3 challenge. First, the GREAT?3 data are generated with
GALSIM. Were GALSIM to make some unknown systematic error when
representing galaxies under shear, the potential impact on competi-
tive performance is best minimized by using the same simulator to
make images (while the scientific value in identifying a discrepancy
is, unfortunately, sacrificed).

Secondly, for the real galaxy branches, it is important to match
the galaxy properties. This team’s DLS image simulator uses galaxy
images in the Ultra Deep Field (UDF), which detects faint galaxies
down to 30th mag at the 100 level. Clearly, these galaxies are
different from those in GREAT3.

The sFIT team used Sérsic fits to the GREAT3 data to estimate
distributions of galaxy sizes, ellipticity, Sérsic indices, PSF proper-
ties, and noise level. Then, they ran caLsiv with input parameters
based on these measurements by drawing values from parametrized
distributions. It is not trivial to guess the input parameters that will
generate images that closely match the GREAT3 data, since the
noise in the GREAT3 data means that the observed distributions
deviate from the true inputs (they are wider than the inputs, with
shifted means). Several iterations were required before the mean,
width, and tail shape of the distribution agreed well with the ob-
served one.

Calibration: many details such as properties of galaxies and PSFs,
method of image reduction, implementation details of ellipticity
measurement, noise level, etc. all affect shear calibration. However,
for practical purposes, the number of parameters in the calibration
process must be limited. The sFIT team avoided calibration against
implementation details by keeping the size of the postage stamp
images, the oversampling ratio, the centroid constraint method, etc.
fixed throughout the challenge.
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The galaxy properties are important parameters. However, indi-
vidual measurements are noisy. Thus, instead of a per-galaxy cor-
rection based on each galaxy’s properties, shear calibrations were
derived based on aggregate statistics and applied to the entire pop-
ulation (an exception is made for variable shears; see below).

The most important parameters are the PSF properties such as
ellipticity, size, kurtosis, etc. Even with perfect knowledge of PSF,
galaxy ellipticities still have both additive and multiplicative bias,
which increases with the size of the PSF. In their GREAT3 analysis,
the sFIT team ignored kurtosis and characterize the PSF in terms
of its ellipticity and FWHM. They modelled the variation of both
additive and multiplicative errors as a function of PSF FWHM using
second-order polynomials. Variable shear branches do require a per-
galaxy correction using the PSF properties at the galaxy location to
estimate the correction factors (but not using the individual galaxy-
fitting results).

Weighting scheme: the ellipticity measurement code used by the
sFIT team outputs ellipticity uncertainties by evaluating the Hessian
matrix. Unfortunately, these ellipticity uncertainties are somewhat
correlated with galaxy shapes, so if the ellipticity uncertainties are
used directly to evaluate individual weights, the shapes would be
correlated with the weights. To avoid this problem, the sFIT team
derived average S/N versus ellipticity uncertainty relations, and
converted per-galaxy S/N values into ellipticity uncertainties. Then,
the weights are evaluated from the equation w = 1/(c2 + 03),
where o is the ellipticity uncertainty derived from the S/N value,
and ogy is the intrinsic ellipticity dispersion per component.

C21.2 GREAT3 submission policy

To avoid tuning to the GREAT3 simulations in too much detail, the
SFIT team tried to minimize the number of submissions. Submis-
sions were made in the following cases.

(i) When obvious mistakes were found, such as applying calibra-
tion factors to the wrong branch.

(ii) When better calibrations become available. Since shear cali-
bration requires significant computing time, occasionally the sFIT
team took shortcuts to reduce computing time. However, if this
shortcut resulted in poor performance, they revisited the problem
and performed brute-force simulations to obtain calibration param-
eters directly.

(iii) For many variable shear branches, results improved when
galaxies are unweighted. Thus, the sFIT team experimented with
their weighting scheme (by turning on/off) for almost every variable
shear branch (except for VSV, where they achieved the highest score
with just one submission).

APPENDIX D: CROSS-BRANCH COMPARISON
OF SUBMISSIONS

Tables D1 and D2 provide estimates of ¢, and the component-
averaged (m) for all submissions described in Section 5.1 in
branches CGC, RGC, CSC, and RSC. Tables D3 and D4 show
the changes in c; and (m) when comparing across branches and
within branches while splitting by PSF properties, respectively.
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Table D1. Additive bias ¢4 and component-averaged multiplicative bias (m) for the submissions selected for
the fair cross-branch comparison (see Section 5.1) in ground branches CGC and RGC.

CGC CGC RGC RGC
Team 104 ¢, 103 (m) 104 ¢y 103 (m)
Amalgam@IAP 55 £ 1.1 8.4 £ 26 3.0+ 0.8 14 +£23
CEA_denoise 109.6 £+ 54.6 —80.2 £ 153.0 16.1 + 5.6 —242 + 147
CEA-EPFL 14 £ 12 —49 + 3.1 —45+£ 1.0 143 £ 29
CMU experimenters 1.0 £ 0.7 6.2 £ 2.1 0.9 £ 0.8 83 £ 29
COGS —-11.0 £ 1.3 —1.0 £ 32 -72+£12 —145 £ 33
E-HOLICs 733 £ 7.7 139.8 £+ 16.8 - -
EPFL_HNN 119 £ 59 59.8 + 16.6 119 £ 683 —807.0 £ 195.0
EPFL_KSB 62 + 1.8 27.6 + 4.7 - -
EPFL_MLP 873 £ 7.0 —553.3 £ 16.0 —3.7+£40 —-9779 £ 119
ess - - 2.1 + 64 —6.3 + 229
ess (outlier clipped®) - - 42 £ 14 243 £ 3.7
Fourier_Quad 50+ 24 1.1 £65 1.9 + 19 —11.0 £ 54
FDNT 82.0 £ 11.8 —6655 £+ 303 92.8 £ 140 —500.3 £ 64.8
MaltaOx 77 £ 13 —63 +33 22 + 09 -03 +£27
MBI —-29 57 18.2 + 16.8 — 135 £ 6.6 445 £ 29.1
MBI (outlier clipped?) 1.9 + 2.1 5.6 + 6.6 —16.0 £ 3.5 853 + 10.8
MegalLUT —-77 +£123 26 £53 —129 £ 1.8 162 + 4.7
MegaL.UT (outlier clipped”) -97 15 9.6 = 3.9 —11.0 £ 1.6 19.6 £ 4.3
MetaCalibration 16.2 + 3.5 2.1 £ 8.0 - -
Re-Gaussianization —138 £ 1.5 43.6 + 4.0 —57 + 1.1 3.6 £ 3.5
sFIT —1.1+£12 1.5 +£32 1.1 £ 12 0.7 £33
Wentao Luo —338 £ 11.7 —56.6 + 28.6 —342 £ 6.5 —73.6 + 20.0

“Outlying values in the submitted shears were removed from the submission and scores recalculated, as described

in Section 4.8.

bThe worst 10 per cent of fields by PSF defocus value were removed and scores recalculated, as described in

Section 4.8.

Table D2. Additive bias ¢4 and component-averaged multiplicative bias (m) for the submissions
selected for the fair cross-branch comparison (see Section 5.1) in space branches CSC and RSC.

CsC CSC RSC RSC
Team 10* ¢y 103 (m) 10*cy 103 (m)
Amalgam@IAP  —0.7 £ 0.5 —05+ 14 1.1 £06 —-73+ 16
CEA_denoise 128.7 + 42.8 —409.6 + 1204 111.6 £ 355 —358.0 + 98.6
CEA-EPFL 32+ 07 —-30+ 19 3.5 + 0.6 38 £ 1.5
E-HOLICs 101.4 £+ 12.6 —21.3 £ 313 82.7 + 10.2 245 4+ 245
EPFL_HNN 642 £ 7.9 —176.1 + 20.1 52.8 £ 7.2 —1773 + 17.6
EPFL_KSB 58.4 + 54.0 —163.1 + 129.6 - -
EPFL_MLP 1.0 £ 74 —992.4 4+ 19.2 - -
Fourier_Quad —04 + 1.6 13 + 4.4 1.8 £ 1.5 37 + 4.1
MBI —35+54 —274 £+ 152 - -
MegalLUT —03 + 1.6 —15.1 £ 45 92 + 1.4 —323 £ 3.6
SFIT 45 4+ 09 0.1 +£22 53+ 09 —12 422
Wentao Luo 346 £ 199 —1041.6 &+ 565 1155 + 20.5 —328.2 & 49.6

MNRAS 450, 2963-3007 (2015)

220z 1dy 8z uo 1sanB Aq 296190 1/€962/€/0SF/2I01ME/SEIUW/WO0d"dNODIWLSPED.//:SA)lY WO} PAPEOjUMOQ



3006

R. Mandelbaum et al.

Table D3. Change in additive bias Ac, and component-averaged multiplicative bias A (m) across branches, for the submissions selected for the fair
cross-branch comparison. The ordering of branch labels indicates the order in which the bias results are subtracted.

RGC-CGC RSC-CSC CSC-CGC
Team 10* Acy 103 A(m) 10* Acy. 103 A(m) 10* Acy. 103 A(m)
Amalgam @IAP —25+13 —7.0 + 3.5 1.9 £ 0.8 —6.8 £ 2.1 —-62 £ 12 -89 £ 3.0
CEA_denoise —93.5 £ 549 56.0 £ 153.7 —17.1 £ 55.6 51.5 £ 155.6 19.2 £ 693  —3294 + 194.7
CEA-EPFL —-59+ 1.6 19.2 + 42 0.3 £ 0.9 6.8 £ 2.5 1.8 £ 14 1.9 + 3.7
CMU experimenters —0.1 x 1.1 2.1 £ 3.5 - - - -
COGS 38 £ 1.7 —135 £ 4.6 - - - -
E-HOLICs - - —18.6 £ 16.1 459 + 39.7 28.1 £ 147 —161.2 £ 355
EPFL_HNN —00 £ 685 —866.8 £ 1957 —11.4 + 10.7 —1.3 £ 26.7 523 £ 99 —235.8 £ 26.1
EPFL_KSB - - - - 522 + 54.1 —190.7 £ 129.7
EPFL_MLP —91.0 + 8.1 —4247 £ 19.9 - - —86.3 £ 102  —439.1 + 25.0
Fourier_Quad —3.1 £3.1 —12.1 + 84 2.1 £ 22 24 + 6.0 —54 +£29 02 +79
FDNT 10.7 + 18.3 165.2 £ 71.5 - - - -
MaltaOx —-55+ 16 59 + 43 - - - -
MBI —10.6 £ 8.7 26.3 + 33.6 - - -07+£78 —45.6 £ 22.7
MBI (outlier clipped?) —179 £ 4.1 79.7 £ 12.7 - - —112 £ 59 —36.5 £ 17.6
MegalLUT —-52+30 135 £ 7.1 94 + 2.1 —172 £ 58 75 +£29 —17.7 £ 69
MegaLUT (outlier clipped?®) —13 +£22 10.0 = 5.8 92 +123 —142 £ 62 95+ 23 —26.6 £ 6.3
Re-Gaussianization 8.0+ 19 —40.0 £ 5.3 - - - -
sFIT 22+ 1.7 —09 £ 4.6 08 + 1.2 —-13 £ 3.1 56 £ 15 —14 £ 39
Wentao Luo —-05 + 134 —17.0 + 349 80.9 + 28.5 7134 £ 75.2 68.4 + 23.1 —985.0 £ 633

Table D4. Change in additive bias Ac; and component-averaged multiplicative bias A (m) within CGC,
when splitting by atmospheric PSF FWHM and optical PSF defocus, for the submissions selected for the
fair cross-branch comparison.

Better—worse atmospheric PSF FWHM Better—worse optical PSF defocus

Team 10* Acy 103 A(m) 10* Acy 103 A(m)
Amalgam@IAP 0.2 £+ 2.1 —13+52 —-58 + 2.1 9.6 £52
CEA_denoise —51.2 £ 109.6 97.9 + 307.4 —168.5 £ 108.7 234.7 + 304.2
CEA-EPFL 52+ 24 —295 + 59 —27 +25 17.8 £ 6.2
CMU experimenters —-03 15 —102 £ 42 1.0 £ 1.5 —03 +42
COGS —44 £ 25 50 £ 64 123 £ 24 4.1 + 6.3
E-HOLICs 21.0 + 14.8 —213.1 £ 31.7 —764 £+ 144 —100.6 £ 31.6
EPFL_HNN 1.3 £ 11.8 —148.8 £ 32.3 113 £ 11.8 —353 £ 332
EPFL_KSB 104 + 3.6 —39.6 £ 9.0 8.6 + 3.7 —113 £ 94
EPFL_MLP 5.9 £+ 14.0 —60.5 £ 31.8 —67.0 £ 132 69.3 + 304
Fourier_Quad 0.1 + 49 —144 £ 12.8 —7.5+ 48 —64 + 13.0
FDNT 22.2 + 23.6 —11.9 £ 60.2 —75.0 £ 23.0 —73.8 £ 59.5
MaltaOx 73 £ 25 —13.8 £ 64 —84 £ 125 —-13+£65
MBI 95+ 114 1.8 £ 33.6 —-09 + 114 4.2 + 34.1
MegalLUT —14 £ 47 —64 + 104 6.0 + 4.6 18.7 £ 10.5
MetaCalibration 16.3 + 6.9 —220 £ 154 —194 £ 69 30.2 £ 15.7
Re-Gaussianization —54 + 3.0 79 £+ 8.0 13.6 + 2.8 —267 £ 78
sFIT 3.0 £ 24 —12.6 £ 64 —48 £ 24 13.7 £ 64
Wentao Luo —2.7 £ 234 40.1 £ 56.4 26.5 + 23.2 135.7 + 56.9
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