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This article details the computation of the two-point correlators of the convergence, E and B modes of
the cosmic shear induced by the weak lensing by large scale structure assuming that the background
spacetime is spatially homogeneous and anisotropic. After detailing the perturbation equations and the
general theory of weak lensing in an anisotropic universe, it develops a weak shear approximation scheme
in which one can compute analytically the evolution of the Jacobi matrix. It allows one to compute the
angular power spectrum of the £ and B modes. In the linear regime, the existence of B modes is a direct
tracer of a late-time anisotropy and their angular power spectrum scales as the square of the shear. It is then
demonstrated that there must also exist off-diagonal correlations between the £ modes, B modes and
convergence that are linear in the geometrical shear and allow one to reconstruct the eigendirections of
expansion. These spectra can be measured in future large scale surveys, such as Euclid and Square
Kilometre Array, and offer a new tool to test the isotropy of the expansion of the universe at low redshift.
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I. INTRODUCTION

A. Motivations

The standard model of cosmology describes our Universe
with a very simple solution of general relativity describing a
spatially homogeneous and isotropic spacetime, known as
the Friedmann-Lemaitre solution. It is assumed to describe
the geometry of our Universe smoothed on large scales.
Besides, the use of the perturbation theory allows one to
understand the properties of the large scale structure, as well
as its growth from initial conditions set by inflation and
constrained by the observations of the cosmic microwave
background (CMB). Itis a very successful model and allows
one to deal with all existing observations in a consistent way
with only six free parameters [1] from primordial nucleo-
synthesis to today, involving mostly general relativity,
electromagnetism and nuclear physics, that is, physics
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below 100 MeV and well under control experimentally
(see, e.g., Refs. [2—4] for standard textbooks).

The construction of the cosmological model depends on
our knowledge of microphysics but also on a priori
hypotheses on the geometry of the spacetime describing
our Universe. It relies on four main hypotheses (see Ref. [5]
for a detailed description): (H1) a theory of gravity, (H2) a
description of the matter and the nongravitational inter-
actions, (H3) a symmetry hypothesis, and (H4) an hypothesis
on the global structure, i.e., the topology, of the Universe.
The hypotheses H1 and H2, that refer to the physical
theories, are not sufficient to solve the field equations and
we need an assumption on the symmetries (H3) of the
solutions describing our Universe on large scales.

Among the generic conclusions of this standard model is
the need of a dark sector, including dark matter and dark
energy, which emphasizes the need for extra degrees of
freedom, either physical (new fundamental fields or inter-
actions) or geometrical (e.g., a cosmological solution with
lower symmetry). This has driven a lot of activity to test the
hypotheses of the cosmological model. In that debate, weak
lensing is a key observation to test general relativity on

© 2015 American Physical Society
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cosmological scales [6] and to constrain the scale on which
the fluid limit holds [7]. It complements tests of the other
hypotheses such as the equivalence principle [8] and the
Copernican principle [9]. Our first motivation is thus to
provide a new test on the isotropy of the expansion at late
time, hence providing a new test of the standard cosmo-
logical assumption. Any detection of a violation of a
symmetry of the background spacetime would have impor-
tant implications in terms of model building and on the
understanding of the dark sector.

While in the standard ACDM model the cosmological
constant A is the source of the acceleration of the Universe,
many models have been proposed to explain the accel-
eration of the cosmic expansion. The property of the dark
sector is often modeled as a fluid with an equation of state,
P4, = wpye, relating its pressure to its energy density. Such
a phenomenological parameterization allows one to char-
acterize the ability of different surveys to actually demon-
strate that w = —1, as expected for a cosmological constant.
Among the plethora of dark energy models, many enjoy an
anisotropic pressure Hj» and thus may trigger a phase of
anisotropic expansion at late time when dark energy starts
influencing the dynamics of the Universe. This is for
instance the case of magnetized dark energy [10,11], solid
dark matter [12,13] induced by a network of frustrated
topological defects, bigravity models [14], anisotropic dark
energy [15,16] and in models in which the backreaction
[17] of the large scale structure on the background
evolution is the source of the acceleration. This has led
to the development of a phenomenological parameteriza-
tion of the anisotropic pressure in terms of an anisotropic
equation of state as IT; = Aw’py, [18-21]. Our second
motivation is thus to propose new observational tests on the
anisotropic pressure of the dark energy sector, hence
constraining another phenomenological deviation from a
pure cosmological constant.

When concerned by anisotropic expansion, we can
distinguish between two classes of models, that allow
one to divide the different methods to constrain anisotropy.
Recall that any perturbed quantity, X say, such as the
gravitational potential, the density contrast, etc., can be
split, in Fourier space, as the product of an initial configu-
ration and a transfer function as X(7,k) = Tx(t,k)X;(k).
First, early anisotropic models (such as anisotropic infla-
tion) have anisotropic initial conditions [in the sense that
the correlation functions of the initial perturbed quantities
are such that (X;(k)X; (k")) # Px(k)6(k —k')] while the
transfer functions are independent of direction [i.e.,
Tx(t,k) = Tx(t, k)] because the geometry has isotropized
at later times. Second, late-time anisotropic models have
been isotropic during most of the history of the Universe
[hence enjoying isotropic correlation functions, e.g.,
(X;(k)X;(K')) = Px(k)6(k — k’)] while their transfer func-
tion at late time is anisotropic, i.e., Tx(t, k) # Tx(t, k).
These two types of models have a huge difference in the
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way one attacks observational constraints. In particular the
propagation of light is only affected in the second class of
models.

Without any source during inflation, any primordial
anisotropy is washed out [22,23] by the expansion. It
was however demonstrated that it affects the construction
of the Bunch-Davies state [22] so that it lets very specific
signatures on the primordial power spectrum [24-26] and
affects the onset of inflation [27]. Such deviation from
isotropy can be constrained by CMB observations [28-35].
An early, postinflationary, anisotropy also affects the
synthesis of light elements during primordial nucleosyn-
thesis [36] (mostly because it affects the expansion rate).

Tests of a late-time anisotropy have mostly focused on
the Hubble diagram from type la supernovae [21,37-46].
An anisotropic expansion will influence the transfer func-
tion so that it can also be constrained by the study of the
large scale structure [15,47-54] and of the CMB [55-58]. It
was argued that supernovae data lead to Aw < 2.1 x 107
[41] and that next-generation galaxy surveys are capable of
constraining anisotropies at the 5% level [21] in terms of
the anisotropic equation of state.

In this article, we follow our former analysis [59] on the
imprint of a late-time anisotropy on weak lensing. According
to the standard lore [60], in a homogeneous and isotropic
background spacetime, weak lensing by the large scale
structure of the Universe induces a shear field which, to
leading order, only contains £ modes. It was demonstrated in
Ref. [59] that, even in the linear regime, anisotropic
expansion will reflect itself in the existence of nonvanishing
B modes. The level of B modes is used as an important sanity
check during the data processing. On small scales, B modes
arise from nonlinear effects [61], intrinsic alignments [62],
Born correction, lens-lens coupling [63], and gravitational
lensing due to the redshift clustering of source galaxies [64].
On large angular scales in which the linear regime holds, it
was demonstrated [59] that nonvanishing B modes would be
a signature of a deviation from the isotropy of the expansion,
these modes being generated by the coupling of the back-
ground Weyl tensor to the £ modes.

While light propagation in strictly homogeneous Bianchi
universes has been widely investigated [65,66], the analytic
computation of the Jacobi matrix was only determined
recently [67] (see also Ref. [68]). This article focuses on the
computation of the Jacobi matrix taking into account
cosmological perturbations at linear order in a spatially
homogeneous anisotropic Euclidean spacetime of the
Bianchi / family. We provide all the technical tools
(perturbation theory, light propagation, expression of the
observables). The application of our formalism is exposed
in our companion paper [69] in which we compute the
expected signals for the Euclid [70] and Square Kilometre
Array (SKA) [71] observations.

Among our main results, we emphasize that, as soon as
local isotropy does not hold at the background level, there
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exist a series of weak-lensing observables that allow one to
fully reconstruct the background shear and thus test spatial
isotropy. More precisely, as a consequence of the non-
vanishing of the B modes, it can be demonstrated that

(1) the angular correlation function of the B modes,
CBB, is nonvanishing [59] and scales as the square of
the ratio of the geometric shear to the Hubble
expansion rate, 62/ H>;

(2) the B modes correlate with both the E modes and the
convergence k leading to the off-diagonal cross-
correlations <Bme;:t1m—M> and <Bme;;t1m—M> in
which E,, and By, are the components of the
decomposition of the £ and B modes of the cosmic
shear in (spin-2) spherical harmonics and x,,, the
components of the decomposition of the conver-
gence in spherical harmonics. These two correlators
scale as o/H;

(3) the deviation from isotropy also generates off-
diagonal correlations among x and E modes,
(EemE}om-y)> KemKpsomp)s a0 (EkGpy_yy)-
These three correlators scale as o/H;

(4) for each type of correlator, there are five values of M
so that in principle they can be used to reconstruct
the five components of the geometric shear o).

This last point is very important since it exhibits a rigidity
between independent observables that can be used to
control systematic effects.

B. Structure of the article

Section II summarizes the description of the spacetime at
the background level (Sec. II A) and for linear perturbations
(Sec. II B). For the sake of clarity, the theory of gauge-
invariant perturbations is detailed in Appendix A. It also
introduces the parameterization of an anisotropic dark
energy sector. The main variables required to describe
the evolution of the background spacetime are summarized
in Table I.

Section III describes the propagation of a light bundle
(Sec. IIT A) and presents in Sec. III B the central equation
for our analysis, namely the Sachs equation

dZ

3,2 Db = ReDys

for the 2 x 2 Jacobi matrix D,,, the decomposition of
which is presented in Sec. III C. It concludes by specifying
these general results to the case of a Bianchi / spacetime
(Sec. III D), focusing on the technical but useful use of a
conformal transformation. The main variables required to
describe the evolution of a geodesic bundle are summarized
in Tables IT and III.

Since the geometric shear is obviously small, we develop
in Sec. IV an approximation scheme referred to as small
shear limit in which ¢/H is considered as a small
parameter. We then use a two-parameter expansion scheme
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TABLE I. Table of most used quantities describing the back-
ground spacetime.

Symbol Meaning Appears at Eq.

u, v, ... Formal spacetime indices

i,j,... Cartesian spatial indices e
i,J,... Spatial tetrad indices (2.11)
0 Time tetrad index (2.13)
a Average scale factor 2.1
H Cosmic time Hubble expansion rate (2.18a)
i Log of directional scale factors 2.2)
Gjj Geometrical (cosmic time) shear 2.4)
0jj Geometrical (conformal time) shear (2.5)
95 Timelike vector of background tetrad (2.12)
9 Spacelike vector of background tetrad (2.11)
O Timelike vector of perturbed tetrad (4.6)
(O Spacelike vector of perturbed tetrad (4.6)
Aw/ Equation of state of dark energy (2.16)

' anisotropic stress
Bij Homogeneous perturbation of the 4.5)

Euclidean metric.

in which both ¢/H and the perturbations of the metric, say
®, are small. Thus, a given order {n, p} corresponds to
term of order (¢o/H)"®?. In this approximation, the
structure of our computation is the following. We start
from the fact that the Sachs equation can be rewritten as
[see Eq. (4.34)]

TABLE II. Table of most used quantities describing the
propagation of a geodesic bundle.

Symbol Meaning Appears at Eq.

K Null geodesic tangent vector (3.1)
e Conformally null geodesic (3.33)
tangent vector
b4 Redshift (3.4)
n, Initial observed direction 3.5)
n, Sachs basis (3.8)
ny Helicity basis (3.11)
N, Components of the connecting (3.13)
vector in the Sachs basis
Rap Optical tidal matrix (3.13)
Dy Jacobi matrix (3.14)
D, Conformal Jacobi matrix (3.37)
D, Background angular diameter distance (3.17)
D, Angular diameter distance (3.19)
K Convergence (3.17)
Yab Cosmic shear (3.17)
\% Rotation (3.17)
Kem Multipolar coefficients of the (3.23)
convergence
Vim Multipolar coefficients of the rotation (3.23)
E;, Multipolar coefficients of the cosmic (3.25)
shear E modes
By, Multipolar coefficients of the cosmic (3.25)

shear B modes
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TABLE III. Table of most used quantities describing the
propagation of a geodesic bundle.

Symbol  Meaning Appears at Eq.
z Scalar shear on the sphere (4.15)
2z, Vector shear on the sphere (4.16)
Zub Tensor shear on the sphere (4.16)
D, Covariant derivative on the sphere 4.17)
3,_3 Spin-raising and -lowering operators (4.21)
Zom Multipole of the scalar shear (4.25)
Z. First derivative of the scalar 4.27)
shear in the helicity basis
m Spin-s polarization basis (5.1)
S Source of the field X, (5.4)
T};fn Anisotropic transfer function of (5.13)
) the field X*
X TLM Multipoles of the anisotropic (5.15)
transfer function
E’;’\n, B’{f; Multipoles of the E and B (5.17)
modes of the field X*
CEE Angular power spectrum of (5.21)
the £ modes
ors Angular power spectrum of (5.21)
the E modes
B Scalar perturbation of the (6.5)
spatial metric
a’ Deflection angle (6.13)
w* Perturbation of propagating (6.17)
direction
@ Deflection potential (6.27)
N(x) Source distribution (6.43)
P(k) Primordial power spectrum (5.14)
2 0
4D,y + 1 dk"dDy, - LRachbv
d7  Kdy dy (K0

where y is the coordinate along the light cone in
the background Friedmann-Lemaitre spacetime (see
Sec. IVD). At order {0,0}, RI9% — 0 and k0000 = —1
so that the equation takes the form

0,0
ot

=0
dy?

and can be integrated trivially (see Sec. VIB). We then
expand this equation order by order so that it formally takes
the form (since k({)o.o} =-1

n° 11{0»0) n°
_

FIG. 1.

PHYSICAL REVIEW D 92, 023501 (2015)

n,

dzpiibp} = s{np}

dy?

in which the source term contains a contribution from R,

and k° up to order {n, p} and from D,;, at lower order. The
effects to be taken into account are then

(1) the tensor and vector contributions to R,;,, which

starts at order {1,1} and the contribution of the
scalar modes at the relevant order;

(2) the evolution of all the perturbative modes, that is of

the transfer functions, which is decomposed as

Ty(k.t) = T (k1) + TV (k. 1)

since the orders {0,0} and {1,0} correspond to
homogeneous solutions. This requires one to solve
the equations of Appendix A.

(3) In order to determine k°, we also need to solve
perturbatively the geodesic equation.

(4) A source observed in direction r° at distance y is
located at a spacetime point Py, ,, and its contri-
bution depends on the local direction of the tangent
vector to the geodesic in ny, ,,, which determines
the local Sachs basis in Py, . We shall thus proceed
with two operations:

(a) transport Py, ., to Pyoq (see Fig. 1) and
(b) transport ny, ,, and the local Sachs basis
(see Fig. 2).
This is what we call the central geodesic approximation
and the possibility to go beyond this approximation is
sketched in Appendix C. We however stick to this approxi-
mation, which is sufficient in the small shear approxima-
tion. At lowest order, it corresponds to the usual Born
approximation but at higher order there are post-Born
corrections to include.

Section V describes the computation of the angular
correlation. Our philosophy is to adopt an observer point of
view, that is, to compute all quantities on the celestial
sphere of the observer. Given the previous perturbative
expansion scheme, any observable X* of spin s can then be
formally expressed as [see Eq. (5.4)]

xs
XS()(Sv”o)mé = A SX‘Y ()(SJ(? no)mgd)(’

Comparison of the geodesic in the approximation at order {n, p}. In order to adopt an observer-based point of view, we need to

relate the local direction of propagation n{"?} to n°. The transports for the 3 orders of perturbations are, respectively, detailed in
Egs. (6.12) and (6.37) that determine x'{""?}(y,n°) that can be further split in a radial component §r{"-?}(y,n°) and an orthoradial

contribution that defines the deflection angle a7} (y, n°).
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Physical geodesic Fiducial FL reference geodesic

aft}  p{ty)

=03

I{Ll) I{o’n}

FIG. 2. The local Sachs basis at a point Py, ,, on the geodesic
has to be transported to the point Py, on the fiducial null
geodesic of the background Friedmann-Lemaitre spacetime. This
implies to perform a transport on the tangent space at the same
time that the point of observation is transported in real space. The
transports for the 3 orders of perturbations are, respectively,
detailed in Eqgs. (6.15), (6.34) and (6.54) for n and in Egs. (6.17),
(6.35) and (6.54) for the Sachs basis.

for a source SX located at y and observed in direction n°.
According to the spin s of the quantity we can expand
in the proper spherical harmonics with respect to n°.
This allows one to define the expansion of all the
quantities in term of spherical harmonics. As a by-product,
we demonstrate in Sec. V C that the five off-diagonal cor-
relators (BewEpy i u)s (BemKpsimem)s EemEpiomp)s
(KemK5iomnt)> and (E, k3.5, ) are nonvanishing.

Equipped with all these tools, we compute these corre-
lators and the angular power spectra of the £ and B modes
in Sec. VI order by order. Order {1,0} recovers the
nonperturbative analysis of Ref. [67] while order {0, 1}
recovers the standard case of lensing by large scale
structure in the linear regime; Sec. VIE gives all the
details of the computation at order {1, 1}. This allows us to
discuss the dominant contribution in Sec. VIL. In particular,
we argue that the dominant term for the cosmic shear is
given by

Yab = —(,ICDCD<(1D1,>(/),

where a° is the deflection angle at order {1,0}, ¢ the
deflection potential, and D, the covariant derivative on the
celestial sphere.

Many technicalities are gathered in the Appendixes:
linear perturbation theory (Appendix A), the expressions
of the geometric quantities at first order in perturbation
that are need to compute the source term of the Sachs
equation (Appendix B), details on the lensing method
(Appendix C) and a catalog of useful mathematical
identities (Appendix D). Throughout this work we adopt
units in which ¢ = 1.

PHYSICAL REVIEW D 92, 023501 (2015)
II. SPACETIME STRUCTURES

A. Background spacetime

1. Geometry

At the background level, the Universe is described by a
spatially Euclidean, homogeneous, and locally anisotropic
solution of the Einstein equation filled with a perfect fluid.
Its metric takes the general form (see Refs. [72-76] for
general references on Bianchi spacetimes)

3

ds? = —d? + > X3(1)(dx')2, (2.1a)
i=1

= —d* + a*(t)y,;(1)dx'dx/, (2.1b)

where a(t) = \/X;(1)X,(#)X5(z) is the volume averaged
scale factor and ¢ the cosmic time. We define the tangent
vector to the fundamental comoving observer by
u,dx* =dr. It is normalized such that u,u* = —1. The
spatial metric y;; and its inverse y" can be decomposed as

vij(t) =exp[2B;(0)]6;;.  vY (1) =exp[-24;(1)]67, (2.2)

with the constraint

(2.3)

3
> Bi=0
i—1

that ensures that the comoving volume remains constant

(i.e., y =yYy; =0). Note that, as a consequence of

Eq. (2.2), some spatial directions should contract while

others grow [24]. Note also that there is no sum on i in the

definition of y;; and Latin indices {i, j, k...} are raised with

7" and lowered with y;;.
The geometrical shear is defined as

I
Gij = 57ij> (2.4)

where a dot refers to a derivative with respect to cosmic
time. We shall also use the conformal time # defined by
a(n)dn = dt and denote derivatives with respect to it by a
prime. Thus, the conformal shear is defined as

1 .
The amplitude of the shear is defined by
3 .
5 =6;67=> B} and
i=1
3. 3
P =oyol =a>y fi=) pP. (2.6)
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2. Decomposition of the geometric shear

The shear, being a symmetric and traceless spatial tensor
(6! =0), has 5 degrees of freedom, three of which
correspond to the Euler angles necessary to express the
shear in a general basis. By choosing the Cartesian basis
(2.2), we have set these three angles to zero so that we are
left with only 2 degrees of freedom, namely the three p;
with the constraint (2.3). The components of the shear can
thus be expressed as

8'(1) = :Bi exp[—2;(1)]6Y,
(2.7)

6ii(t) = B; exp[2p;(1)]6;
61(1) = i,

These two independent degrees of freedom can also be
decomposed as a magnitude and an angle ¢. The first is
related to the scalar shear while the choice of the angle
defines which of the spatial directions are initially expand-

ing. These variables can be obtained by performing the
decomposition

pi(t) = C;W(1),

with the three constants C; given by

C, = \/§Ssin <<p+23—”i>, ie{l.2.3} (29

and where S is constant. This parameterization obviously
satisfies the required constraints

Y ci=o. d =8

Therefore, once the Cartesian basis is chosen, we can
choose the two constants (¢, S) to describe the two degrees

of freedom of the shear since 6% = (SW)2.

(2.8)

(2.10)

3. Spatial triad

It is convenient to introduce a spatial triad—a set of three
orthonormal vectors and covectors; the normalization being
defined from y;; and y"/—related directly to the Cartesian
coordinates x'. Their components in the coordinates basis
read

9 =expl-pi(1)8. 9 =explfi(n)s).  (2.11)
In such a triad basis, the shear components take the simple
form

65! =6l = Pibijs 6;;=0cl =p5

(2.12)

ij

I~

Thus, this triad can easily be extended to a tetrad by using
the observer’s 4-velocity as the normalized timelike vector

PHYSICAL REVIEW D 92, 023501 (2015)

9 =& = —u (2.13)

u-

4. Description of matter and field equations

Concerning the matter sector, we assume it is com-
posed of a pressureless matter fluid and a dark energy
component. The dark sector is then described by a fluid
whose energy-momentum tensor enjoys a nonvanishing
anisotropic stress:

Ty = (p + P)utu, + P&, + IT,. (2.14)
The anisotropic stress tensor is symmetric (I1,, = IL,,),
traceless (IT, = 0) and transverse (u,II; =0) which
means that it has only 5 degrees of freedom encoded
in its spatial part IL;;. Unless we define a microscopic
model, we need to use an equation of state for H’] We
decompose it as

Hj. = pdeij-, (2.15)
so that the pressure tensor takes the general form
Pl = pac(ws] + Aw)), (2.16)

where w is the equation of state relating the isotropic

pressure to the energy density and Aw{ is an equation of
state for the anisotropic pressure. From a phenomenologi-
cal point of view, this corresponds to an extension of the
dark energy sector, similar to the ansatz (1) of Ref. [41],
which will allow us to address the question of the deviation
from the standard cosmological constant reference (i.e.,
w=—1and Aw] = 0).
Defining the Hubble expansion rate by

H=a/a, (2.17)
the background equations [22] take the form
3H? = k(pm + pae) + %62, (2.18a)
(&j)' = —3H8§ + KH;-. (2.18b)
Pm = —3Hpp, (2.18¢)
Pae = —3H(1 +w)pge — ;117 (2.18d)

The first equation is the analogous of the Friedmann
equation in the presence of a spatial shear; the second is
obtained from the traceless and transverse part of the
Einstein equation and dictates the evolution of the shear.
The last two equations are the continuity equations for the
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dark matter (P = H; = () and dark energy sector. We have
set' k = 872G = M32.

5. Dynamics

The set of equations (2.18) can be formally integrated.
As usual, the dark matter energy density scales as

ap 3
= — . 2.19
Pm Pmo ( a > ( )
Equation (2.18b) has a first integral given by
~i ao : i i a 2d(a/a0)

where Cj. is a constant tensor representing the decaying
mode of the shear. Note that if the term proportional to Cj. is

not negligible, then the shear is not proportional to the
anisotropic stress so that o;; and I1;; cannot be diagonalized
in the same basis. Integrating Eq. (2.18d) leads to

a )\ —3(1+w) . (a 283w d(a/a
Pde = <_> |:pd60 - /O-:H; (_) ( / 0>:|
dao ap H

(2.21)

or, if one uses the decomposition (2.15), as

a )\ —3(1+w) . ~da
_ all — [ &AW —|. (2.22
Pde = Pde0 <a0> €Xp [ / & W a H] ( )

In the particular case where w = —1, this latter equation
teaches us that the dark energy density does not remain
constant.

B. Linear perturbations

Cosmological perturbation theory around a Bianchi /
background spacetime, in the Bardeen formalism, was first
investigated in Refs. [22,24]. The perturbed spacetime has a
metric of the form

ds? = a?[—(1 + 2A)dn* + 2B;dx'dn + (y;; + h;;)dx'dx/],
(2.23)

where A is a free scalar function, B; = 9;B + B; and h; ;=
2C(yij + %) + 20,0,E 4+ 20,E;) + 2E;; defined together
with the wusual transversality and trace-free condi-
tiOnS 31-Bi = 0 - (9iEi,Ef - 0 - 61E”

'In order to easily check the homogeneity of the equations, we
recall that

H)~Mp.  [pl~Mb.  [kI~M72  [o]~Mp. [I~Mb.
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As summarized in Sec. A 2, one can define 2 scalar ($
and W), 2 vector (®;) and 2 tensor (E;;) degrees of freedom,
which are gauge invariant; see Eq. (A25). Similarly,
one can define gauge-invariant variables for the matter
sector, leading to four scalar variables (5p, 5P, b and 7%,
respectively, for the density, pressure, velocity and aniso-
tropic stress), four vector variables (7' and #}) and two
tensor variables (iriTj) the expressions of which are gathered
in Egs. (A33) and (A35).

Appendix A summarizes all the techniques and results
needed to study the perturbations, including the definition
of the Fourier transform (Sec. A 1), and the construction of
the gauge-invariant variables (Sec. A 2). It then derives the
full set of Einstein equations (Sec. A 3) and the conserva-
tion equations (Sec. A 4).

Among the important features that differ from the
standard perturbation theory around a Friedmann-
Lemaitre spacetime, let us mention

(1) the fact that only the components k; of the wave (co)

vector are constant so that both k' and k are time
dependent—see e.g., Eq. (A2);
(i) the fact that the scalar-vector-tensor modes do not
decouple;

(iii) the fact that, even at late time, the two Bardeen
potentials are not equal because of the anisotropic
stress.

III. WEAK LENSING IN A GENERAL SPACETIME

This section provides the definitions and equations
describing the propagation of a geodesic bundle (geodesic
equation and Sachs equation) in a general spacetime and in
the particular case of a Bianchi / universe.

A. Geodesic bundle

Weak lensing is concerned with the deformation of an
infinitesimal bundle of light rays propagating in curved
spacetimes. It is thus related to the geodesic deviation
equation.

1. Geodesic equation

The central quantity in the geodesic equation, obtained
as the eikonal limit of Maxwell’s equations, is the wave
vector of an electromagnetic wave, k*(v) = dx*/dv, where
v is an affine parameter of a given geodesic x*(v) and
defined such that it is zero at the observer and increases
towards the source. We shall be working in the eikonal
approximation where k* is a null vector satisfying the
geodesic equation

k*V k' = 0. (3.1)
If we parameterize the bundle of null geodesics by x*(v, s),
where s is a continuous parameter labeling each ray of the
bundle, then each ray has a wave vector given by
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k*(v,s) = Ox*/Ov, whereas the vector 7* = Ox* /s gives
the infinitesimal separation between two neighboring geo-
desics of the bundle. The photon wave vector can always be
decomposed in components, respectively, parallel and
orthogonal to u* as

F=U"%=—-u+n, (3.2)
where n# are the components of the local directional vector
n, defined such that

un, =0, n,n* = 1.

3 (3.3)

Once the geodesic equation is solved, any comoving

observer with 4-velocity u©”, normalized such that
w'u, = —1, defines the redshift of a source by
(k,u"),
1 , =+ 34
+alom) = ! (34)

where v is the affine parameter that specifies the position of
the source down the light cone and

(3.5)

is the direction of observation. The energy of a photon at a
given redshift is
U(v,ny) = Uyl + z(v,n,)], U, = (k'u,),. (3.6)
By definition, the local spacelike vector n is a function of
the affine parameter v and of the direction of observation

observer n,, that is, the spacelike vector pointing along the
line of sight.

2. Geodesic deviation equation

A (narrow) light beam is a collection of neighboring light
rays. The behavior of any such geodesic, with respect to an
arbitrary reference one, is described by the separation (or
connecting) vector n#. Assuming that all the rays converge
at a given event O (the location of the observer), ##(0) = 0.
The evolution of ##(v) along the beam is governed by the
geodesic deviation equation

d*n#
L Rﬂmﬂkvkar[ﬂ,

= (3.7)

where R¥,; is the Riemann tensor.

3. Sachs basis and screen space

For any observer whose worldline intersects the light
beam at an event different from O, the beam has a nonzero
extension, since a priori n* # 0. The observer can thus
project it on a screen to characterize its size and shape.
This screen is by essence a two-dimensional spacelike
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hypersurface and chosen to be orthogonal to the local line
of sight n”. Two such spatial vectors required to construct a
basis for the tangent space, n, with a = {1,2}, are defined
by the requirement that
Halp, = 8ap, nau, = ngn, = 0. (3.8)
With these definitions we can construct a tensor which
projects any geometrical quantity on the two-dimensional
surface orthogonal to n:
Sy = G + uuu, —nyn,. (3.9)
Then, with the help of the orthogonality relations (3.8), this
two-dimensional screen basis can be parallel propagated
along null geodesics as [77]
S,k*'V,ng = 0. (3.10)
A basis satisfying the condition (3.8) and propagated
according to Eq. (3.10) is called a Sachs basis. It is
important to note that the basis formed by the vectors n,
is defined up to an overall rotation around n,. We can fix
this freedom by introducing a spherical basis at the
observer (i.e., at v = 0) by demanding that {n°,n{,nS} =
{n9, ny, nj,}. With this choice, the integration of Eq. (3.10)
allows us to define a unique three-dimensional basis
{n,.ny,n,}(n° ) at each point along the geodesics; see
Ref. [59]. Furthermore, it will be convenient to define a
helicity basis as

1 . 1 .
"isz("e F in,) :ﬁ(nl F iny), (3.11)
whose components in the n, basis read
1 .
n% =ny-n, =—= (8¢ F1i65) (3.12)

V2
and are, by construction, constant.

B. Sachs equation

The screen projection of the connecting vector,
Ny = n’énﬂ, represents the relative position on the screen
of the two light spots associated with two rays separated by
n*. Similarly, and if we set by convention U, =1, 0, =
(dn,/dv), represents the angular separation of those rays,
as observed from O.

The geodesic equation can be recast as [2] an equation
for 5, as

d*n,

W = Rab’]bv

Rap = Ryapkknlinl).  (3.13)
R, 1s the screen projected Riemann tensor which can be
split into its symmetric traceless part R, and its trace part
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R =R,,0%/2. It is also referred to as the optical tidal
matrix. Furthermore, thanks to the linearity of Eq. (3.13),
one can decompose the connection vector on the geodesic
to its initial derivative as

7o) =2y (L)

This defines the Jacobi map D, that satisfies the Sachs
equation [2,78]

(3.14)

d2
d—D" REDy, (3.15)
subject to the following initial conditions:
dD“
Di0) =0, —2% (0) = 5. (3.16)

C. Decomposition of the Jacobi matrix and observables

The Jacobi matrix entering the Sachs equation (3.15)
encodes all the information about the deformation of a light
beam when propagating through a curved spacetime. This
2 x 2 matrix can be decomposed in different ways.

The usual decomposition is described in terms of a
convergence k, a rotation V, and a shear y,;, as

Dah(v) = DA(U)[(l + K)Iab + Veab + yab] (317)
with
€ap = 2in[‘anif], 7 =0, (3.18)

and where screen-basis indices @ and b are manipulated
with [, =S Wn’(ﬁn’;7 = 0, that is, with a two-dimensional
Euclidian metric.
A canonical
Ref. [67] as

decomposition was introduced in

Dab(v)EDA(v)[COSW Si“"’}ex {‘Fl Fﬂ.

—siny cosy r, I

rotation cosmic shear

(3.19)

According to this decomposition, the real size and shape of
the light source are obtained from the image by performing
the following transformations: (i) an area-preserving shear
('}, T,), (i) a global rotation y, and (iii) a global scaling.
The latter defines the angular distance as

V det Dab(y)a

which does not assume any background spacetime and
perturbative expansion. On the other hand, the definition

D,(v) = (3.20)
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(3.17) introduces the background angular distances D,.
Both are related by
= Dy(v)[1 + &(v)].

Dy(v) (3.21)

As for the deformation of the source shape, it is given by
the reduced shear

Diaby Vb
JaetD, (1—x)°

Each one of the above observables are defined on our
past light cone, and, as such, they are functions of n, and .
The convergence and the rotation are scalar functions and
therefore can be expanded in terms of scalar spherical
harmonics as

(3.22)

ZKfm
vam

The cosmic shear, on the other hand, being a spin-2
quantity, can be expanded in terms of the polarization
basis as

V)Y, (0°), (3.23a)

V)Y n(n®).  (3.23b)

Z}/ (n°, v)ninj.

The coefficients y* can be further expanded in terms of E
and B modes on a basis of spin-2 spherical harmonics as

7i(n0’ U) = Z[Efm(v) + iBfm(”)]Y?”:r%z(no)'
£.m

n°,v) 3.24
7ab (

(3.25)

It should be stressed that we adopt an observer-based
point of view. This means that all quantities are expressed
in terms of (r° ). In general, n(n°, ?) # n°, with the
obvious exception of, e.g., Friedmann-Lemaitre spacetimes
and spacetimes with a local spherical symmetry for an
observer located at the center of symmetry. Therefore, one
of the difficulties in obtaining cosmological observables as
a function of v, or equivalently as a function of the redshift
z, lies in the determination of these coefficients.

D. Particular case of a Bianchi I spacetime

1. Geodesic equation

The Bianchi 7 spacetime enjoys three Killing vectors 0;
that allow one to construct three conserved quantities
9(0;, k) = k; along any geodesic. It implies that

k; = cst (3.26)

on each geodesic so that
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) k.
=120 (3.27)

a

k being a null vector, one concludes that w? = (k')? =

(3.28)

It follows that the components of the direction of obser-
vation vector n* are given by

n;, = k;/w, n' =k w. (3.29)
The constants of motion k; are then directly related to the
direction in which the observer in O needs to look to detect
the light signal, i.e., the direction of the source nh. The
redshift of a source is then given by

It is always possible to choose the normalization such
that a, =1 and f;(¢,) =0, but we do not make that
choice here.

2. Jacobi matrix

The study of the Sachs equation is simplified after
performing a conformal transformation of the metric by
a scale factor a:

G = @* G- (3.31)
It can be checked that any null geodesic for g,,, affinely
parametrized by v, is also a null geodesic for g,,, affinely
parametrized by ¥ with dv = a?dd. The associated wave

four-vectors then read k¥ = a?k*. Since the 4-velocities of
the comoving observers for both geometries are, respec-
tively, u = 0, and u = 0,, so that & = au, we deduce that

® = g u'k = a”'g,, kK =a'e.  (332)

The 3 + 1 decomposition of K" is therefore

k= o= + i) (3.33)
with n# = an* implying n, = n,/a and
k.
np=—=. 3.34
iy = (3:34)

The Sachs basis (i7;) for the conformal geometry is then
related to the original one (3.8) by

PHYSICAL REVIEW D 92, 023501 (2015)
(3.35)

il = ant, ﬁz = a‘lnﬁ.
One can indeed check that the orthonormality (3.8) and the
parallel transport conditions (3.10) are preserved by the
conformal transformation with the use of the projection
matrix S, = a~25,,,, instead of Eq. (3.9).

The separation four-vector #* is defined by comparing
events only, independently from any metric. It is therefore
invariant under conformal transformations. However, its
projection over the Sachs basis changes (since the Sachs
basis itself changes), indeed
(3.36)

n“ =ngn! = angn = an®.
This implies that the Jacobi matrix transform as [61,67]

D,, = aD,,. (3.37)

Hence, the angular distance D, in the Universe described
by a metric g,, is just aDA, where DA is the angular
distance in the Universe described by the metric g,,. At
lowest order in perturbations, k is the relative perturbation
of angular diameter distance whatever is the metric used.
As for the reduced shear, it remains unaffected by the
conformal transformation. In the remainder of this article,
we will thus discard the effect of an overall scale factor, in
order to simplify the computation. However it should be
recalled that, as shown by Eq. (3.32), a conformal trans-
formation has an effect on the energetic aspects of light
propagation, that is, on the relation between the redshift and
the affine parameter U(v).

3. General solution

Using such a conformal transformation, it was shown in
Ref. [67] that the Sachs equation can be solved analytically
in a Bianchi / universe. This solution relies on the fact that
the Sachs equation can be rewritten as

D, - =
2 = RueDeps 3.38
d1~]2 acHcb ( )
with the rescaled optical matrix given by
- y &
Rab = a)2 (Gab)/ + OacOch + Eo-ab . (339)

The explicit solution of this equation is given in Secs. VIIA
and B of Ref. [67].

IV. SMALL SHEAR LIMIT
A. Definition

The current observational status of the ACDM model
shows that if the expansion is anisotropic, ¢/H has to be
small. Moreover, since any primordial anisotropy is washed
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out by the expansion of the Universe, the term Cj. in the
evolution of the background shear is negligible compared
to the integral term in Eq. (2.20).

As discussed in the introduction, a late-time anisotropy
may be generated during the acceleration of the Universe,
but the effect we are looking for needs to have an amplitude
small enough to be below the detection threshold of
ongoing observational surveys.

In full generality a linear and gauge-invariant perturba-
tive expansion around an anisotropic background should be
performed. It was developed in Refs. [22,24] in the context
of inflation and Appendix A derives the full perturbation
theory for a postinflationary era. While a numerical
integration of these equations can be performed, it is clear
from the previous arguments that an analytical insight in the
regime o/H < 1 is sufficient.

We shall thus work in the small shear limit in which the
background shear induced at late time by the anisotropic
stress-energy tensor of the dark component is small, that is,
in the limit 6/H < 1. More precisely, we assume that y;; —
0;j = 2p;6;; is a small dimensionless perturbation and
0;;/H is of the same order as this homogeneous perturba-
tion. We shall thus consider the Bianchi / spacetime as a
homogeneous perturbation around an isotropic Friedmann-
Lemaitre spacetime, hence ignoring nonlinear corrections
in the background shear as well. In order to implement this
approximation scheme, we introduce a two-parameter
perturbation scheme (see e.g., Ref. [79]) in which, besides
the usual scalar-vector-tensor (SVT) perturbations over a
flat Friedmann-Lemaitre background, the geometrical shear
is considered as an extra perturbative degree. We refer to
Ref. [80] for a detailed description of general Bianchi
spaces in this approach.

B. Spacetime description

1. Metric
We shall thus adopt the metric

d32 = Clz [_<1 + 2@)(17’]2 + 2Bld.xld7] + (}/l] + hu)dx’dxj},
(4.1)

where h;; is defined as [see Egs. (A19) and (A36)]

O-ij

and y;; is here understood as the Euclidian metric plus a
small perturbation
ac;;jdd o

<.

Yij =06 +2 CHd o

(4.3)

In order to simplify the notation, we also define the matrix
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pij = diag(p;) (4.4)
such that

vij = exp[2p];; = 6;; + 2By, 0;j =05 =Py (45)
Thus, f;; controls the homogeneous perturbation. Indices
are now raised and lowered with the Euclidian metric J;;
and &Y, and the vector modes B; and tensor modes E;;
satisfy 9'B; = O'E;; = E{ = 0. But since f;; is homog-
enous, everything happens as if we had usual cosmological
perturbation, but also an infinite wavelength perturbation
2f3;; to the spatial metric.

To control the perturbative series, we introduce the
{n, p} notation, where n and p indicate powers in # and
SVT variables, respectively. Thus, a term like 6;;/H is of
order {1, 0}, terms like ¥ and & are of order {0, 1}, while a
product like 670, %/H is of order {1, 1}. However, since
vector and tensor modes only appear due to the coupling
between the shear and scalar modes [22], vector perturba-
tions B; and tensor perturbations E;; are also of order
{1,1}. Hence, for any quantity X, one will consider the
different quantities:

(i) x100}(y).—the Friedmann-Lemaitre background

value;

(i) X{'0}(y)).—the first-order (homogeneous) scalar
perturbed quantity in ¢/H;

(iii) X{%1(y,x).—the first-order inhomogeneous per-
turbed quantity in W, ...;

(iv) X1 (5, x).—the first-order inhomogeneous per-
turbed quantity in both 6/H and W, ... and vector
and tensor perturbations.

Before moving on we should make some general
remarks about the adopted perturbative scheme. Indeed,
one might be worried that adding ¢;;/H or §;; as a small
homogeneous perturbation to the background metric would
not have any significant observable effect, since the SVT
decomposition was already designed to describe the most
general perturbation over a flat Friedmann-Lemaitre uni-
verse. Note however that SVT modes do not include a zero
Fourier mode in their spectrum (i.e., an infinite wavelength
perturbation), since these modes will be isotropic by
construction and hence merely rescale the background
geometry. The tensor f3;;, on the other hand, is a homo-
geneous (i.e., space-independent) field, which by definition
corresponds to an anisotropic zero mode. Thus, its effect
cannot be absorbed in a simple rescaling of the scale factor.
Moreover, this field sources the background dynamics
through Einstein’s equations.

2. Tetrad basis

Given this expansion scheme, the tetrad basis associated
to the perturbed metric up to order {I,1} is explicitly
given by
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/
/

©; = (8 + ;) (1 - V) AR e, = B,

MN=1-d,  ©)=-8,

e’ —o,

O =1+, , (4.6)

where «91’ refers to the background spatial triad defined in

Eq. (2.11). By choosing the observer to coincide with the
0

= —0Oy) we

obtain in general the components of the direction vector

n in the tetrad basis as

timelike vector of the tetrad (u* = @}, u

ki=—kni,  pni=0Ln" (4.7)

At the position of the observer, the direction of the geodesic

in the tetrad basis né is also the direction in which the
observation is made. Again, we recall that we are interested
in the observables related to light propagation as expressed

in function of this observed direction 7.

Since we have introduced two types of tetrads ({9} and
{®}), there is an ambiguity whenever a tetrad index i
appears on a tensorial quantity. First, for the geometric
shear tensor, the tetrad index is defined with respect to

the tiad 9 and we recall that o;; =o' =0 =

diag(p;') = pi;; see Eq. (2.12). Second, for partial deriv-
atives the tetrad index corresponds also to the tetrad {9}
and we define

0, =910; =0, - plo;. (4.8)
It makes clear the difference between a derivative in the
direction of a tetrad vector d; and the derivative in the
direction of the vectors 0; associated with the Cartesian
coordinates. Since the vector perturbations B; and the
tensor perturbations E;; are already of order {1, 1}, there

is absolutely no difference between their tetrad components
B; and E; ; at this order of perturbations and there is no need

to be particularly careful. Everywhere else, a tetrad index
refers to the tetrad {®} defined in Egs. (4.6).

C. Technical interlude

Since we are interested in computing observables on
the celestial sphere, spherical coordinates are much more
convenient than Cartesian coordinates. This section
describes the use of such spherical coordinates in real
space and of the associated derivatives (radial and on the
unit sphere). Several definitions of covariant derivatives
have to be distinguished. We finish by relating them to
each other and to the spin-raising operator of spherical
harmonics.

PHYSICAL REVIEW D 92, 023501 (2015)

1. Spherical coordinates in real space

Consider a tensor depending on Cartesian coordinates
T, ., (x') (with indices raised and lowered, respectively,
with &;; and 6V); it can always be constructed by consid-
ering the tetrad components of a given tensor. In spherical
coordinates, one can then define from the partial derivative
0; = 0/0x" a covariant derivative D; on the unit sphere and
a radial derivative 0,. To be more precise, this requires the
use of the projectors

i 3
. X .
=Ry, ==, with 2= (@)% (49
Xifj, X=—. with r (x") (4.9)

S ij 5!’/ J
i=1

Recall that S = §775/4S,, and S = §”S ;. The covariant
derivative on the unit sphere S2|space of the Cartesian

coordinates centered on the observer is denoted by DF’
and is defined from the general projection

| 0 0
R” — qk n —
ST g, =81 ST T, = P{@le...j,,}

(4.10)

where P[...] is to be understood as the projection of all free
Cartesian indices with the projector S{ . This derivative only
makes sense if the tensor itself is a projected tensor, that is,
if it satisfies P[T; ;| =T, ;.
The radial derivative is then obtained simply by

#07 (4.11)

8rT jl"'jll.

Jie-Jn = axl

Now, any combination of partial derivatives 0; applied to
some tensor can be decomposed in terms of radial deriv-

atives 0, and covariant derivatives on the sphere DER3. The
simplest such decomposition is

0uf =50, + DS, @.12)
for any scalar function f. The decompositions for projected
tensors of various ranks is detailed in Appendix D 1. For
general tensors which are not necessarily projected, it is
necessary to split them into their projected components on
the sphere and their radial components before decomposing
any derivative applying on them. Such decomposition for
the vector and tensor modes is given in Egs. (D5). To finish,
it is easy to check that
DF'S; =0,

D¥e; =0, (4.13)

where the completely antisymmetric tensor on the sphere is

€ij = eijk)%k' (414)
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2. Covariant derivative on the tangent space

For any spatial tensor constant in space, such as o; ;, one
can define scalar, vector and tensor fields on the unit
sphere. First, one can define a scalar field on the unit sphere
of observing directions, S?|., by contracting all free

indices with the direction of observation:

k

= aiknéna. (4.15)

1
2
Indeed, the observing direction can be considered as a point
on 52|, whose spherical coordinates are (6,,,), and £
from the expression (4.15) is thus a function of (6,, ¢,),
that is, a scalar field on S?| . Then, to define a vector field
on the unit sphere, one needs to contract one index with the
observing direction and project the remaining one on the
sphere. Furthermore, in order to get a tensor field on
the unit sphere, we shall project the two free indices on the
sphere. These projections are obtained by contraction with
the screen basis vectors n¢ at the observer. For instance, the
vector and tensor fields on the sphere build from the
geometric shear are simply

T, = nglaj_-nf,, o = nginl‘;’—‘aik. (4.16)
We remark that X ;, which is a symmetric 2 X 2 matrix, is
not traceless. In fact, using the partition of the identity
81 = ninl + nini +nbnj, the trace is given by
5ndinoko;, = —o;nink = —2%. Alternatively, the vector
and tensor fields (4.16) can be obtained by applying
successively the covariant derivative on the unit sphere
D, to X(6,,®,). Indeed, with this method, we find the
relations

¥, =D,X,
D, DY = —6%,

Zab - DanZ + 25ab27

2(01)) - D<an>Z. (417)

Note that the metric and the antisymmetric tensor on the
sphere are obtained from

(+ -)

Bup = 214" 1y’ €ap = 2in£,_n2'] (4.18)
and satisfy
D o, =0, D,e,. = 0. (4.19)

3. Background geodesics and identification of
covariant derivatives

The covariant derivative D, related to the unit sphere in

the observer’s tangent space, and the derivative Dﬂ-v, related
to the unit sphere of Cartesian coordinates, are fundamen-
tally different. But, they can be related in a simple way.
Indeed, the solution to the background geodesic at order
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{0,0}, that is, the geodesics of the spatially flat Friedmann-
Lemaitre spacetime, is given by
i oi

: i
nt = ng, g = ngt,

dxi{0,0}

0 (4.20)

= nb = x1{00} =yt

where, we remind the reader, ng is the direction of the
geodesic at the position of the observer in the tetrad basis.
This is the direction of observation, since we have oriented
the geodesic toward the past.

There is thus a straightforward identification between the
sphere of the directions of observation, lying in the tangent
space at the observer (the set of directions S?|,, spanned by
n,), and the set of points of R3 reached at an affine
parameter y (or 1) on the background geodesic. Indeed, the
points spanned by the coordinates x{*} at a given affine
parameter y are such that

5i/‘xi{o’0}xj{0'0} — ”2()() :)(2

and form a sphere in the Cartesian coordinates. We can then
subsequently identify this sphere of radius y to the unit
sphere S| ;e _

This means that we can identify nf) with &' and then D,
on S2| . with n%ZD®’, the projection onto the screen basis
nY being used only to switch from the extrinsic point of
view of the derivative (the projection of the Cartesian
derivative onto the sphere) to an intrinsic point of view on
the sphere. In the rest of this article we thus replace the

notation D®* by D;, n%:D® by D,, and n%:D¥ by D,.

4. Link with spin-raising operator and spin-weighted
spherical harmonics
The covariant derivative on the unit sphere is related to
the usual spin-raising and spin-lowering operators. In
spherical coordinates, these operators are defined for a
spin-s quantity by

E) : 1 fa—S s
X = —s1n‘9{8g+1m84 (sin™0X*),  (4.21a)

- - o1 s
JX° — —sin 9[89 — 1m34 (sin*6X*). (4.21b)

They are related to the covariant derivative through

4 =-V2n"D, = —V2D,,

4 =—V2n%9D, = —V2D_, (4.22)
the vector n._ being defined in Eq. (3.11). Hence, for a tensor
field of spin +|s| on the sphere, X"~ = X*n9¥1...n%%,
and a tensor of spin —|s|, Z1-* = Z7*n2"1...n%%, we have
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V2V = (FX0)nSHnSh . nG s

S+ (FX)norno . nS%,  (4.23a)

—V2VHZN s = (JZ75)nOHnO P . s
+(BZ5 kot no¥. (4.23b)

Since the spin-weighted spherical harmonics satisfy the
property

m LY, if0<s<¢?,
Y, = (4.24)

D/ (fif)i I Y, if —£<s5<0,

any number of covariant derivatives applied on a spherical
harmonic can be computed using the properties (4.23).

As an application, consider the expansion of the variable
2 in spherical harmonics

+2 '
= Z Z2;n()()y2m(ng)'

m==2

(4.25)

If we align the azimuthal direction with an eigendirection of
the geometric shear, the multipoles coefficients are then

given by
\/7 1By (x) + Br(x

$1a(y) = \/%[ﬂa ) = B0l

220()(
(4.26)

The most useful derivatives are then easily obtained to be

> (y, né)) = n";knolakj(;() =D Xy, nf))
=F fzzzmw )Y, (n ) (4.27a)
Z (s ”o) = ” Uk]()() D, D, Xy, ”%))
_ % Zzw YE (). (4.270)

Similarly, if we expand a scalar field ¢(y,x') in spherical

harmonics

)= "0emle )Y en(®),  (428)
£.m

then the most useful derivatives are

— \/””“;”;%o@ AYEL(E), (4.29)

D.ogp(y.x")
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DDy %\/ Z ent 1Y 2 (5,

(4.29b)
2D, Dp(x,x') = D, D%y, x)
==L+ 1) @en(r.r)Y on(&).
£m
(4.29¢)

D. Geodesics and Sachs equations in term of the
Friedmannian coordinates

In the approximation that we are considering, we can
solve the perturbation equations and the Sachs equation up
to order {1, 1}. We shall define the distance down to the
light cone on the Friedmann-Lemaitre background space-
time as

X =M —1. (4.30)
The geodesic equation (3.1) takes the form
dk¥ _dy

v k%kP =0 K = 4.31

dv Tl ’ T dv (4.31)

and using (4.7) can be rewritten directly in terms of tetrad
components as

dki dk; | |
a:d—v‘: (kQ)z(wk[ “nl +a)001 191’”1 _iji”l)v
(4.32a)
A dky N |
E d’U (kO) ( a)izgnlnl + wQ{in)v (4.32b)

where the affine connections are defined in Appendix B 1.
Instead of the parameter » we shall use the parameter y
since, once the wave vector is integrated, we have

dx# k+

—_—=——. 4.33

dy k9 ( )
The position on the geodesic then becomes a function of the

parameter y and the initial direction n%,. Finally, the Sachs
equation with the parameter y reads [61]

D, 1ddD,, 1
dy?  Kdy dy  (k9)?

RueDep- (4.34)

V. ANGULAR MULTIPOLE CORRELATIONS IN
ANISOTROPIC SPACES

As previously explained, we adopt an observer point of
view in which all observable quantities are considered as
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functions of the direction of observation n, and of the affine
parameter v or, equivalently, of the redshift z, keeping in
mind that the latter also depends on n,. All these quantities
can be decomposed on a basis of spin-weighted spherical
harmonics, Y¥, . The goal of this section is to derive a set of
formal expressions concerning these expansions and to
establish general results of the two-point correlation func-
tion valid in Bianchi / geometries.

We consider that the Universe has undergone an early
period of isotropic expansion followed by a late-time
anisotropic phase. This is in sharp contrast with the
approach of Ref. [30], in which the Universe is supposed
to have an early inflationary stage followed by an isotropic
evolution (so that geodesics are Friedmann-Lemaitre geo-
desics and anisotropy is imprinted only in the source term).

The tools we shall develop are not specific to weak
lensing and can be used in other contexts, such as the study
of the cosmic microwave background. We first describe, in
Sec. VA, the general expansion of spin-s quantities. This
will allow us to express their angular power spectrum in
Sec. V B. We conclude by demonstrating that, while spatial
parity symmetry implies that the EB correlation matrix
vanishes, some off-diagonal correlations are necessarily
nonvanishing and encode information on the geometri-
cal shear.

A. Multipolar expansions

The spin-s polarization basis is defined as a tensor
product of s polarization vectors as

if s >0,

nE® - @nt
ms E{ ® - ®n 1 (5.1)
if s <O.

o ®-Qng

Under the action of an active rotation R, this basis trans-
forms as

Rmi| =R -mi(R™' - n,), (5.2)

where n,, is the vector along the line of sight at the point of

observation. Spin-weighted spherical harmonics transform
under the same rotation as

R[Y}, (ng)mg] =Yy, (R™" -n

- ZYfm

o) Rmg]

)miD’, (R), (5.3)

where D’ (R) are the components of the Wigner D
matrix. This means that they transform like normal
spherical harmonics provided they are accompanied by
the polarization basis to which they are associated.

Now, any cosmological observable X* of spin s can be
expressed in the form

PHYSICAL REVIEW D 92, 023501 (2015)

X (ys.mo)my = / " $% (rsx.mm3dy. (5.4)
0

where yg refers to the position of the source. Note that we
are explicitly making use of the small shear expansion,
since the source term is integrated along a geodesic of the
Friedmann-Lemaitre spacetime. This means that in order to
compute X* at order {n, p} one needs to determine the
source $% at the same order. The source term S*s(yg, v, n,)
has to be understood as

SXS()(S’)(’ (55)

n) = S (rs.x %', no)|xi:){n£v

that is, evaluated on the background geodesic. Moreover,
thanks to Eq. (4.30), the parameters y and y can be thought
as time coordinates. The intrinsic angular dependence of
S%: on n, is a consequence of the (possible) nonscalar
nature of the source. Moving forward, it is convenient to
decompose X* into spherical harmonics as

(5.6)

XSO(S?"O)m fom()(S Y;m ) o>

which will allow us to define multipolar correlations at
unequal times of the form (X3, (vs1)X3"  (¥s2)). In order to
compute these angular correlators, we first need to take the
Fourier transform of the source (5.4) off the line of sight

&’k
0 )3/2SX ()(S X?k n ) 1kxm0’

(5.7)

S5 (sox X' mg)ml = /(

in the sense that we do not bind x’ to y by the relation

x' = yny and y has to be thought as a time coordinate
thanks to Eq. (4.30). Then, the intrinsic dependence of the
source on n, is further expanded in terms of spherical
harmonics, with the latter being defined with respect to an
axis aligned with the Fourier mode k. That is,

SXS ()(S’)(’ ) k’ no)m(;

= Senlrsx k)i

£.m

dr

27 + 1 (5-8)

Rk[stm (no)mg)]’

where R; is a rotation that transports the azimuthal
direction to the direction of the Fourier mode k (see
Appendix C for details about this notation). The terms
with m =0, 1,2 correspond here to scalar, vector and
tensor perturbations, respectively. If we now make use
of the Rayleigh expansion
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47;21 Je(kr) Yfm(k)Yfm( n,)
— 21

with r = §;;x'x’/, and insert the decomposition (5.8) into
Eq. (5.7), we find, after comparing Eqgs. (5.6) and (5.7), that

X5 (rs) = \[ / &k / d;(ZD (Rp)i’
3

where we have introduced the definitions

)26 + 1)jo(kr)Re[Y so(n,)],  (5.9)

kr f’ (s x. k),

(5.10)

s :(&'m') — s m'Om’ L+¢'—¢ ( )( 1)
= crun X
Je (x) EL : 49% JL( >1 \/(Zf—f— 1)(22/”/ + 1)

(5.11)

and

sy = / POV (1) ()Y, (). (5.12)

(X, Grs) 2, Grs2)) = > (7 (=i) /O dkk2P(k / " / Ty Yoy -

(m)) _ mymM | — mymM, X LM Lo M,*
K 21y m 1 1 —m 2 2 X 1My s 2My
x (k1) *Je, (kﬂ(z) ‘Cflle chszz lelml (rs1>x1 ) Zszmz (rs2: 22, k).
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The dynamical evolution and the initial conditions of the
source can be split as

S5 (rsoxo ) = T Orso o k) @i(K), (5.13)

where T);;'n is the (anisotropic) transfer function and ®;(k)
is the primordial gravitational potential. Then, assuming
that anisotropies are induced at late-time evolution only, the
statistics of the primordial power spectrum must obey

(®;(k)2; (q)) = P(k)&*(k — q). (5.14)

with P(k) being the (isotropic) primordial power spectrum.
To account for the angular dependence of the transfer
functions, we further decompose them as

T (s x k) =Y ST (rs. 3. k)Y (k). (5.15)
LM

B. Expression of the two-point angular correlators

These formulas can now be combined [using in
particular Eq. (D25) to integrate out all spherical har-
monics] to give an expression for the correlation between
the multipoles of two different observables X' and Z*.
We find

m +m sl] 1 |>

£.m //m"lMl
f, , LMy

(5.16a)

A central quantity in this description is the two-point correlation function of the £ and B modes of a given spin-2 observable

(as, for instance, the cosmic shear y). This expression requires the decomposition of X*5, 5 Jr

odd parity pieces as

5 (&m sl (&
=5 0) = Mef

S;{%(Zs,l, k)

('m! X. . .
(#'mr) and S, in their even or

= E};,(x) +isgn(s)B;, (1), (5.17a)
") (x) + isgn(s)18Y™) (x), (5.17b)
= [TF,, (xs.x. k) +isgn(s)T2,, (xs. 2. k)| ®i (k). (5.17¢)

Note that a spin s = 2 field will have both £ and B modes, while a scalar (s = 0) field will only have the £ mode, so that

05" = 0 and BX = 0.
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From these expressions and Eq. (5.10), one can verify that

Xs 20 +1
Efm()(s \/7/d%k/ dj{ZDmm k %

x Y [l (k)()Tff;f()(sJ(,k)—'S‘ﬁfflm/)(k)() TE (s, 1. )] (k), (5.18a)
.
Bfm()(S \/7/d3k /ZS d)(szm Rk 2{;‘71-_1)
x> Slelr ™ (k) T Grs ) + P ™) (ko) TS (s 0. K]0 (K). (5.18b)
.

Then, the EE and BB covariance matrices can be computed by simply taking appropriate combinations of X%j, In order to
simplify the notation we define

s 2 . . o0 Xs1 Xs2
MG, s s2) = - () () [T akee [ ary [ o,

’ 1Al fm nm —m m
XZZZ(_I)WMAJ; )(kﬂf) J;Z " (kx2)™" CflfLﬁl/[l CL”ZZLIZIMTL !

1

X (xs1.x1. k)€ EIZM/Z (xs2sx2: k) (5.19a)

together with the notation
ajien) _ { sl if A = EXs,
’ SpC i A = BX..

Thus, the EE and BB correlations become

< f:ml fqmz ZM?S;LAICLLQMZ 5E6165‘ + 51125163‘ - 555163‘ - 51{4355}’ (5203)
(B, Brin) =Y MACAC | [556E + 8568 + o508 + 55 0L]. (5.20b)

AC

where, in the last equality, we have introduced the notation according to which A equals EX: (respectively, BX:) whenever A
is equal to BX: (respectively, EX+), the same holding for C. The EB correlation can be computed using the same method.

The expression (5.20) is quite general. Let us first focus on its diagonal part, which can be characterized by the following
estimators of

CEE(xs1.xs2) = 21 IZ Efm(){Sl Ef,i:()(sz)>1 (5.21a)
1 N
CBB(xs1.x52) = 21 Z<B§,‘§1(Zs1)3§§n (rs))- (5.21b)

The angular power spectra are then given by simpler expressions

2 [odkk®
CElrsiorss) = | TGP0 Y (65of + kel —afot ~oLof)
m,L.M.A,C

*

Zs1 (&1m xs2 (lom
X [Z/) d)(lAT%‘fn(;(SI,)(sz,k)A](f’ )(k)(l)] [ZA d)(chLIZ%()(Sh)(sz,k)Cng (k) (5.22a)
4y [

with, again, a similar expression for the B modes.
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The case where the transfer functions are isotropic is
easily recovered. To see that, let us consider the simpler
situation where X*' = Z*> = ©, with ® being the CMB
temperature fluctuations. Since © is a scalar, then it is a
pure E mode with no B mode. In the previous formalism,
we just need to set ETLM = OTLM and BTLM — (). Then,
using ®TEM = \/4xT9 §"06M°, we get from Eq. (5.16) the
standard result

2 1)
C9° = . / K*dkP (k)

0 m
/) d)(ZT k) j

where in this specific case it must be understood that the
visibility function is included in the transfer functions
T9 (k,x').If we consider only scalar sources, then only the
m = 0 mode contributes. Analogously, if we also have
sources with no intrinsic direction (like, for example, no
Doppler effect in the CMB), then we have £’ = 0.

" ()|

X

(5.23)

C. Implication of spatial parity

We would like to briefly elucidate the relationship
between the symmetries of the underlying background
spacetime and the cross-correlation functions of different
observables. In particular, we want to show that (spatial)
parity symmetry implies that the diagonal piece of the EB
correlation matrix is zero, while off-diagonal terms may not
necessarily be.

We start by noticing that under a parity inversion
{x.y.2} = {—=x,—y, =z}, or, equivalently, {n,,ny,n;} —
{-n,,—ngy.n;}, the polarization vectors transform as

nt(ny) = —nd (n,). (5.24)

This implies that the polarization basis should transform
under parity as

mg(n,) — (=1)

‘mg’(n,).

Moreover, the sources transform as

SXS (st)(?kvno)mg(no) - <_

(5.25)

(5.26)

We now demand that any physical quantity remains
invariant under a full parity inversion. That is, if at the
same time we transform k — —k, n, - —n, and m) —
(=1)*my®, the source S% of a physical observable X*
should remain invariant, which from Egs. (5.7) and (5.26)
implies the condition

§% (xs.x ko) =

(=1)sS%~ (x5, =k, —n,). (5.27)

1)SSXJ (ZS’)(’ _k7 _no)mgs (no)'
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If we take into account the parity transformations of the
Wigner matrices and of the spherical harmonics—see
Egs. (D9)—(D11)—then a comparison of the previous
expression with Eq. (5.8) shows that the parity condition
translates to

S;in()(s’% k)= (- l)ersSf-m()(s X k). (5.28)
Then, we rewrite Eq. (5.10) as
s 2 3 s

Xfm()(s) = ]_z' d‘kam()(s,k)q)i(k). (529)

The above expression should be seen as a definition of
X%, (xs.k) and corresponds to the contribution of each
Fourier mode to the observable, but it is not its Fourier
component. Its expression can be obtained by plugging
Eq. (5.13) into Eq. (5.10) and then comparing with
Eq. (5.29). Then, if we impose the symmetry (5.28)
to Eq. (5.29), using again the parity transformation of the
Wigner matrices, we finally find that

X5, (s k) = (=1) X5 (rs. —k).

From this expression, it is straightforward to check that
the £ and B modes of a spin-2 quantity transform under
parity as

(5.30)

ES00) = 3 (2,00 0) + X720 0)
= (1) ES (v, k), (5.31a)

oo k) = (X%»m(z k) = X2 (x k)
= ( 1) B (. k). (5.31b)

We can now establish our main conclusion: given the above
symmetry, together with translational invariance of primor-
dial fluctuations [see Eq. (5.14)], it follows that, for the E
and B modes of a spin-2 field, we have

(Ep, 0B, )
= [ SHES, (0B, (k) P®

= (02 [ SHES,, (kB b ) PR

2 .
= (02 (S, GBS, G ) PO
= (=) ER, (B, (1)
where, from the second to the third line, we have used

Jie &’k = [72 d*(—k). Similarly, one can show that the
EFE and BB covariance matrices obey

(5.32)
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X Xo* X X%

(EX, EX ) = (1) (B, ER ), (5.33a)
X Xo* X X%

(B2, Byt ) = (=1)772(B2, B, ). (5.33b)

We have thus proved that correlations between E and B
modes will vanish whenever £; 4 ¢, is an even number. In
particular, the diagonal part of the EB covariance matrix is
always zero in spacetimes that respect parity (but not
necessarily isotropy). Evidently, the same holds for the
multipolar coefficients of a spin-0 quantity, such as the
CMB temperature a,,,’s (see e.g., Ref. [81]).

VI. PERTURBATION SCHEME IN THE SMALL
SHEAR LIMIT

A. Expansion scheme

The structure of the computation has been detailed in
Sec. I B. Let us recall that order by order, we need to
(1) solve the geodesic equation perturbatively in order to
determine the displacement from the reference
Friedmann-Lemaitre geodesic x'{"7}(y,n°) and
the local direction of propagation n{"-7}(y, n°). Note
that x{"7}(y,n°) is split in a radial component
5ri"P}(y,n°) and an orthoradial component which
will be related to the deflection angle aainr} (x,n°);
(2) determine the transport of the Sachs basis,
nl{lﬂ,P} (7. n°);
(3) expand the Sachs equation and determine the source
terms for DiZ‘p Nopan©);
(4) determine the evolution of the perturbations at the
required order;
(5) perform the multipolar expansion in terms of the
direction of observation n°.
To avoid confusion, we shall use the notation that X -7}
includes all terms up to order {n, p} while §X{"?} contains
only the terms of order {n, p}.

B. Order {0,0}

Since on the background (i.e., a Friedmann-Lemaitre
spacetime) the metric is just the Minkowski metric, thanks
to the overall conformal transformation described in
Sec. IIID 2, the (conformal) Riemann tensor vanishes,
so that Riz'o} = 0. Since the wave vector is decomposed
in accordance to Eq. (3.2), in which we can always choose
to set U, = 1, one deduces that it is given by

KO00F — 1 giH00) = (6.1)
The Sachs equation (4.34) trivially reduces to
dZD{OfO}
—— =0, (6.2)
dy

so that the Jacobi matrix is given by
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0.0 0.0 0.0
D" =D Wl D) =2 (63)
and its components reduce to
K00} — 1000 — yioop — g, (6.4)

This completely specifies the property of the geodesic
bundle at the background level.

C. Order {1,0}

At this order, the spacetime remains homogeneous, but it
now has an anisotropic perturbation described by the shear
0, from which we can define a scalar field X on the 2-
sphere by

1 i
S(y) = Eoik(;()nz,ng. (6.5)
We also introduce a new scalar function
1 ik
B(y) = Eﬁik()()%”& (6.6)

where f3;; is defined in Egs. (4.4) and (4.5).

We will now show that all results at this order can be
expressed in terms of these two fields on the unit 2-sphere
and the covariant derivative D, defined in Sec. IV C2. In
what follows we shall use the convention B, = B(y = 0).

1. Geodesic equation: Tangent vector

At this order, the %—velocity of a fundamental observer is
just u, = (dn), = 8, so that
U=ku, =k =k (6.7)

From Eq. (4.31), and using the fact that, at first order, the
only nonvanishing Christoffel symbols are [22]

5F?j{1,0} =0y, 5F6{jl,0} _ O.ij’ (6.8)
we obtain that
dro{1or - qgo{1.0}
= = —ai,_(nz,nlac. (6.9)

dy dy

It thus follows that

ROULOF — 010} — —1 - 2[B(y) — B,] = —1 + sk (1.0},
(6.10)

This result is expected given, that for a Bianchi I spacetime,
k; is a constant [67]; see Sec. III D 1. Alternatively, this
result could have been obtained using Eq. (4.32), with
the {1,0} order of the affine connections given in
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Appendix B 1. Its physical interpretation is simple since the
factor 2[B(y) — B,] can be identified to the Einstein effect
between the events of emission and reception.

The evolution of the spatial components of the wave
vector is easily obtained using the tetrad components first.
From Eq. (4.32) we obtain

K0 () = nh + /X ij()(’)ng,d)(’
o L

= 1o + [B(0) = B ()] (6.11a)
(1.0} () = ki{1.0} (x) _ﬂj.(;()ng
= n§+ [5(0) = 2800w, (6.11b)

K ) = K0 0) 4 B Grnd = nb + B (O)E. (6.11c)

Again, this corresponds to the small shear limit of our
previous general result [67], where k; = k;(0) is used first.

2. Geodesic equation: Real space

The parametric equation of the geodesic is obtained from
the integration of Eq. (4.33) at order {1,0}. Separating the
difference between the position at order {1,0} and the
position of the background geodesic into a radial displace-
ment and an orthoradial displacement according to

X190 () = ynb + 6x{19}  with

Sx10} = pt 5,(1.0} + ya 1030l (6.12)

which defines the deflection angle a1} and where we
have used that x'{0} () = yng, we get

srill(y) = =2 / g By )dy', (6.13a)
0

2
(19} () = DB, - ;;/ “DUB)d,  (6.13b)
0

in which DB, stands for (D“B),_,, and where the last
equalities of the equations above made use of an integration
by parts. Note that

= b — B, (0)nd. (6.14)

This can be interpreted simply, because it means that very
close to the observer, everything happens as if f;; is constant
and equal to 3;;(0). Thus a constant change of coordinates
X' =x'+ (0)x/ transforms the metric from y;; = §;; +
2$,;(0) to the Euclidian metric §;;. The geodesic in these new
coordinates is simply the Euclidian one, ¥(y) = ;(né)

PHYSICAL REVIEW D 92, 023501 (2015)

3. Evolution of the direction and screen vectors

The infinitesimal change of a unit vector lies in the plan
orthogonal to it. The perturbation of the direction vector is
thus of the form

nit10} = pi 4 al1.0} poi (6.15)

From the previous results for k¢ and k2, we get immediately

pif10} = pi 4 @10} oi, w10} — /X Dexdy’.
0

(6.16)

The transport equation for the screen basis is in turn
given by

i {10}

L __ 01 L
ng =Ny —nNowg

(6.17)

and it can be checked that the screen basis (3.10) does
remain orthogonal to the direction vector.

4. Sachs equation

At order {1,0}, given that Ri};o} =0, the right-hand
side of Eq. (4.34) reduces to

Ry DR = R0 = 4R,
so that the Sachs equation (4.34) reduces to

26D dsk00)
dy? dy

Sap + xR (6.18)

Its first integral yields

dspt!ot 2z (dskOt10} 5 N
O _ 5. 4 / ( O+ ;(Ri}f’}) dz.
dy 0 dy

(6.19)

The first term gives 8, [1 + 6k ()] =6, [2-+ K10 ()],
so that

oD (7, n%) = 6, / * 24 K000 (7)) d7
0
2o [ 10} s oy s
+ [ dy IR (.n°)dy. (6.20)
0 0

The double integral on the right-hand side can be per-
formed by means of an integration by parts. This gives

/ “ay / IR 5 o)
0 0
X . - 0Y,~ -
= A Pl - 7)RU (7.n0)dy
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from where we finally conclude that
oD Gz.n°)
x
= [ RO Doy + (- DERY (1)
0
(6.21)

As detailed in Appendix B 2, the source term takes the
form

1
1,0 o oi 0
R;{lb }()(,n ) = 2( ,jnono)ﬁab +n< g( )/

= 042 + D Dy (6.22)
By inserting the above in Eq. (6.21) and using Eq. (6.11),

we find the following expressions for the convergence and
shear:

k0 (y, m°) = — / X@ R +7¥dy,  (6.23a)
0

A
7270}()(’"0) _/ ()( )())(
0 X

which simplify to

D,Dy¥d7,  (6.23b)

K10} (. n°) = —B(y) — 38, +§/x B(y)dy. (6.24a)
0

750 ) = D,DyB, + D(,Dy)B

2
_ / " DDy B(7)d7. (6.24b)
X Jo
Note that in the limit y — 0, "% - 0 and y{}” - 0 as it

should be, given the initial condition (3.16) for the Jacobi
matrix. Finally, since the Jacobi matrix (6.20) is symmetric,
at this order we have

viloh = o, (6.25)
We have checked that these results match those found in
[67] when expanded in the small shear limit (where the
special choice B, = 0 is made).

We can now perform the expansion of these observable
quantities in terms of spin-weighted spherical harmonics.
Using the results of Sec. IV C 4, the shear can be projected
into the helicity basis so as to transform the covariant
derivatives into spin-raising and spin-lowering operators.
The spherical harmonics components of the convergence k
and of the cosmic shear y* are then easily obtained at order
{1, 0}. Both reduce to a quadrupolar contribution, inherited
from the quadrupolar contribution of X, so that their only
nonvanishing coefficients are
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4
ki (1) = — By > /0 “Bom(7)d7.  (6.26a)

mm@'f<mwm 2 [/ Bz (6260)

+{1,0
err{l I

We conclude that B/ = 0 and E5\"" =

D. Order {0,1}

We follow the same method for the order {0, 1} as for
the order {1,0}. This corresponds to the standard
approach to weak lensing in the linear regime of cosmo-
logical perturbations. Our main goal is to rederive
these standard results in our formalism, so as to serve
as a basis for the study at order {1, 1}. Note that, at this
order, we only need to include scalar perturbations since,
as stressed before, vectors and tensors modes are of
order {1, 1}.

1. Geodesic equation: Tangent vector

Using the definition of the deflecting potential as
¢ = ¢ + U, the energy of a photon evolves according to

W oy a0 a
dy oy dy’ dy Oy dy’
(6.27)

dk0{0.1} do
O +2

the solution of which is

% 0

x0{0.1}
o O

=0 L d =1 420 -, - [" Zdy

= —1 + sk0{01} (6.28)

where it is understood the integrand is evaluated on the

background geodesic, i.e., that x' = 7ng, at a time asso-
ciated with y. The notation is intentionally simplified in
this section, so, for example, k*{®!} means %1%} (y, ng),
® means ®(y,x') with x' = yn,, and so on. In other
words, it is understood that everything is evaluated on the
background geodesic at parameter y. The only exception
is ®,, which is the potential ¢ evaluated at the observer,
that is, at y = 0. Note that the total derivative d/dy,
i.e., the total derivative along the background geodesic,
satisfies

dp _ Op /
—=— = - 10,0, 6.29
since, from Eq. (4.30)
Op ,
—=—¢. 6.30
o~ (6.30)
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2. Evolution of the direction and screen vectors

The spatial component of the vector k* evolves accord-
ing to

dicit0-1} B+ ; dW di/10-1} 90 +2 ; dW
==0ip +no——, =—0; No——,

dy v dy dy v dy
(6.31)

the solution of which is

k01 — pi{o.1}y n£\Il

n[1 4 20 (y) — (6.32)

/ Oipdy.

Using Eq. (4.7), we then deduce the evolution of the
direction vector

dpnifo.1} -
—S0 ., 6.33
i P (6.33)
the solution of which is
ni{O (y, nb) = nb + @01 (y, nb)ni,
@O0 (y, nl) = — /) " Depds. (6.34)

Similarly, the evolution of the screen projectors leads to

O (o k) = noi — 01y, iy, (6.35)

3. Geodesic equation: Real space

We can then determine x'{*!} from Eq. (4.33) using

doi\ (0.1} i\ (0.1} l. v
N o (BN Z k(1) = [ 518,047,
((b() <k°> no(l+ ) A 047

(6.36)
and this leads to
JRTCR R /I od7 — no %dj@Da(p.
0 0 X
(6.37)

4. Sachs equation
Finally, at order {0, 1}, the right-hand side of Eq. (4.34)
is simply R{O I}D{O 0 = R{l o . Thus, the Sachs equation

becomes

6Dy arolon

= Sap + xR
d)(2 d){ ab T X ab

(6.38)
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The solution of the Sachs equation follows formally the
same steps as in the case {1, 0}. That s, it can be integrated
twice, and after an integration by parts for the double
integral over the Riemann term, we get

o0l ) = [*{2+ R0 ()l
0

+ (= 07RE (7on0)}dz. (639)

Now, using the perturbed expression for R,, found in
Appendix B 2 (with 6;; = 0),

RO = 2 n0ingl[-8,0,0 — 6,;(V" - 2ni0, ¥’
+ nn%0,0,%)] (6.40a)
1, . .
= =D ,Dyp = Sup2* [5 0;0'p + V" = 2nt0; V'
1
+ 5P nt8,0,(¥ - cb)} (6.40b)

and the expression dkt''*'/dy given in Eq. (6.28),
one obtains the formal solution of the Sachs equation (4.34)
as [61]

1 [»x  _
5D =x[5ab(1 —ut) -2+ [“otna
1

3 )57
A )(M%D Dy (P()()d)(}

from which x and y,, can be read directly from the
expression in brackets in the first and second lines,
respectively; see our definitions in Eq. (3.17). Note that,

Xy —x

(6.41)

since there is no antisymmetric part in 52){ I , we conclude
that VIOl = 0.

Dropping the (unobservable) monopole correction due to
the local potential ¢, we get their multipoles as

V4 o i~
KO0 =, () 2 / on(7)dF

ACHD) [rr=F o
dy, 6.42
+ AT Ly oar (64)
1 /
ilel} 2 / ~ (pfm()( d)(’ (642b)
from which we conclude that Bgnl’o}:O and
19y 00)
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5. Angular power spectra

To determine the angular power spectrum of the con-
vergence k and of the E modes of the cosmic shear, we
follow the procedure described in Sec. V. At the order
{0, 1}, the transfer function is isotropic and there are only
scalar sources. Consequently, only £ modes are generated.
The power spectrum for the £ modes is then just given by

2

’

2 ) 0 B B
coron 2 [ kdeP<k>\ [Tt [

7
(6.43)
where the function ¢* is defined as
- —X 1 [(Z+2)! -
Eky.7) ==L, (k7)~ T¢(k7). (644
9¢(kx.7) 7 Je(kr)5 7-2)! (k.y). (6.44)

In Eq. (6.43), N (y) represents the distribution of sources as
a function of the radial distance y defined such that A/ (y)dy
is the number of sources between y and y + dy. At order
{0, 1}, it is sufficient to consider the homogeneous source
distribution, so that the observed shear and convergence for
sources distributed up to y, are then defined by

ko(4ay) = / N r(no)dy.

Ve mo) = 0”*N<x>yi<x, n,)dy. (6.45)

Since here N depends on y alone, this integration can be
performed after the multipolar decomposition so that we
perform the replacement, e.g.,

Eenly) = O”*Nm@mmdz (6.46)

in order to build the cosmological observables. Let us
emphasize that this derivation can actually be performed in
a simpler way [2]: since the source term derives from a
potential, one could have simply used the Fourier transform
directly in Eq. (6.41) and then expanded the exponential
according to Eq. (5.9). The present derivation is however
more general when used to higher orders {n, p}.

On small angular scales, that is, in the limit Z > 1, it is
possible to use the Limber approximation [82]. Such
approximation consists in using

[ axsoietn = [

with L=7¢+1/2. If we commute the time integrals
according to

(6.47)

PHYSICAL REVIEW D 92, 023501 (2015)
o0 ){ o - (o] ~ o0 -
A d)([) dvf(r.7) :A d)([ drf(v.x), (6.48)
X

we arrive at the simple expression

CEE{O’I} zl(l’ﬂ + 2)!
‘ 4(¢-2)!

Py, (6.49)

with
o dy L
o 42
0o X X

The angular power spectrum of the convergence « is
obtained in a similar way. Indeed, if we consider only the
dominant contribution of Eq. (6.42a) at small scales, it is
sufficient to replace g5 by

T‘/’<§)(> /;dmm(lij) ’

XX
(6.50)

. A e e .
krd) = e )

(6.51)

in the previous expressions to get C';K{O’l}. Using the
Limber approximation, we then obtain

o 2+ 1)?
cxon LZEH L) : "p., (6.52)

and we check immediately that for large 7, C’;K{O’l}z
CEE0.1)
Lﬂ .

Finally, the angular power spectrum of the cross-
correlations between the shear and the convergence is
given by

. ] 2 ) o 5 5
et =2 [Feare() ( [T [ ”dxg?(k,m)

v/

X < A “ N () A ! d;?g’}(k,x,)?)>

for which the Limber approximation gives

CKE{O’]}z_f(f_Fl) (f+2)!
‘ 4 (¢ =2)!

P,. (6.53)

E. Order {1,1}

1. Geodesic equation

In principle, we need to determine k%{"!} from the
geodesic equation and then x{'''}. As we shall see, these
terms are only needed for the expression of the convergence

«{1 We will instead focus on the computation of the

cosmic shear yii’l} and also the rotation V{:!}, since they

give the leading order of the B mode and the rotation.
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Fortunately, that computation does not require the solution
of the geodesic equation up to order {1, 1}.

2. Sachs basis

In order to get a definite expression involving only
covariant and radial derivatives, we need to expand the
direction vector n! around its background value 1, SO as to
use the definition of Sec. IV C 3, taking into account the
contributions of order {0, 1} and {1, 0}, and similarly for

. . l
the projection vectors n,. We must use

ni(y. ) = no + [ OV (7. n5) + w0 (7, ) gL,
(6.54a)

nh (o nb) = %t — @™ (. nh) + w8 (y, nh) b
(6.54b)

It turns out that only the expression for the projection
vectors is needed since the direction vector n! appears only
in terms which are already of order {1, 1}. Additionally, we
must convert the derivative along the tetrads 9; noted by 9,
to derivatives along the Cartesian coordinates, and these are
related from Eq. (4.8). This correction is only relevant for
the term 0;0;¢ because the other terms are already of order

{1.1}. We thus use

pij = D;D;B + 2BS;; + 2D(,-Bn‘l.’) + Bngng. (6.55b)
3. General form
Since in Eq. (434) the two terms %P2 and

oy RMDL,, do not contain D{l 1 (because dk°/dy and
R, vanish at order {0,0}), it can be integrated to give

Rachb d)(/

Dl s /x dInk°dD,,
Y S T PR (DS
(6.56)

(We remind the reader of our convention, in which we
split k° and D,,, respectively, as k= —1 4 6k° and
D,y = x04, + 6D,;.) In the first term of the integral, given
that dk°/dy is at least of order {1,0} + {0, 1}, the term D/,
can be expressed using the formulas found in the two
previous sections, that is,

dspl1-01/{0.1}

e _ o @,
d/l/ 0 d/Y a

(6.57)

L+ )?RiZ’O}/{O’l}> a7,
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Equation (6.56) can then be integrated as

. LS s A RPN
DY () = /0 752},”(;()@{, (6.58)

where Siz']} contains all source terms of order {1, 1}. It is
explicitly given by

7R, dInk°

Sor'0) =%+ 1 RacdDes =g (2 + K)o
dk? .
i [ R+ 2SO R (659)
dll’l}( 0

evaluated at order {1, 1}, and where the last term arises
from the fact that, at this order, there is a correction to be
considered since we have to go beyond the Born approxi-
mation. That is, we cannot just integrate on the Friedmann-
Lemaitre geodesic; instead we integrate on the geodesic
¥ (y,ny) = yn’ + 6x'(y,n,), so that the source term is

Sap (X (s 10)) = Sap (s 16) + 8 (1,

which implies that

16)0Sw.  (6.60)

0,1
5) + 66019 (4 )50,
(6.61)

11}~y 1.1
S E (r.mo)) = S (v m

since 8,»56{3;0} = aisf,,ﬂ~°} = 0. It follows that the source
term is explicitly given by

R {1.1} dskot-1

2 ab

= =5
X {(ko)z} X d){ ab

+x <Ri£'°}5z>j,g-l} + ROVl

1.1
sV ()

d5k0{o' 1}
o

. _ dskOtLo}
X / x)(szi'O}d)H 5 / ;(R{Ol}d)()
0 24 0

0{1,0} 57,0{0,1}
+ X6ap [d(ék 1 i) 5k°{1’0}5k0{°-‘}}
ly

i 0.1
+ 28109 RE

(6.62)

We see on this expression that the general source S 1}(;()
has several contributions. First, it has contrlbutlons from
the vector and tensor modes B; and E; ; (respectively, noted
SV and S{LUT) which are at least of order {1, 1} since
they vanish in the pure Friedmann-Lemaitre case; they

enter the terms R';"" and 8k°(1}. Then, all the other
contributions are formally products of the scalar perturba-
tions by the geometrical shear; they appear as products of
{1,0} x {0, 1} terms. To compute explicitly these terms,
we decompose the source term as
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1.1}V 1,17 1,1}quad
SUIY G+ SEIT () 4 ST ).
(6.63)

1,1
S () =

Each contribution can be further decomposed into its trace,
symmetric traceless and antisymmetric parts as

Sab = 6apS + S(ap) + Spap)- (6.64)
Since our goal is to compute the effect of an anisotropic
phase on the cosmic shear, and not on the convergence,
we are mostly interested only in the symmetric traceless
part. We shall thus not report the computation of the trace
contribution to the trace part, except for the contribution
coming from vectors and tensors, so as to be able to
compare our results with the standard results in the
literature, in the cases where the vector and tensor modes
are considered even around a Friedmann-Lemaitre back-
ground. A full computation may be useful in order to
cross-correlate weak lensing with the magnitude of
supernovae.

4. Vector and tensor mode contributions

The vector and tensor contributions are easily found
from the literature [61,83]. Splitting the vector mode into a
radial and orthoradial parts as

+20GE) + E T

Bi:Ei—’_?iBr’ E E ?'],
(6.65)
the expression for the Riemann tensor given in Appendix B
2 for vector and tensor modes gives

R,{l};’l}T _ no nb [E" _4nqa[qu + nPnt (8 0,E

J=pq
+ apaqEU) - 2npnq8q8([ j)p], (6663)
R = ngingl(—0,B)) + n10,0:B;) — n19,0,B,).
(6.66b)

Using the projections of partial derivatives into radial and
covariant derivatives (see Appendix D 1), we deduce that
the vector and tensor contributions to the sources (6.63)
are

1) 1d
SV () = 16,48, + 2 [ DB+ 5 (DB
= —(4*B — (yD,By) — D,D}B,,
+2268)| + 5 DuBy) - DDy B,
(6.67a)
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OE, 6, , d?
S ) =y [D‘D B o
d 2
—Z - (,2D°E
~65 0B -2 (PDE)|
e - d -
+)(W()(E(ab>)+D(an>Er_2&()(D(aEb))’

(6.67b)

with the notation for the radial derivative , = 2'0;. The
first terms of each expression are, respectively, the V and T
contribution of the term in 6k°{"-1} in Eq. (6.62). For each of
these two expressions, the first line contributes to the trace
of the Jacobi matrix, that is, to convergence x{!'}. The

second line contributes to the cosmic shear y{ B , since it is
symmetric and traceless. By construction there is no
antisymmetric part, so the vectors and tensors do not
contribute to the rotation V{l-1},

In order to compare and recover the results of
Refs. [61,83], we must use the fact that vector modes
are transverse and that tensor modes are transverse and
traceless. This allows us to get the relations (see also
Appendix D 1)

0= DB, + x(B,),, + 2B, (6.68a)
0= DE,, + 3E, + 4(E}) . (6.68b)
0=DE, +3E, +4(E,) . (6.68¢)

5. Trace-free part of the quadratic contributions
Starting from the general expression (6.62), the only
contribution of the terms of order {1, 1} to the trace-free
part is ;(2R§i1‘71>}. Then, the terms 67){{1},’0}/ 1 are decom-
posed as

oD O = 11015, 1y O (6.69)

since, as we have just seen, there is no rotation at order
{1,0} and {0, 1}. To finish, it is obvious that

(6.70)

4sk0(103/{0.1} QKON {1.01/{0.1}
dy B (@) '

It follows that the trace-free part of the quadratic contri-
bution of the source term is given by
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{1,1}quad o Rab
S(ab> e (/’() _12{<k0)2

dKkO 0.1}
+y / R{lo}d)(—ir
d)( (ab

dko (1.0}
; ) / PRI 47 + 265090, RIC)
v
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{L1}
} _’_)(2728};(;},({0,1} _‘_)(27382)1)},({1,0} +)(2R{1,o}y~<{2271>} _‘_127%{0,1}},8;;}

(6.71)

All terms, except the first one, involve products of quantities which are {0, 1} and {1, 0} and have been already computed.

Note that the first term is kept in the form (R,

1)/ (K°)?)1-1} and its detailed expression must be found using the perturbed

Riemann tensor given in Appendix B 2. This is indeed more convenient since we shall express everything in terms of the

tetrad basis, and we will just need to use the fact that

K0 = k20" =

We find for this first term

(1— @)k, (6.72)

R<ab> (L1 i N A
<(k0)2> = m | =015(0' +20.,,) + 204,100 — 9,0, — #

_ 2<JU\I]
H

r ! Giknk
2
) - < H

/
o)

k
Gij Gkﬂl n On
iy, TR 55 42
’ H H

H

aj\y,,] . (6.73)

Then, we can split all partial derivatives into covariant and radial derivatives, using the expressions of Appendix D 1. This

term is then given by

2R {1,1}
(u) = —y*D,DpZ(2¢ , + ¢') + 24D, ZDp + 24’ D, BD,,, (%) +2D.D,BDyD g — (1 —2B)D,D

VD, D2\ U D ,DpZ\'
2 (a™b) 2 o (alb)
— — | =2 ) +
X ( H ) 74 < H )

27? v ) | 7
D<an>\I] + WDWZDZJ) <7> — 2)(2D<a2’w1{7(>) 1} + 2}(2138 O}Db> <7) .

Finally, the last term of Eq. (6.71) needs to be evaluated.
It can be read directly from the previous results at order
{1,0} and {0, 1}. We need only to split it into radial and
covariant derivatives using the formulas of Appendix D 1.
We find that its contribution to the traceless part of the
Jacobi matrix is given by

25.i{1,0} 5 {0.1}
y-ox 8,R<ah>
— —5r119D, D, <(p,, - 2%)

a”{l’O}DCD<uDh>qo _ ZZZGEJ’O}Dh> (%) .

N

(6.75)

Let us emphasize that, when a“ # @w“, the source is
partially seen on its side.

To conclude, the source term (6.62) is obtained by
combining the two terms (6.67) for the vector and tensor
contribution to the {1,1} part, the term (6.73) for the

quadratic scalar contribution and the term (6.75) for the

b)P
D EDy W\, DDyE
2}{2< Ll )_)(2 DTy,

(6.74)

[
post-Born approximation, to which we need to add the
six terms which are products {1,0} x {0,1} in (6.71),
obtained from the expressions of the former paragraphs. In
principle, once all these contributions to the sources of the
Sachs equation are identified and decomposed into radial
and covariant derivatives, one should apply the formalism
detailed in Appendix V and expand each term in spherical
harmonics for both the angular dependence and the Fourier
dependence.

This procedure is however extremely long and includes a
large number of terms. We will not detail it here but instead
just identify the dominant contribution and compute its
effect on the Jacobi matrix in order to derive the leading
contribution to the B modes in the next section. Indeed,
once we convert the covariant derivatives into spin-raising
and spin-lowering operators, each covariant derivative is
clearly associated with a factor 7. In the flat sky approxi-
mation, that is, in the small angle approximation, the
dominant contribution arises from the first term on the
second line of Eq. (6.75),
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{1 1}(;( )

X)(_)? c by ¥
_A =% a0 (7,n,)D D oDy (7.1,

)dy.
X

(6.76)
as it enjoys three covariant derivatives.

6. Trace part of the quadratic contributions

As discussed in the previous paragraph, the computation
of the trace of D!} involves a lot of terms such as {11}
and the fourth line of Eq. (6.62). This tedious computation
can indeed be performed with all the details given in this
article. It will however give only a small correction to «, the
leading order of which is the standard convergence x{*!}.

We thus decide not to include this computation here
since we are mostly interested by the lowest order dominant
effect related to the anisotropic expansion.

7. Rotation quadratic contributions
As we have seen, the rotation vanishes at orders {0, 1}
and {1,0} so that its leading-order contribution appears at
order {1,1}. Since Rt{l};’l} is symmetric, its contribution
arises simply from the two first terms of the second line of
Eq. (6.62), that is, from the source term

giL1} {1,0} o1{0.1} {01} {1,0}
ab] (X) X(R[ak 5DC|17] +R 5Dc\b )
= e, S (). (6.77)
Using the expression of the previous sections, it is

explicitly given by

s () = —50.0.% [FEZDp p g7
0 V4

—(=<+)

i * (=X 'G5
~5 DD A — D-D-E()dy
— (). (6.78)

The general expression for the rotation is then obtained
through

U()(

V{l'l}()(v no) =

7:no)dy (6.79)

rot

The rotation is thus sourced by the coupling between the
usual cosmic shear of the standard scalar perturbation
around a Friedmann-Lemaitre spacetime (D, D, ¢) and
the quadrupolar contribution due to the geometric
shear (D_D_B" = D_D_Y).
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8. Integration over the source distribution

The last point that needs to be discussed before turning to
the multipolar decomposition and the computation of the
angular power spectra is the source distribution.

The source distribution represents the mean number of
object normalized to the mean density observed in a solid
angle dQ,, that is,

dN
—
dQydy

(6.80)

In the Friedmann-Lemaitre and Bianchi / background
spacetimes, which are both homogeneous, N is constant
on any constant time hypersurface, which means that it
depends on y alone. Thus

N(no) = N(x)

where the second term is the standard fluctuation of the
number density due to the large scale cosmological
perturbations and for which it is understood that the
position x is evaluated on the background geodesic, that

+ NG XY + N0 (), (6.81)

is, x' = yng.

Note however than when one turns to redshift space, on
which the observations are actually performed, one needs
to take into account that z is a function of y and the
direction of observation n,, so that we should rather use

N(z.no) = N(z) + N0 (2, x7) + N0 (2, n,),
(6.82)

where again the position is evaluated on the background

geodesic with x' = ;(nﬁ, It follows that, when computing
the observed quantities,

A0 ng) = /Mwm“”+MWu>““
+ NGt

The second term is the standard correlation between the
fluctuations of the source distribution and the cosmic shear.
It inherits a directional dependence from the spatial
dependence 1%} (y, x') given that it is evaluated on the

background line of sight, that is, with x’ = )(né Because of

the coupling to the pure E mode y{l % it will induce B
modes in the source averaged cosmic shear. This compo-
nent is expected to be important on large angular scales.
The third term is a correction that arises from the fact that
the formation of structure differs a priori in the presence of
a geometrical shear, but it does not contribute the B modes
since it does not have a directional dependence. However,
it induces a correction for the E modes and for the
convergence.
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Now, in redshift space, one needs to be more careful
since

v (z.mg) = / BN E)rh + N0z Xy L0
+N{I'O}(Z’no)7i%l}}.

Both the second and the third term depend now explicitly
on the direction of observation, so that the convolution by
the source distribution has to be performed before the

decomposition in spherical harmonics, and both terms will

generate B modes out of the £ modes of yi})‘o} and yi%l},

respectively. However, these effects should not dominate
for small angular scales and we shall thus neglect them.

VII. ORDERS OF MAGNITUDE

The previous sections have provided all the elements
needed to compute the contribution of the B modes at order
{1,1} and their correlations with the £ modes and the
cosmic shear. It is obvious that any further computation has
to be performed numerically. It is however important to
exhibit the dominant contribution.

A. Dominant effects

Once the covariant derivatives are expressed in terms of
spin-raising and spin-lowering operators, it is rather
straightforward to realize that any covariant derivative is
associated with a factor # in multipole space. The dominant
terms contributing to the shear are thus the ones with the
highest number of covariant derivatives applied to ¢.

For instance, at order {0, 1}, the convergence is domi-
nated by the last term of Eq. (6.42a) on small scales.
That is,

{0,1}~f(f+1)/*)(—)~( N
Kfm B 0 )0? q)fm()()d){v
simply because of the geometrical factor #2. It is indeed the
term which is usually presented in textbooks. This term
dominates over the second one even at small 7, i.e., for
¢ > 2-3, that is for all practical purposes.

When applying this small scale approximation scheme
at order {1, 1}, we realize that there is just one dominant
term—the first one on the second line of Eq. (6.75)—which
possesses three covariant derivatives, that is,

57’21’1} ()(’ no)

X=X (10} (5 ; 7
:_A e 10 (7.16) D D Dyyp(7. 1) dY.

Physically it corresponds to the orthoradial displacement of
the central geodesic on which the Sachs equation is
evaluated, when compared with the background geodesic.
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It is as if the sources of order {0, 1} contributing to the
Jacobi map had been lensed by the orthoradial displace-
ment of order {1,0}, resulting in an order {1, 1} effect.
This is similar to the lensing of first-order sources of CMB
around the last-scattering surface by first-order gravita-
tional potential in the foreground, resulting in a second-
order lensing effect in the CMB.

The first consequence of this is that the formalism used
to compute the CMB lensing can also be applied to obtain
the resulting Jacobi map due to this leading-order term.
However, there is a slight difference. Indeed, for the CMB
the sources are all located in a background around the last-
scattering surface, for which there is a deflection due to the
gravitational potential crossed between emission and recep-
tion. For the general solution giving the Jacobi map,
however, the sources are distributed from the observer
up to the maximum redshift of the survey. For each source
there is a different deflection angle as it depends on the
trajectory between the source and the observer.

Finally, we must recall that the treatment of CMB lensing
by a gradient expansion [84] holds only until the deflection
angle is comparable to the angle of structures in the CMB.
Beyond that scale, this method underestimates the effect of
lensing and one has to resort to a full-lensing method as
exposed in Refs. [77,85]. Since we are interested in an
order of magnitude estimate of the effect of geometrical
shear on the cosmic shear, we will present in the next
section a gradient expansion method based on Ref. [84], but
one should be aware that for any amplitude of the geometric
shear, there must exist a scale £, beyond which this
treatment is inaccurate. The method for the full-lensing
method is exposed briefly in Appendix C.

B. Lensing of the central geodesic

1. General formalism of the gradient expansion

Any observable at a given affine parameter y in a given
direction n,, is formally obtained from an integration on the
background geodesic over its sources given by Eq. (5.4),
that is,

X Grgmy = [*$¥Gezmmigy. (1.1)
0

However, and as discussed above, a true observable like the
cosmic shear is obtained by averaging over the true
normalized profile N(y) of sources as

X0y = [ 4N )X Grommidy
= [ [ G znomis. (12
0 0

Note that the integrals can be interchanged using
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/Ooodx/\/(x) Kd)?f(x,)?) =/0°°d;?/; QN d)-
(7.3)

We consider only the effect of the dominant term in
Eq. (6.75), which corresponds to the lensing of the sources;
that is, it transforms the sources according to a parallel
transport along the lensing vector a. A lensed observable
X* is then obtained from an integration over the lensed
sources. If the lensing effect is small, it is sufficient to use a
Taylor expansion of the lensed sources to express them in
terms of the unlensed sources, the small parameter being
the lensing vector a. Furthermore, if the lensed vector can
be written as the gradient of a scalar, as a, = D,a, then at
lowest order in the Taylor expansion, we get for the lensed
source

S¥ (v pono)ms, = SX (¢, 7. n,)m}
+ Da(y,n,)D,[S* (v. ). no)ms3).
(7.4)

Using Eq. (D26), the multipoles are easily extracted as

SEaCe ) =S50 00+ D tom, (0)SE,, 0 2) 10"

my,Cn,my

(7.5)

where the a,,, are the multipoles of the lensing scalar when
decomposed into spherical harmonics and the coefficients
oI,y are defined in Eq. (D28).

2. Multipoles of the lensing vector

The previous expression depends on the multipoles of
the lensing scalar, that can actually be obtained very easily.
First, following the definitions (6.5) and (6.6) we define a
matrix a;; such that

ay(ng, ) =Dya(n,,y) = Dy Ba:/()ﬁné”{)] . (7.6)

Given Egs. (6.13b) and (6.75), the components of a;;(y) are
just

a;;(x) = =p;(0) + QAZ d)(/)%)/aij()(/) (7.7a)

= pi(0) =2 [) L ay'Bur)-

B (7.7b)

Then, similarly to the computation of the coefficients
%, in Eq. (4.26), the multipoles of a(n,,y) defined by
a=>,0a,,Y,, reduce to a quadrupole and are explicitly
given by
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() = —ﬁ[aﬂm ()]

) = | laa) = ) 78)

if the coordinates system is adapted to the eigendirections
of the geometrical shear.

3. Extracting the spatial shear components from
off-diagonal correlations

A by-product of the formalism just developed is that we
can extract information about the geometric shear o;; from
cross-correlations between the E- and B-mode multipoles
of the cosmic shear, E,,, and B,,,, and the multipoles «,,,
of the convergence «, that would otherwise vanish in the
pure Friedmann-Lemaitre case. Indeed, even if the B modes
are not sourced initially, as is the case of a Friedmann-
Lemaitre background, at the perturbative level there will be
a lensed B-mode term sourced by the E modes of the
background shear. In order to extract this effect we
decompose the (lensed) £ and B modes of the source as

.k - -

St ) = Senl0. ) £i82,00.7)  (19)
with a similar decomposition for the (unlensed) Sf,fm. Then,
using the properties (D28), it follows that

St 7) = =1 @, (0)SE,,., (0. 7) 12150 (7.100)
e
Stn(0 ) = SELL )+ D i, (D)SE,, (0. 7) L™
DY
(7.10b)

We recall that there is no tilde on S%,, on the right-hand side
of the above equation, since it corresponds to the unlensed
sources. Since the convergence is a spin-0 quantity, then
from Eq. (7.5), its sources are transformed under lensing as

Sin(02) = S5, 000) + Y o, (0S5, (0 10"

lﬂl Jll2
ty=¢.Lx2

(7.11)

From these expressions, it is clear that the off-diagonal
terms coming from the EB, EE, kk, kE, kB cross-
correlation matrices allow us to put constraints on aj,,
and, consequently, on the geometric shear components o;;
by means of Egs. (7.7). To see how that is possible, we must
remember that the sources should be convolved with A/ (y)
by means of Eq. (7.2).

In Sec. VID 5, the EE, kk, and kE correlations at order
{0, 1} (that is, without the effect of lensing by the geometric
shear) have been computed and they are of the form
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C);fz = Am dr /;o dr N () Am dy> /5: dZZN()(2)C§Z()(1’)(2J~(IJ?2)7 (7.12)

where the indices X and Z take the values «, E, and with the source correlations
(% m, 01 20)87 1, (2. 702)) = 82,2,8m,m, C2F U1 202 01 22 (7.13a)
K i g = | RUPUG o 7)o ) (7.13b)

For the lensed observables, we define similarly

fM—/ d)h/ dyiN (r1) / d)(z d)(zN(Zz)szM(Zl)C (. x2:21:22)

=2 [T earw ([Ton [T anNtastig ki)
X (Aoo dxs /;: d)(zN(Zz)g?(k,)(zJ?z)) (7.14a)
such that the following nonvanishing correlations are expressed as
(B, mEF L imem) = +21?;;irr: e PfilM’ (7.152)
(BEmkE L ent) = 1+2I?2A;ﬁ e Pf:th (7.15b)

Not only do we get off-diagonal contributions for B modes with the £ modes and the convergence, but we also get off-
diagonal correlations between x and £ modes. They read

mM —M
(EFnEStmm) = If2f:i:2 (PfiZM—'—,PgAb:I)’ (7.16a)
— M(m-M
(R ) = Lot ™ (PSan + P53, (7.16b)
mM —M
(ES RS ) = +21f2f:i:2 Pfj:2M +If2fi2 P (7.16¢)

Note that in all these cross-correlators, M ranges from —2 to 2, thus spanning the 5 degrees of freedom of the lensing
potential @,y and consequently of the underlying Bianchi geometrical shear o;;. These expressions for the correlators are
however not ideal to relate the correlations to the lensing potential and thus to the components of ¢;;. Instead, we define
appropriate combinations of the correlators by resumming them as [86]

£, 2 ‘s
XZ A2M — m+£,+¢, Xx
Asle, = Z\/g(—l) o ~<—m Y m_M><Xf]mezm M) (7.17)
For instance, for the EB and EE correlations, we get
2 x1
BE p2M V5(=1)mt BY EX* 7.18a
RS DRG] (M [ T} (7180
2 £+2 Y o~
EE g2 V5(- EX EX, ). 7.18b
612 — Z < -m M m-— M>< ‘m*=E+2,m M> ( )

Then, by using the definition of the symbols 17, /il and / ’;‘21‘;;’;1 and the orthogonality relations of the Wigner 3j symbols,
we get
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F
BEAffil i2 ?ﬁﬂ PfilM’ (7.19a)
. F £20+1
B Aff:tl = \/5 PfilM’ (7.19b)
F
EEAffﬂ \f/zgﬂ (Pf:tZM +Pi) (7.19¢)
F
KK‘AffiZ ij%ﬁ (Pom + Pis)s (7.194d)
F F
EK‘Afzf’iZ 2 %ﬁ PfiZM + iz/%ﬂ PL”M’ (7.19¢)

where the symbols ,F,, ,, are defined in Appendix D 4.
Approximate expressions of this correlators can be
obtained in the Limber approximation (6.47) and read

(6 +1)?
s =", (7.200)
(¢ +1 Z+2)!
pit ~per 2 . ) Ef—zizpm’ (7.20b)
o 1(Z+2)!
=g (7.20¢)

with the function Py, given by

a m a m ( F 5)2
BB{“} / d)(l/ AN ()N (r2) / d)(1/ d)(z —2 bi)a; (){2)Cf+s()(17)(2 11’12)72 s
s=+1,m

If we now factorize the time integrals, we simply get

BB{11} _ = [
Ce 571/0

Note that for large # the F coefficients behave as

(2 2
k() S e ees)”
DI

F 2
lim GFpr1)” E
t—-0 20+ 1 2

Apart from the six terms (sum over m =
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e [t
x T‘ﬂ<§x> /deN&)%z, (7.21)

X

where we used the notation L =+ 1/2.

This provides the expressions of the five (off-diagonal)
correlators (7.19), each having five components, and all
being linear in o,;. We stress that the measurement of these
quantities from further surveys will allow us to get stronger
constraints on the spatial isotropy of the Universe, thus
pushing forward the “beyond ACDM” program.

4. Autocorrelations of B modes from the lensing
of the central geodesic

The previous off-diagonal correlators are the most direct
consequence of a late-time geometrical shear on weak
lensing. However, experiments are mostly designed to
measure the diagonal part. In this section we compute
the autocorrelation of B modes induced by the dominant
lensing term. This angular power spectrum will thus be
quadratic in 6;;. Contrary to the previous estimators, it does
not allow us to reconstruct the full geometrical shear o;; but
can be used to set constraints on ¢2.

Using the properties of the Wigner 3 symbols given in
Appendix D 4 and starting from the lens sources (7.10), we
obtain that the B-mode angular power spectrum of weak-
lensing cosmic shear generated by the lensing of the central
geodesic is

o1 (722
Z'/ AN (x) / Ay a0 (') g5 (k. 1. x) (7.23)
GF ) _ E (7.24)

Ae 20+1 2x

—2,0,+2 and over s = %1), this is numerically as fast as computing the

correlation CZE at order {0, 1}. Then, using the Limber approximation (6.47), with the definitions Ly =L + s =

£+ 1/2+sand £, =7 + s, it leads to

BB{1,1
CEBUY

sil

2

/ d;(z (, +2
e
& (};,@%@/;W eal

Ls (ZFf2f+s)2
P\7 ) 2751

(7.25)
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Finally, using (7.8) to get
27 . 27
Sl = 2asaln) = TelaCol,  (7.26)

we obtain a very compact expression, valid only for large 7,
which is

4 ~
{11y ¢ [ody (€
~ ___ _P _
=5 7 (;()

Tw(;i,;z)aon/;"dwmwi’?)z

XX

X

(7.27)

A numerical analysis of some simple anisotropic phenom-
enological models, together with observational constraints
from Euclid [70] and SKA [71] surveys, will appear in a
companion paper [69].

VIII. DISCUSSION

In this article we have derived the observational signature
of a late-time anisotropic expansion on the weak-lensing
observables. To that purpose, we have provided all the
technical tools, including the evolution of the background
spacetime, the perturbation theory, the description of the
evolution of a geodesic bundle and the manipulation of
observables on the celestial sphere.

Our strategy is to adopt an approach based on the
observer point of view, in which all observables are
expressed in terms of the direction of observation at the
observer. Since a full solution to the problem cannot be
attained straightforwardly, and given that CMB observa-
tions suggest that spatial anisotropy cannot be too large, we
have developed a small shear approximation scheme. It
allowed us to identify the following contributions com-
pared to the standard Friedmann-Lemaitre case:

(1) the tensor and vector contributions to the source
of the Sachs equation, which starts at order {1, 1},
and the contribution of the scalar modes coupled to
the geometrical shear, which is of order {1, 1}
as well;

(2) the evolution of all the perturbative modes, that is,
of the transfer functions, which are decomposed
as TXs(k,t), where the dependence with the direc-
tion of k comes from the coupling with the geomet-
rical shear in the Einstein equation (for that, see
Appendix A);

(3) the fact that the geodesic deviates from the
Friedmannian form and which leads to post-Born
corrections;

(4) the effect of the source distributions which are
affected by the background shear or the scalar
perturbations—that are, respectively, at orders
{1,0} and {0,1}—and for which we would in
principle need a theory of structure formation.
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We have then argued that the dominant term is related to the
orthoradial displacement of the central geodesic on which
the Sachs equation is evaluated, when compared with the
background geodesic.

While we have provided all the elements to perform the
full computation, we have focused on this dominant term
and demonstrated that there exist five off-diagonal corre-
lators between E,,,, Bz, and k,, each of which has five
independent components and thus allow one in principle to
fully reconstruct the geometrical shear o;;. All of them are
linear in 6/H and only two of them involve the B modes.
We advocate that their measurements in future surveys such
as Euclid and SKA, on scales where the linear regime
holds, can set strong constraints on the anisotropy. The
amplitude for these two surveys is estimated in our
companion article [69].

The existence of nonvanishing B modes also reflects
itself in the existence of an angular power spectrum that is
quadratic in 6/H. While probably easier to measure, it does
not allow one to fully reconstruct the shear o;;.

This analysis sets the ground for stronger constraints on
an anisotropic expansion, and possibly on the anisotropic
stress on the dark energy sector. The new estimators that we
proposed will also allow the control of systematics and are
new in the weak-lensing literature.
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APPENDIX A: PERTURBATION THEORY IN
BIANCHI I UNIVERSES

This section summarizes the general framework of linear
perturbation theory in Bianchi 7 universes. Our approach is
an extension of the formalism we introduced in Ref. [22],
where perturbation theory was developed in the context of
an early anisotropic stage. Here, we adapt this formalism
for the physics of the late-time universe. Before we
introduce the parameterization of the perturbations and
the whole machinery of gauge-invariant linear perturbation
theory, we summarize some results regarding the appro-
priate Fourier transform in anisotropic spacetimes and
show how they can be used to extract the dynamics of
scalar, vector and tensor modes from Einstein’s equations.
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We then use these tools to decompose the background shear
and anisotropic stress in a general basis adapted to our
coordinate system.

1. Mode decomposition
a. Fourier and SVT decomposition

In order to correctly describe the dynamics of perturba-
tive modes one needs a complete set of spatial eigenfunc-
tions adapted to the symmetries of the spacetime one is
dealing with. Since Bianchi 7 universes are spatially flat, at
each constant time hypersurface these eigenfunctions
are standard plane waves. Therefore, any scalar function
of the comoving coordinates {x'} and time can be Fourier
decomposed as

. &k, 4 .
s = [ e (an)

)
with the obvious inverse transformation. Because of the
lack of rotational symmetry, the direction of a wave vector
will vary with time. In particular, since k; is constant, k' =
y"k; varies with time—its rate of change being given by

(k') = =26"k;. (A2)
Note however that k;x' = kix; remains constant. From the
above expression, one can easily deduce the time evolution

of the modulus k*> = k'k; and unit vector k' =ki/k as

~olkik;, (k) = (6kk)k - 267k, (A3)

k/

=
As we are going to see, these expressions are crucial for
extracting different perturbative modes from Einstein
equations.

Once equipped with a Fourier transform, we can proceed
and decompose any three-dimensional geometrical object
in terms of its scalar, vector and tensor pieces. We start by
decomposing any (three-dimensional) vector V; in its
longitudinal and transverse pieces as V; = 9,V + V,, with
0'V; = 0. In Fourier space, this decomposition is equiv-
alent to’

I}%i ‘_/[ - 0

Vi=kV+V, (A4)

Since V; is orthogonal to k', it can be further decomposed as

=) V(K n)et(ky),

a=1,2

(AS)

where {e?} represents a two-dimensional basis defined
so that

*Note that we can always reabsorb i factors in the terms of the
decomposition.
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elki =0, edelyll = 5. (A6)

Analogously, any (three-dimensional) symmetric
tensor V;; can be decomposed into a trace plus a traceless
partas V;;=Ty;;+A;;S+20;V ;) +2V,;, where A;;=0,0,—
vijA/3, V; is transverse and V/;; is transverse and traceless

In Fourier space, such decomposmon becomes

Vi =Ty, + (lé,fj —%)LH 2kiVjy+ Vi (A7)

where V; is given by Eq. (A5). V;; is a transverse and

traceless tensor decomposed as

Z Vﬁ gfj ]2)

A=+,x

(A8)

with the traceless (" = 0), transverse (&, k' =0) and

perpendicular (e e = 5’1) polarization tensor being de-
fined as

(A9)

Given the above decomposition, the correspondence
between SVT components of any geometrical equation
can be extracted uniquely. For example, the scalar part of
any vectorial equation of the form V; = 0 can be extracted
by projecting it along k', whereas its vector part can be
extracted with the help of the projector

2,2
i ejes. (A10)
Likewise, the scalar components of any tensorial equation
like V;; = 0 can be extracted by projecting it along y;; and

T;;, with the later projector defined as

(Al1)

The remaining vector and tensor pieces can be extracted
with the help of Pik/ and Af’jb , respectively, where

1
AP = P“Pb—EP Pab. (A12)

In conclusion, the SVT degrees of freedom of any tridimen-

sional vector and tensor are given explicitly by

V= lyklv + §Tklv T
ij 3 kl Yl] B kl ij

+ 2K IPER"V ] + ALV . (A13)
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b. Mode evolution

The SVT decomposition introduced above is based on the
properties of a tensor according to the rotation symmetries of
the background spacetime. As such, in Friedmann-Lemaitre
spacetimes this decomposition is always possible and will
hold during the entire cosmic evolution. In the Bianchi /
case, on the other hand, this decomposition will hold, strictly
speaking, only on a given constant-time hypersurface.
Because of the anisotropic evolution of space, SVT modes
which are initially decoupled will couple nontrivially as time
evolves, implying in a set of coupled dynamical equations
already at linear order in perturbations. Therefore, it is
important to have expressions for the time evolution of basis
vectors and polarization tensors, which will be directly
dependent on the spacetime shear. We have already met the
time evolution of &, Eq. (A3). For completeness, we also
give the time evolution of the vector e¢ and polarization
tensor Efj [22]:

(k') = (o'k;k)k' = 267k, (Al4a)
(eh) == (oehe)el, (Al4b)
b
(eh) = =(c"e} )Py — (0¥'Py)el; + dokel . (Alde)

Special care is needed when extracting SVT modes from
Einstein equations, for the projections of SVT modes do
not commute with time evolution anymore. As an illus-
tration, let us consider the extraction of the scalar compo-
nent of an equation like (V;)’ + HV; = 0, where V, is any
transverse tensor. In Friedmann-Lemaitre-Robertson-
Walker this equation does not have a scalar component,

since k' V; = 0. However, due to Eq. (A3) we now get

— ~

KV +HV] = KV, — (kY

<<I

i = 26ij]%j‘_/i, (A15)
which is only zero when o;; = 0. Further mode-extracting
relations can be easily found in an analogous manner.

For a comprehensive list of relations the reader can
check Ref. [22].

c. Background shear and anisotropic stress

Both the (background) spatial shear o;; and spatial
anisotropic stress I1;; are transverse and traceless tensors.
As such, each of them is described by five independent
degrees of freedom, which are best described in the basis
{k;. e}, e?} adapted to the modes we are considering. In this
basis, these two tensors can be written in terms of ten new
scalar functions as
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3/~4 1 ~

a=1.2 A=+,%x
(Al6a)
3(24 1 7 ,a y)
Hij = 5 klkj —gyij H” —|— 2ZHVak(i€j) + Z HT”lgij'
a=1,2 A=+,
(A16b)

It is important to note that these new functions, which
depend of both IA<,- and time, are not the Fourier transform of
their respective tensors, which in fact are homogeneous and
depend only on time. In other words, the dependence of
(0. 0va, o) and (ITj, Ty, Iy ) with k; arises solely from
the local anisotropy of space.

With the help of background Einstein equations (2.18a)
and (2.18b) written in conformal time and the mode
evolution described by Eqgs. (Al4a), one can show with
a bit of algebra that

(5/)” = O'h + ZHGH + ZZG%N = K'(12H||, (A17a)
3
(U/)Vu = G/Va + 2HUVL1 — EGVGG”
+Y oponMi, = ka Ty, (A17b)

b,A
()p =0, +2Hop =2y M = ka’Il
™ = T T4 avaanh T4
a.b

(Al7c)
where ./\/l’;b is defined as [22]

1 1 0 I /0 1
A ’ %
M“b_ﬁ<0 —1>5+ \/§<1 0)5X'

2. Gauge-invariant variables
a. Geometry

The most general linearly perturbed metric over a
Bianchi / spacetime can be parameterized as follows:

ds? = a*[—(1 + 2A)dn* + 2B;dx'dn + (y;; + h;;)dx'dx’],
(A18)

where A is a free scalar function and

Bi = a,B + Bi? (Alga)
O

defined together with the usual transversality and trace-free
conditions:
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8l'Bi - 0 - 3iEi, Ei - O = a,E” (A20)
Under an active coordinate transformation, the coordi-
nates of any point will change according to

X — X=X — EH(xY), (A21)

where the gauge vector & is itself decomposed as

O =T, E=0L+L' (A22)
with 9;L' = 0. Under the transformation of Eq. (A21), the
perturbations of the metric will transform as

59;41/ - 69;41/ + [ff_};w’ (A23)
where L:g,, is the Lie derivative of the background metric
along &. Using the above parameterization and the mode
decomposition introduced in Sec. A 1, it is straightforward
to show that the scalar and vector metric potentials trans-
form, respectively, as

A= A+T +MHT, (A24a)
B-p-1+ L (A24b)

k
C— C+HT, (A24c¢)
E—E+L. (A24d)
B; > B; +v,;(L7) - 2ikic;P!L, (A24e)
E - E +L, (A24f)

whereas E;; is automatically gauge invariant. Based on
these transformations, we can construct the following
gauge-invariant variables:

1 (k2E>/ 1
VEYA A S
(KE)'
\If:—C—H[B— . (A25b)

It is easily verifiable that whenever ¢;; =0 the Fourier
wave vector k will be constant and the above variables
become the standard Bardeen variables for a Friedmann-

Lemaitre universe.

b. Matter sector

Moving forward, we now parameterize the perturbations
of the energy-momentum tensor defined in Eq. (2.14),
which can be decomposed as
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T = TV 4 8T, (A26)

From the normalization condition of the fluid total four
velocity we can write
1 . . . .
Sut =—(—A,v"), v'=0v+ 7 (A27)
a
with 9;5' = 0, as usual. Likewise, the perturbations to the
energy density (dp), pressure (6P) and anisotropic stress
(57:3-) are introduced as follows:

5T8 = —op, (A28a)

8T? = [p(1 + w)y;; + 1L (v/ + BY), (A28b)
8Ty = —p(1 +w)v' +yém), (A28c¢)

ST} = 6P§ + ylom; — Tl h,  (A28d)

where B; and h;; were defined in Egs. (A19). Special care
to the notation is in order here because, as one can
check, §*6r,, # ot = §*om,, + 11, 6¢*.

We also need to parametrize the perturbed anisotropic
stress tensor Sx. From the transversality condition
(u* + out) (T, + ém,,) = 0, we conclude that

577.'00 = O, 571'0i = —Hij’l}j. (A29)
Note however that these conditions do not fix 6z;;. We
therefore further decompose 67;; as

577,','1' = 2[7[T]/ij + aiajﬂ's + 8(iﬂjv) + JT;]}], (A30)

where T in z7 stands for “trace” and where, as usual, we
have

Inf =0=0x, ' =0.

(A31)
Moreover, note that #*éx,, = —I1,,6¢" # 0, which is why
the above decomposition tensor has a trace.

Under the gauge transformation (A21) and using again
the appropriate Fourier decomposition, the above variables
transform as

Sp— 6p+p'T, (A32a)
6P — 6P + P'T, (A32b)
kL)
v—>v—(k2), (A32c)
v - o' — (L") + 2ik/o;;P'L. (A32d)
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These transformations suggest the introduction of the
following gauge-invariant variables:

K’E)
5ﬁ55p+p'[3—(k2)}, (A33a)
N K*E)
5PE§P+P’[B—<k2)], (A33b)

K’E)’
@EU—I—(kZ), (A33c)
P=v+B (A33d)

The perturbed variables in Eq. (A30), on the other hand, do
not have simple transformations as above, essentially
because there is no simplifying relation between the
background tensor I1,, and the wave vector ki. Using

LA =TT 4 €, + 11,8

we find that

1 .. 1 ..
al -l + (—ZT’JH;-]- + 56’11'[,-/) T, (A34a)
3 A S
77.'S d 7Z'S — rkZT”H;JT + Hl]k kjL - IHI'J'ELJ’ (A34b)

i

2 =¥ — %P{IQZH;IT +ikPITL R + PITL!, (A34c)

(A34d)

1
n =l + EAf;ﬂnng,
where P;;, T;; and AZ were defined in Egs. (A10), (Al11)
and (A12). From the variables above we construct the
following new variables:

1. 1 .. KE)
ﬁ'T = ﬂ'T + |:_ZTUH€-]- +§0UHU:| <B - ( k2) >7
(A35a)
R 3 (KE)
ﬂSEﬂS—mT/H;j<B— k2 )
IL k'K E + ill ¥ E A35b
— 1 Tl B ( )
v i (KE)
— kP k'E — PIIT,E', (A35¢)
. [, (KE)’
ﬂl.T]. = zrl.Tj + EAfj I}, (B 2 ) (A35d)

which, as one can easily check, are gauge invariant.
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c. Gauge choice

From the construction of gauge-invariant variables pre-
sented above, it is clear that an enormous simplification will
be achieved if we work in a gauge where

B=E=0=E'. (A36)
In this gauge the scalar modes become
o = A, U =-C, 5p = ép, 5P = 6P,
V=, al =aT, 75 =75, (A37)
whereas the vector and tensor variables become
(ii :Bi, 131‘ = l_)i+Bi1 7’7\:}/:7[}/, ﬁ'z; :77.'17;
(A38)

Apart from the spatial velocity 7;, in this gauge the gauge-
invariant variables coincide with the original potentials. In
other words, by working in this gauge the final equations
can be trivially (again, apart from ;) replaced with the
same equations satisfied by gauge-invariant variables. Note
that this choice fixes the gauge completely and is slightly
different from the choice made in [22].

3. Perturbed Einstein’s equations in Bianchi /

We have now everything needed to obtain the fully
mode-projected and gauge-invariant Einstein equations.
This is a tedious but straightforward procedure which
requires careful computation of time derivatives and the
Fourier vectors through the use of Eqs. (A14a)—(Al4c). We
note that the main difference with the approach followed in
Ref. [22] is that the trick below Eq. (3.21) in [22] cannot be
used when IT;; is nonzero.

a. Scalar modes

Einstein equations give four equations for the evolution
of the scalar modes. The first of them comes from 6G) =
k6T and is given by

1 k?

1 : E 1 2 2
_Elk _ O'Vaq)u—ﬁlp[(o' )/+4HO' ]
1 K
+ E % [EQGT/‘L + 2E/1 aé.b GV“GV}’Mi.b:| = —a2 55,0,
(A39a)

where, for simplicity, we have introduced the new variable
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\P/
X=UV+o — .
; +<H)

The second scalar equation can be extracted from §G? = x6T? by projecting it along the vector k' and is given

by (0/)”
U1 2 i
U+ HP —%X+ (0 = () 377 = 5 D Eiov = —%K{p(l +w)v + —%anva} . (A40)
A a

The third and fourth equations come from trace and traceless parts of 5G§ = K5Tj<. They are

1 k% 1

V4 IHY 4 HY + (2H + H) - é/@(@ W)~ Loyt S0 (X~ 3)

6H
; <E30T4 + 2EiZGVaUVbMah> + %ikza:owcpa + 15 [(6?) + 4Ho?]
=a K[25P+ﬂ' —gkz s ; (%Hijaij—ZA:EQHTx>} (Adla)
and
%kz(cb ~0) -0 [X’ - k;% - Zik;aw@a —2X(c'), - % (()) + 46;@%@/\42,,
= o’k [— % s+ %n,,a” + g% ZH:HVHGVM - %% zﬁ:awnw + %;Einw} : (A42a)

respectively. Note that, despite the appearance of i factors, these equations are real.

b. Vector modes

The two equations for the vector modes can be obtained through the combinations e’,(§GY —x6T?) =0 and
lAc,-e{l(5Gj- — «6T") = 0. They are given, respectively, by

2i —2a%k . 1 R
(P —_ EO'VHX + ZEAGV[’M k2 |:p(1 + W)’Ua + lknvu’lj —_ EH”U‘I + ;Mibr{'ﬁ’ub - lkﬁnvuj| (A43a)
and
/ 5 2 / 21w / A / /
o, +2HD, - a”(I) + Z@hGTiM O'VuX H 36)(6")ye = 3ova(d')) + ZZMab(avb(a Yy — o (6 )yw)
b.A
ZE;L Vb + Nabdvb (GT+5 - O'Tx5 k ZE/IO'V”M
4i 210 30”
- {(( e =5 =2 e+ S Ml
2 , [, v 1 ,
= ?a K lkﬂ'a + qunvu —+ Zﬁ GHHVH —_— EGVHGH =+ ;GVhHTﬂMab . (A44a)
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c. Tensor modes

There is only one dynamical equation for the tensor modes. This equation follows from the projection
e}/ (6G' — k6T") = 0, which gives
1" ! 2 2 2 2 v ! /
E} +2HE) + K*E; = 2E; Y 0% — 2E;0%,) + 2E1_01-0p< — o |k )+ X —2X(6' )

v ]
+ 2ikZavh P M, — 7 (o)) = a’k [2:& +1ILE; - 7 <0—”HTA + oIl + vaaavh/\/tgb)] : (Ad45a)
a,b a,b

4. Perturbed fluid equations

The perturbed conservation equation follows from
(6V, )Ty +V,(6TY) = 0. (A46)
Working in the gauge (A36), the time component (v = 0) of the above expression gives the perturbed continuity equation

Sp' + p(1 +w)V20 +3H(Sp + 6P) — (p + P)3V’

= ajéﬂjo - H]/ljéﬂ'ij + 'HHijh’f - 6}57[,‘[]/11 + O';Hilhl] - z (h{)’H}, (A47a)

where we recall that i;; was introduced in Eq. (A19). Likewise, the perturbed Euler equation follows from spatial part
(v = i) of Eq. (A46). We find

9 .
3_71{U)(1 +w)yi; + ;]07} + 0,6P + 9'6m); + (1 4 w)pd;® + 1O, P

. A 1_.

Despite their generality, the above equations are not very useful since they are implemented in real space. In order to
obtain their Fourier counterparts we need to project these equations along the scalar (lAci ) and vector (€,) modes. This
mode extraction procedure is tedious but straightforward and requires special attention to the use of the evolution
Egs. (Al4a)-(Al4c) of the Fourier wave vectors.

a. Scalar modes

Both continuity and Euler equations lead to conservation equations for the scalar modes. They are given, respectively, by

, LS (e v

+2a% T, = 8UTloy; + Tl v iKY Tye(v, = ®,) — 6Ha! + 2275 (H + o))
= 2kY oyery =2 opal = E(oplly +oylly) + > TL(2HE; — E;)} (A49a)
a A i i

and
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1 2 oIl (1 + ¢?
2 T 275) s
cs6+wl +— —k°r al, — Ly
1+W[A + er(ﬂ } ZGV <1+w>
-1

— m {lk(H”U)/ + lkH”® + 4H <1kH” v + ;Hva ’Ua) + 1k\I’H” <— - 1) lkZHT} E/l

v+ H(1 —3c?)

- kW .
+ <2ZHV“GV” + HUGU> W + Z[(H\/ava)/ + UHHVa v, + Zlkdvanva 1)}
a a

- Z (H”G\/u Vg, + 220\/64 UbMinTA) }, (ASOa)
a b.A

where we have made use of the equation

Vo,
——{3H(1+w)+&} (2 —w) (A51)
p
and of the definition [2]
5
s=2 &P =c2p+wpl, (AS2)
p

where ¢2 and I' are the sound speed and the entropy perturbation, respectively.

b. Vector modes

There is only one conservation equation for the vector modes, which follows from the vector projection of Eq. (A50).
This equation is given by

Kz e, (14 2 1
vl + H(1 =3c)v, fa j( +C“>

—oyw, + Y Mt onv
p(1+a)) P) 1+w IYa ; ab®T Vb

Va= 5
1 .
= —m {8,1 <1kHVav - ZVabvh> lkZL{ pIlysv + ZU »Vhe Ve
b

b.c
+4H <ikHVw - Zb:Vabvb)ikHanb +ik (2;HT;.UV1,M§,, + 2Myeo — Ijoye — ann> %} , (A53a)
where we have introduced
Uy, = —O'ijefle{;, Vo = —H,-jeflei. (A54)
c. Friedmannian limit

It is a straightforward exercise to verify that the above equations have a well-defined Friedman-Lemaitre limit.
Redefining é7;; — Pér;; and 7’ — k*%/3 to compare with Ref. [2], we find immediately that

8 +3H[(c? — 0)6 + ol = (1 + w)(KPv + 3¥'), (A55a)
" H(1 =32+ B =— AP r-2 o)), (AS55b)
v €5 4w 1+ w 3
I 1= 2 2 A
v, +H(l =3c)v, = 1—|—a)k zY, (A55¢)

which are the expected equations.
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APPENDIX B: PERTURBED GEOMETRIC
QUANTITIES

This section gathers the expression of the geometrical
quantities at order {1, 1}, as needed for the computation of
this article.

1. Connections

Using the commutators of the tetrad field ¢

@abe =5 (Yabe + Veba = Vhea) (B2)
Up to order {1, 1}, the commutators are
720 = r'o0 = 0. (B3a)
J J (Y Lo
roi =10 = —Eij + ( 7 ) +0:B;
—0;;(1 - @)+ W, (B3c)
k 2 X q k
rrij = —28[,-Ej]k + ﬁa[i\lfoz]/_( + 28[,-\1151.] - Zﬁ[iaq\lféj],
(B3d)
and the Ricci rotation coefficients are thus
wyo; = —wy;g = —exp[—p;;0;®, (B4a)
o /
a),oj——a)ugzdjlll’—f— <#\P> GU(l (I))
w(_)il— a)Qj, —8[jB,], (B4C)
i)

LG

2. Riemann and Ricci tensors

We report the Riemann and Ricci tensor components of
the metric (4.1), where the overall scale factor a® has been
removed by a conformal transformation, up to order {1, 1}.
We first give their components in the coordinated basis
(with the use of the package XPAND [87]) and then in the
tetrad basis {©}.
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In the coordinate basis, the nonvanishing components are
given by

.. "
ROin = Yij\ll// + <% \II> + Gij(q)/ + 2\IJ/) — G:](l - 2\11)

Oili !
Roijie = 21i5j0 70, ¥ — 20i;0y¢ 2 [(’“’U * #) % \4

+ c‘)ié)[jBk] + za[kE}]i,

(BSb)

oy
Rijpg = =47(i[p0)j V' +4 (7[1‘[:7 + ,,) 07104 ¥ — 9,0, E;,

H
_8i8pqu +8pajEiq+8qai jp’ (BSC)
and
ROO == 3\11” + }/Uajazq)7 (B6a)
. AN
R =200/ ~ofoy(0+3%) - a3, - [T22] (s
R;j = o};(1 =20 - 20) — 0;;(®' + 3W')
+ }’ij[}’kqaqak‘l’ - U]
+0:0,(V - @) + Ej; — AE;; - 0B))
o;V\" o o;
_ < y > + 22300 -2200,0,0.  (B6e)

Projecting using the tetrad (4.6) leads to the components in

the tetrad basis
011 "
RQ!Q[ :51-1-\11”—1— (W‘qf) —&-al-l-((I)’—i—Z\Il’) —021'(1 -29)

+0,0,®—E}; + 0B, (B7a)
Ry;jx = 260170,V — 20,0y — 26,0y V'
o0V’ _ ,
-2 77 + 0;0;By + 204 E;, (B7b)
Rilﬁi = —45m£61-]_] 0+ 4(5&[24—6&[2/7'()81]82]\11
- aqaiEiﬂ - aiapEJ’q + apa/'Eiq + 8qaiEjﬂ’
(B7c)
and
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FIG. 3 (color online).

The azimuthal point Z is at the azimuthal direction e, while the point P is located in R, - e,. Because of lensing

the signal observed in P is coming from P’ whose location is at Ryxa(n) - Ru - €., which corresponds to a covariant transport along a from

the point P. As for the point Z/, it is obtained by applying R;' on P/ meaning that it is located at R;;' - Ryxa(n) - Ru

- e,. This is equivalent

t0 Ry «[r;'a(n)] * €. Which corresponds to a covariant transport from the point Z, along the vector R;'a(n). The lensed field at P (Xp) is

obtained by covariantly transporting back along a the unlensed field at P’ (Xp) by application of R~

Xp = (R}

nxa(n)

everythmg is transported back into the azimuthal region by application of R;'.
) For the latter, there is an alternative expression, which corresponds to covariantly transporting

XZ - (R_ )Z - (R_l Rn>1<a(n)

back the field X along R;;'a, and this leads to XZ = (R ! Ry a(n)]

xa(n)’ and we get

-X) , and it is in general different from the unlensed field at that point Xp. In order to read the components,
P

We get Xy = (R;'-X),, X;=(R;'-X),, and

-R;' - X) , from which the components can be read by projection on
z

the local helicity basis associated with e, and e,. This is preasely the meaning of Eq. (C8) which is used to compute the components of

the lensed field.

1 0%31‘1’/
——AB,-—{ ! ] (B8b)

J

=0},(1=29) —0,;(P' +3V') +§;, [akak\y U]

+0,0,(¥ - @) + EJ,

ij =

)
o~

N % iy g <’a 0,0
_<H> W W =25 '

(B&c)

APPENDIX C: GLIMPSE ON THE FULL
LENSING METHOD

This section details how a tensor field on the sphere X is
lensed by a vector field a, the lensing being defined as the
result of a parallel transport with respect to this vector field.

First, for any direction on the sphere, there exists a
rotation which connects the azimuthal direction with this
particular direction n. If this direction has spherical
coordinates (6, ¢), this is simply

n=R, e, R, = R(¢,0,0) =R,

where R(a,f,y) is a general rotation parameterized by
Euler angles. Now, if we want to define the helicity basis at
a given direction n as a result of this rotation applied to the
helicity basis at the north pole, we have to face the fact that
the helicity basis at the north pole is not well defined, since
e, is not defined at this point. We choose that at the north
pole n*(e,) = JLE (e, F ie,), since this ensures that the

helicity basis at any point is obtained from the one at the
north pole through a rotation, that is,

n*(n) (€2)
A spin-s tensor is defined as X(n) = X*(n)m*(n) =

[X*m®|(n). Its components on the polarization basis are
simply obtained by projection

=R, -n*(e,).

X*(n) =m™(n) - X(n) =m>(e,) - [R;' X(n)]

=m(e,) - [R;'X](e,). (C3)
This means that instead of projecting a tensor on the
polarization basis at a point n we can equivalently rotate it
so that the point which is initially in # becomes located on
the azimuthal direction. Then we can evaluate its compo-
nents on the polarization basis at this azimuthal direction.
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The azimuthal direction can thus be used as a common
reference for all points on the sphere since for each point
there is a unique natural rotation to transport from this point
to the azimuthal direction.

Let us consider that, due to the lensing vector a, the
tensor field we observe in the direction n is now the result
of a parallel transport of the underlying tensor by this vector
field . Such a parallel transport is equivalent to a rotation
around the axis nm x a, so that the lensed tensor field is
related to the unlensed one by

() = Ry X)(n). (c4)

We use the notation Ry to indicate the rotation defined by
the rotation vector V. This is the rotation around the axis
defined by the vector V with an angle obtained from the
norm of V. It must not be confused with the previous
notation R,,, which is the rotation that brings the azimuthal
direction toward the direction n. As emphasized previously,
the components of the lensed tensor field, as any tensor
field, can be obtained by transportation to the azimuthal
direction, that is,

X(n) =m~(n).X(n) =m=(e,) - [R;'R"]

nxa(n)

X](e:)-
(C5)

Using the general property of rotations R,,RZR;1 =Rg v
leads to

Ry Ruxa(n)Rn = R x(k;'a(n)): (Co)
that is, to
Ra'Ran) = R gt aguy R (C7)
which can be used to recast Eq. (C5) as
X'(n) =m(e,) - [Re‘zlx[R;]a(n)]R,le] (e,). (C8)

This can be understood easily once we extract the helicity
components of the lensing vector. Indeed, the helicity
basis components of the lensing vector field are obtained
just like for any vector field as a®(n) = nT(n).a(n) =
Jii(ex F iey).[Ry'a(n)]. If we define

1 i
a, =—(a, +a_), a, = —(a a_), C9a
ﬁ( + ) ) ﬁ( +—a2), (C9a)
a, = agcosa,, a, = qgpsina,, (C9Db)

where (a,. a,) are the components of the lensing field once
transported to the azimuthal direction and (ay.a,) their
associated polar components, we obtain that
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Re,x[R,jla(n)] = R(a(/,, %y, —a(/,). (CIO)
This means that instead of lensing the tensor field at the
point n and subsequently extracting the component, it is
equivalent to transport both the field and the lensing vector
at the azimuthal direction with R;! and then let the
transported lensing vector act on the transported tensor
field. This procedure is explained graphically in Fig. 3.

With this crucial result at hand, we just need to compose
the rotations of Eq. (C8) in order to obtain the components
of the lensed field in terms of the multipole components of
the unlensed tensor field. Using the general transformation
law (D16), we get

Xm) = Y ¥5,(e)Df, (R oy 9. ~a,)|DL,

Cmm'm”
x [Ry'XS,, (Clla)
e+ .
= D (0Pl R a0 —ay )DL,
mm’
x [Ry11X3, (Cl1b)
=Y ey, (ag.a,)DL,, [Ra1XS,,.  (Clic)

mm'’

where it is understood that the components (ay,a,)
correspond to the lensing vector field at the position n
considered, and these should be obtained from the defi-
nitions (C9).

From this relation between a tensor acting as a source for
an observable and its lensed version due to the geodesic
structure between the source and the observer, it is possible
in principle to obtain the correlations functions (see e.g.,
Ref. [77] for the case of CMB lensing). A simplification
can be obtained by expanding the spherical harmonics in a
small angle approximation. Indeed, very close to the
azimuthal direction, the spin-weighted spherical harmonics
are approximated by

20+1
You(0,9) = (=1)" | = —€" ] [(£ + 1/2)6)],

(C12)

and given that J,, ((x) behaves like x”* when x — 0 there
is a natural way to expand Eq. (C11) in powers of the
lensing angle. More details can be found in Ref. [77].

APPENDIX D: MATHEMATICAL TOOLBOX

1. From Cartesian to spherical derivatives

In this section D; refers to the covariant derivative on
the unit sphere in Cartesian coordinates, that is, DE-F£3
defined in Eq. (4.10). The key relation to derive all the
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decompositions from Cartesian derivatives 9; to radial and
covariant spherical derivatives is the simple relation

rai)? =S

j (D1)

ij
which is just the statement that the extrinsic curvature on a
unit sphere is equal to the metric on this sphere. For a
scalar, a projected vector and a projected tensor, we have

ai(p - r + ris (Dza)
. DB, - i e
9:B; = lr ’ (B)) ,&i _7131, (D2b)
. D.E.k . T R~
OEj = lr 4+ (Ex) & — 7jEik - 7kEjiv (D2c)

where we use the notation X, =3/9,X for the radial
derivative. Note that this radial derivative and the covariant
derivative on the unit sphere D; commute, as they are just the
geometric versions of derivatives in spherical coordinates.

Iterating these relations we obtain for scalar
perturbations

@ DiD;p
0;0;0 = 2x:Dj p + pe

—|—(p,,xxj+S,] b

(D3a)
y D, Dl
$0,0,p =~ ¢ 2— (D3b)
Dip, = (D), (D3d)
2
SP'$10,0,0,0 = = Si;Dy) (Q> + 8,04 <ﬂ>
r r o r
D.D.
+ 8k( ,r2,¢> , (D3e)

D.D; .
xksfsjakapaq(p_( r2f(/’> + Sl,(%) . (D3f)

Squa 8 aq§0 = <1Di) (%) + SijDk (%)

+<—Dk%ff¢>-

As for vectors and tensor, the useful relations are

(D3g)
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. 404Ey 2E, 2SuE, -
§I30,0,E,; = 0,0 E, —— 0 ¢ r;’— f; T_2E k),
(D4a)
D.D'B, 2D'B, (B,), 2B
AlaaB — 1 r_ 1 B 2 r.r_ r'
X 0 jP1 r2 }"2 +( r).rr+ r r2
(D4b)

Finally, using the fact that the vector modes are transverse
and that the tensor modes are transverse and traceless,
we get

B; = B; + %B,, (D5a)

D'B; = -2B, —r(B,),. (D5b)
E;=E;+2E:%) + E,&%;, (D5c)
SUE,; = —E, =0, (D5d)
D'E; = =3E, — r(E,) ,. (D5e)
D'E;; = -3E; - r(E;), (D5f)

2. Spin-weighted spherical harmonics

Spin-weighted spherical harmonics are defined in terms
of Wigner D matrices as [88]

20+ 1 )
Vo) = \[F (1) DY, (@ o) (D6)
=Vt p0) (D6b)
= (1) (), (D6c)

where a, f and y are the Euler angles. Wigner D matrices
are in turn defined in terms of infinitesimal generators of
three-dimensional rotations as [89]

Diym, = (€mi|U(R)|Em,),

U((L ﬁ» },) — e—iutlze—i/ine—i]/JZ .

where
(D7)

In the special case in which the direction is aligned with the
z axis we have

20+ 1

= 6ms(_1)m Ar (DS)

Yz(e:)

Under the parity transformation
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ﬁ - T ﬂ s

a— o+, y—=>vy+m,
the spherical harmonics and Wigner D matrices transform

as

Yen(@.p) = (=1)Y (. B, (D9)
D, (a.p.y) = (=)D (a.p.7)
= (=1)*"D] _ (a.B.y). (D10)

In particular, it follows that under parity transformation the
spin-weighted spherical harmonics behaves as
DS ACY )

Yim(@.f) = (= (D11)

3. Rotation of fields on the sphere

The transformation of the spherical harmonics is
given by

You(R™n) =" (n|¢m')(¢m'|R|¢m)

/

[RY £,)(n) =
= ZYfm’ (n)DY,,,(R).

where the first equality is the definition of the trans-
formation of a function on a sphere under a rotation. For
a scalar field on the sphere, we can deduce the trans-
formation of its multipolar components of its expansion in
spherical harmonics:

(D12)

= zxfmyfm(n)
‘m
to be
cmm’
so that
[RX]fm’ = ZDZ’m(R)Xfm (D14)

The rotation of a tensor field on the sphere is very
similar. Once it is broken down into symmetric traceless
tensors, then, by using that such tensors are decomposed as
X(n)=X**(n)m** (n) =[X**m**](n), it can be expanded
in spin-weighted spherical harmonics as

X(r) =Y (XY /s (m)m* (n) + X75, Y 75, (n)m> (n)].
‘m

(D15)

Under a rotation, it transforms as (see Appendix A of
Ref. [85])
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[RX](n) = R.X(R‘l.n)
= YE.(n)D:, (R)XZim*™(n).  (DI6)
mm’
that is,

We remark that it is exactly the same transformation law as
for scalar fields because we have transformed the full tensor
field X**(n)m**(n) and not just its component X**(n)
considered as a scalar function, for which the transforma-
tion law is more complicated [85].

4. Wigner 3j symbols
The 3j symbols satisfy the following properties:

(Lﬂ 2 'fs)(fz 3 f1><f3 2y fz)
m; mp niy B my, ms niy B ms mp mp

= (=1)f1tetts (fl 43 0 )

myp ms myp

_(_1)f1+t’2+f2< ARSI E >
—my —my —ny

Moreover, they are identically zero whenever any of the
following conditions are violated:

m1+m2+m3=0, |lxpl—fj|ﬁkafl+fj,
(i j.ky = {1,2,3}.

They are also orthogonal in the sense that

6yt CN[(C 6 L 1
Z = 75ff/5mm’
mym, N1 My m my  mp m’ 20 + 1

(D18)
and that
£, t, € ‘O, €
S e+ 1)( b ) ( Lo )
‘om mg ny m ml m2 m
= 5m,m’1 5m2m2" (D19)

Since Eq. (D19) holds for any set {m, m|, m,, m)}, two
important cases follow from this expression. First, consider
the case where m, = —m, and m, = —m/. Then, using the
selection rule m; + m, +m = 0, it follows that

Z(2f+1)<fl ‘, f)(fl ‘5 f)_
0 my —my 0 - T

7 my —my
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Second, note that if we further impose that m; = m| = 0, then

Z(zfﬂ)(":; I’ﬂoz §>z: 1. (D21)

Another useful expression is

(fl ¢, 0>5 1 D22)
0 0 o) yagF1

A recurrent expression when dealing with deviations of isotropy is the integral of three spherical harmonics, also known
as the Gaunt integral, and defined as

(ﬁ):\/(2f1+1)(2f2+1)(2f3+1)< £ 6t )(fl £, ¢

4n —S51 —S2 =53

[ears, @y, @z, ) o2

my nmp ms

Note that, due to the symmetries of 3 symbols and the properties of spin-weighted spherical harmonics under complex
1y Moy

conjugation, the coefficients *Cptrts defined in Eq. (5.12) satisfy the following properties:

—s MMMy __ (s (oM g e~ =y =g
Crlpp, = (F1)TRHBsCy NS =2Cp 0 . (D24)

From the definitions (D23), (5.12) and the closure relation of spherical harmonics one can also verify that

Yo, (Y5, () = SCRpemys | (n), (D25)

C1,my

an identity which is needed in order to derive Eq. (5.16).
Let us also define a useful integral for the gradient expansion approach of lensing by

I = / PQIDYES (R)]Y 0 (B)[D,YE, ()] (D26)

C3my

where the polarization basis is voluntarily omitted for a simpler notation. It has the useful property inherited from Eq. (D24)

(R = (1Yt s, (D27)
Its expression can be found using
mymoms 1 x /A R 5 R
wAelee, = 3 [£2(65 +1) +65(63+ 1) = €,1(6) + 1)) /szYfﬁm] (8)Yz,, (B)Y75, () (D28)
1 Walatubxu

= E[fz(fz + 1)+ 435+ 1) =446+ D]FCR (D29)

_ fl fZ 53 _1\m+s
_:t‘chlfzf,z(_ml m, I’I’l3>( 1) B (D30)

where, following Ref. [84], we defined the symbols

(D31)

SmezEé[fl(fl+1)+Lﬂ2(f2+])_f(f+1)]\/(2K+1)(251 +1)(2f2+1)(f ¢, z,”z).

4

In particular we have
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2o = (f+4)\/

4 2 0

2Frpy = (3= f)\/ A )

5(25+1)(2£+3)(i 2 +1

0

5(2f+1)(2f—1)(f 2 -1
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