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The simplest possible classical model leading to a cosmological bounce is examined in the light of the 
non-Gaussianities it can generate. Concentrating solely on the transition between contraction and 
expansion, and assuming initially purely Gaussian perturbations at the end of the contracting phase, 
we find that the bounce acts as a source such that the resulting value for the post-bounce / Nl may largely 
exceed all current limits, to the point of potentially casting doubts on the validity of the perturbative 
expansion. We conjecture that if one can assume that the non-Gaussianity production depends only on the 
bouncing behavior of the scale factor and not on the specifics of the model examined, then many realistic 
models in which a nonsingular classical bounce takes place could exhibit a generic non-Gaussianity excess 
problem that would need to be addressed for each case.

DOI: 10.1103/PhysRevD.91.023516 PACS numbers: 98.70.Vc, 98.80.Cq

I. INTRODUCTION

The recently released Planck data [1,2] have set new 
standards as far as cosmological modeling is concerned, 
imposing very tight constraints on early universe physics 
[3,4] and discriminating [5,6] among numerous inflationary 
theories [7]. Bouncing cosmologies are among very few 
possibly viable alternatives to inflationary cosmology (see 
[8] for a review). This being said, the only relevant 
bouncing models worth investigating [8-10] are those that 
are able to reproduce the observed power spectra, both 
scalar and tensorial. In turn, these models have to face the 
most serious cosmological constraint to date, namely that 
imposed by the smallness of non-Gaussianities [11]. 
Whether or not generic bouncing models can successfully 
pass this test will decide on their viability. To a large extent, 
the non-Gaussianity parameter / NL does not depend on the 
actual spectrum of first order perturbations, and is thus also 
independent of their initial conditions. This makes it an 
invaluable tool to assess the viability of any cosmologi­
cal model.

The purpose of the present paper is to demonstrate, by 
means of an explicit calculation, itself drawing heavily on
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the ones detailed in Ref. [12], that the non-Gaussianity 
produced during the transition from contraction to expan­
sion, and thus by the bounce itself, may far exceed existing 
contraints on / NL. Recalling that canonical single field 
slow-roll inflation naturally predicts small / nl, our find­
ings would tend to favor the inflationary paradigm by 
disqualifying one of its few alternatives.

The particular category of model studied in this paper is 
that for which the matter content is in the form of a strictly 
positive energy scalar field. The presence of a negative 
energy component being crucial for the obtention of a 
bounce, we take the spatial curvature to be positive, so that 
it acts as an effective negative energy component. While it 
is true that many bouncing models are constructed with a 
vanishing or negligible spatial curvature contribution, they 
necessarily involve other types of negative energy fields, 
which may cause serious instabilities, and hence also 
potentially produce large amounts of non-Gaussianities. 
Therefore, although the results which we present below 
apply, strictly speaking, to nonsingular bouncing models 
dominated at the bounce by the positive spatial curvature 
term in the Friedmann equation, and for which general 
relativity (GR) is valid all along, we conjecture that it could 
apply to a much wider set of similarly nonsingular models, 
hence raising a possibly generic problem with bouncing 
cosmologies. Note that we do not consider singular 
bounces for which GR does not apply throughout as no
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reasonable prediction can be made in such contexts without 
an explicit calculation within the framework of an (as of yet 
still unknown) theory of quantum gravity.

II. THEORETICAL FRAMEWORK

We start from the GR action (we work in natural units in 
which 8^Gn =  c = h = 1),

S = J  d4x ^ g ( - R  +  £ mat), (1)

where £ mat describes the matter content and R is the Ricci 
scalar derived from the metric tensor g^. The metric itself is 
chosen to be that of a perturbed Friedmann-Lemaitre line 
element, given in Poisson gauge1 by

ds2 =  a2( - t 2̂ dr}2 +  e_2$yiydx'djc^), (2)

where

Yij =  (l +  l-K,8mnxmxn\~ 2 Stj

is the background spatial metric which we take to be of 
constant positive curvature (1C =  1). The fields

(0
z!

and $ *(0
^  i!

are the Bardeen potentials up to arbitrary order in pertur­
bations and encode the scalar cosmological fluctuations 
in the metric. Note that here, one has, at first order, 
% )  =  $(!)•

The background metric, i.e. that obtained in the limit 
'P, <f> -* 0, satisfies the Friedmann equations

Tt2 + 1C = ^ a 2p, (3)

where p is the fluid energy density and the conformal 
Hubble rate is H = a’/ a, a prime meaning a derivative with 
respect to the conformal time rj. The normalized energy 
density is defined through £2 =  pa2/ ( 37f2), and one may 
associate to the spatial curvature term 1C a normalized 
energy density in a similar way through £2  ̂=  IC/Ti2.

We set K, = 1 for two reasons.
First, as stressed in the Introduction, the obtention of a 

bounce requires the presence of an effectively negative 
energy component. Positive spatial curvature is its simplest 
incarnation. It is free of the instabilities that may for

This gauge is known to introduce potentially large and 
unphysical effects. The quantities calculated below however, 
being the ratios of spectra of first order perturbations, should not 
be plagued by this problem.
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instance result from the introduction of ghost fields, and 
less speculative than for example the Galileon/ghost con­
densate implementation (see, e.g. Ref. [13] and references 
therein). Whether or not this latter implementation exhibits 
the large non-Gaussianity problem discussed in the present 
paper is still a matter of debate.

Second, spatial curvature is identically zero only in the 
special and entirely implausible situation where £2K =  0 
strictly. We would argue that =  0 can only be the result 
of extreme fine-tuning or occurs in specific theoretical 
frameworks (e.g. brane inflation in superstring theory 
where spatial flatness and isotropy are protected by 
symmetry). In general, in any realistic cosmology, 
Cl/c ^  0, with current observational constraints to some 
extent favoring a slightly closed universe with 1C =  1 [2]. 
Furthermore, at the bounce, the Hubble parameter H  being 
equal to zero, it is the balance between the spatial curvature 
term and the energy contents of the cosmology which 
determines the dynamics. Under general conditions, spatial 
curvature can thus by no means be assumed negligible at 
the bounce point when otherwise only positive energy 
density components are present. In the case of a model that 
relies on a ghost condensate or some other effectively 
negative energy density component, the negligibility of the 
spatial curvature term can only be invoked a posteriori, i.e. 
if an explicit calculation of tzB, the scale factor at the 
bounce, demonstrates that it is indeed negligible.2

Although non-negligible at the bounce, the spatial 
curvature at late times can easily be made to agree with 
current limits on £2 .̂ This can be achieved in two different 
ways. The first is the existence of a phase of inflation 
following the bounce [14,15], The second is the existence 
of a phase of deflation prior to the bounce [16] with the 
added requirement that the bounce be close to symmetric 
(see [8]).

We now restrict attention to the specific case for which 
the matter consists in a single scalar field 4> with a canonical 
kinetic term and evolving in a potential V ((/>). We therefore 
have

S = ~ f  d4xV~9[R + (d<t>)2 + V((j))]. (4)

At the level of first order perturbations, introducing the 
variable u <x a 'l! ^ /  f t  and its Fourier modes, defined by 
Auk = - k 2uk, one finds [17]

<  + [*2 -  V M W  =  0, (5)

where the potential Vu(rf) is sketched in Fig. 1, drawing on 
the specific functional shapes of Vu(rj) obtained in previous 
works on the same model [14,15,18]. As shown in the

2Here and in what follows, the subscript “B” denotes a quantity 
evaluated at the time of the bounce.
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figure, a typically asymmetric bouncing phase occurs at rjB 
and is generically preceded and followed by peaks in the 
potential with model-dependent amplitudes and widths. 
The peak that occurs prior to the bounce follows a regime in 
which Vu vanishes, in such a way that unambiguous 
vacuum initial conditions can be set. In contrast with what 
happens in inflation, for which modes cross the potential 
only once (e.g. the mode with wave number labeled k3 in 
Fig. 1), in a bouncing cosmology, modes may cross the 
potential three or more times (e.g. modes with wave 
numbers k x or k2 in Fig. 1). The primordial spectrum is 
therefore modified for wave numbers k {, k2, with possibly 
superimposed oscillations [14,15] and, as will be shown 
below, the amplitude of the three-point function of cos­
mological perturbations generated by the bounce for such 
scales can consequently be very large [12].

At this stage in the discussion, it is possible to make one 
more argument, at the level of first order perturbations, 
towards the genericity of the analysis presented here, and 
its nonspecificity to spatial curvature dominated bounces.

FIG. 1 (color online). Prototypical potential Vu(rj), and wave 
number squared (see [14,15,18] for explicit examples). The 
bounce itself occurs between //_ and i/+. At the level of the 
two-point statistics, small scale perturbations (e.g. those of wave 
number k4) remain unaffected, while long wavelength perturba­
tions (k\, k2 or k3) can be spectrally modified in different ways. 
For illustrative purposes, the time evolution of two modes, ukl 
and uk}, is also shown. As shown in this paper, the bounce 
produces large non-Gaussianities for any {ku k2, /c3} configura­
tion. The first peak before rj_ might represent an initial source for 
primordial perturbation enhancement, as e.g. a matter or ekpyr- 
otic contraction, while the second peak, after r/+, could be 
understood as an inflationary stage subsequent to the bounce. 
Although during both these phases, further non-Gaussianity 
could be produced, we restrict attention here to the seemingly 
more harmless period between rj_ and rj+, i.e. the bounce itself.

The shape of the potential Vu (17) was discussed in detail in 
Ref. [18]. In a Taylor expansion in the vicinity of the 
bounce, the potential for the rescaled Bardeen variable u at 
the bounce is characterized by its width and height, each 
given by Eqs. (52) and (53) of that paper. From these 
equations, it is easily seen that the potential depends mainly 
on the kinetic term ( 1/ 2 )(</>')2 and on the logarithmic 
derivatives of It does not depend crucially on spatial 
curvature. In fact as shown in Refs. [14,15], spatial 
curvature enters in the potential of first order perturbations 
through a constant term equal to 4. It can also be noted that 
taking the limit /C -» 0  in the final results obtained below 
yields exactly the same conclusions.

in . MODELING THE BOUNCE

In this paper, we focus on the calculation of the amount 
of non-Gaussianity produced by the bouncing phase only. It 
is thus sufficient for our purpose to expand the scale factor 
around the bounce in powers of conformal time 17,

- = i + ja0 2
5(1 +  /j4) 

24 +  ’  • * »

(6)

where r jc is the characteristic time scale of the bounce, 
and to compute the production of non-Gaussianity between 
an initial spatial hypersurface at time r)_ satisfying 
- r j c < i / _ < ( )  and a final spatial hypersurface at time i j +  

satisfying 0 < r j+  <  r jc . In Eq. (6 ), we have set the bounce 
conformal time r jB =  0 for convenience. The two additional 
constants and X4 parametrize deviations from a de Sitter 
bounce at cubic and quartic order in r\ respectively while rjc 

is an overall deviation in the bouncing time scale from the 
de Sitter bouncing time scale.

At the level of the background cosmology, introducing 
the parameter T  = (pB/2,  one may use the Einstein 
equations to express the bouncing time scale as 
r ic =  (1 -  Y ) -1 / 2 > 1. Two additional parameters e v  —  

(V ^ /V )|B and rjv =  ( V ^ /V ) |B can be related to Y, 23 
and 14 in Eq. (6) through the Einstein equations, with the de 
Sitter bounce being recovered in the limit Y -* 0 [12,14,18] 
(recall that one expects the de Sitter solution to be an 
attractor for this dynamical system). In terms of Y, ev and 
r j v , the bounce is seen to be controlled by the kinetic energy 
of 4> and the flatness of the potential V(<p).

The equation of motion for the Fourier modes of 
perturbation at the zth order reads

=  <$[*(/-!)], (?)

where

V  =  <92 +  F(ij)dn + k2 + W(t7)
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(the subscript “k ” on the modes is not written explicitly but 
is instead implicitly assumed for notational simplicity), 
with

and

W{rj) = 2 ( H ' - U ^ r -2 /C ).
<P

The source term 5[Tr(,_1)] is vanishing for i = 1 and its 
explicit form for i =  2, not essential for the present 
discussion, was computed in [12] and depends on quan­
tities computed at all previous orders.

IV. NON-GAUSSIANITIES

The series solution of Eq. (7) for up to order rj1 can 
be written in terms of two mode functions iq (k,rj) and 
v2{k, rf) normalized at the prebounce time rj_ (see Fig. 1) in 
such a way that iq (k,rj_) =  1, v[(k,ri_) =  0, v2(k,r/_) = 0 
and v2(k, rj_) = 1 [12]. In this basis, the initial conditions 
are given in terms of a set of random variables xa =
{T'(i)(?7_), VP'( |)(?7_)} providing the initial conditions of the 
first order perturbation and its time derivative on the initial 
spatial hypersurface. As we are interested in the amount of 
non-Gaussianity produced during the bouncing phase, we 
shall assume that the variables xa follow Gaussian statistics. 
The xa in turn define a spectral matrix P at rj_ by 
(xa(ki)xb(k2)) = Sklk2Pab(k), where the indices a, b re­
present either or It is important to note that, in 
general, and in contrast to the more usual inflationary case, 
all four entries in P  are necessary to calculate the amount of 
non-Gaussianity produced by the bouncing phase since we 
cannot assume the mode to have reached the constant 
-----------------------------------------------------------------------------1
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super-Hubble value which is characteristic of the more 
usual inflationary evolution. Note also that the background 
spacetime being of constant positive curvature, all calcu­
lations are performed on the three-sphere § 3 and the wave 
vectors consist in three integer numbers: n >  1, giving the 
amplitude k2 = n(n +  2); € > 0; and m G [-€, tf], while 

’s ^  product of three Kronecker delta functions 5ni„2, 
an<3 <5m ,m 2 .

The bispectrum By produced during the bouncing phase 
(i.e., in the interval rj_ to rj+, as shown on Fig. 1) is defined 
through the three-point function of the perturbation *1', 
evaluated at rj+ [12],

= 2Gk\k2k3By(k[,k2, k3), (8)

where Gklklkl is a geometrical form factor generalizing the 
flat case <5(&, + k 2 + k 3) to § 3; it is given by an integral 
over the product of three hyperspherical harmonics. The 
bispectrum is used to define the nonlinearity param eter/nl, 
obtained by expressing the non-Gaussian signal in terms of 
the sum of squares of the two-point functions for wave 
numbers k {, k2 and k3 through

By(k\ ,k2,k2) =-/NL[f* 'Sm{kx)P yy{k2) + Pyy(k2)P yy{k2)

+ Pyy(k3)P $$(&!)]. (9)

Using the results obtained in [12], we now calculate / NL at 
leading order in T, ev and rjv and in the limit of large wave 
numbers k. This latter assumption is justified because 
the range of observationally accessible physical wave 
numbers today is 10~2h Mpc-1 <  kphys <  103/i M pc"1 
and corresponds to a range of comoving wave numbers 
102 <  <  108 for a conservative value ~  10~2 [2] 
(Planck latest results indicating < 5 x 10-3). We find

/ nl
5(k] +  k2 +  k3) 
3Y  K ^ k ^ k ^ k i ) n ^ + k J -  m { n -

M 'J .O  J f )

K\ (ki)K1(kj )
kj

- 4
Ki(ki)K2(kj) | Ki(kj )K2(ki)
kjkj k j k j

3Y K2{kx,k2, h ) E 1 2 
3 +  3 (10)

where the dots denote subleading terms in inverse powers of k and higher order in T, ev and rjv . In Eq. (10), the relevant 
functions of the initial spectra are

(k) =  6Pm (k) +  IP  y<s/'(k) +  2 P y y {k ) ,  K2(k) = IP yy(k)  +  1 IP  yy'{k) +  APyiy{fc), (11)

and

K3(ku k2,k3) -  81 Y ^ P^^k i)Pyy{k j)  +  l O S ^ P ^ ^ ) ? ^ ^ )  - ( - 3 6 ^  P\$<$(kj)Pyy’(kj)
° ( ‘J) a(iJ) <r(i,j)

+  14 A'Y^P<s,y'{ki)Pm i(kj) + 4 8  ̂ P $ $ '( k , ) P ^ ^ ( k y) +  16 ' ^2P y 'y (k i)Pyyi(kj),
o{i,j) a(i,j)

( 12)
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so in the general case, the non-Gaussianity parameter / NL 
depends not only on the spectrum of curvature perturba­
tions Pvjnj, but also on that of its time derivative P w  as 
well as on the cross spectrum P ^# , both usually assumed 
irrelevant in the usual inflationary framework.

In Eqs. (10) and (12), the sums and products are taken 
over all possible permutations of i, j  and € with a(i, j ,  f )  
denoting ( i j ,  f )  e  {(1,2,3), (1,3,2), (2,3,1)}, and 
a(i , j )  denoting (i,j)  <E {(1,2), (1,3), (2,3)}. In the equi­
lateral (kx = k2 = k3 — k) and squeezed (k; = kj — k and 
kf  = p k) configurations and at leading order, Eq. (10) 
simplifies to

15k2 K\{k)
Y K3( k , k , k ) ’

(13)

20k2 K\(k) + K x(k)Kx(p) 
3Y X3(k,k,p)

(14)

so that the non-Gaussianity parameter is of order k2/Y. 
In the folded configuration (k2 =  k3 =  \ k x), the first non­
vanishing term is given in the second line of Eq. (10) and 
simplifies to

fold 40 K x(k)[Kx(k) -  \6Kx[2k)\
/NL 9Y AT3(k,k,2k) ' 1 ’

The square of the wave number does not appear in the 
numerator of Eq. (15) so that the folded configuration is in 
general subdominant relative to the equilateral and 
squeezed configurations.

V. DISCUSSION

Given that the matrix P is unknown, the K ’s are also 
unknown, and thus no definite conclusion can be drawn 
from the above calculations as far as the actual values of 
/ NL are concerned. Some information on the dominant 
shapes of non-Gaussianity produced at the bounce can 
however be extracted from Eq. (10) by making plausible 
assumptions on the matrix elements of P. In this paper, we 
provide two such examples which also highlight the 
dependence of the shapes of non-Gaussianities on the 
initial conditions at rj_.
__________________________________________________________ I

Let us first assume that the functions of the original 
spectra are all roughly equal, i.e. K l (ki) K i 2{kj) — 
K3(kx, k2, k3), an approximation that should be roughly 
valid in many cosmologically relevant situations. With this 
simplifying assumption, one obtains from Eq. (10) that

/nl“ 3y [8(x2,*3)-*iC(*2,*3)], (16)

where the dimensionless characteristic shape functions B 
and C, which depend only on the ratios x2 = k2/k | and 
x3 =  k3/k j, are given by

B(x2,x 3) =  7 + ;

- 3

\ + x \ \ + x \  2 2
-  +  x% +  xi

1 - x \ + 2\ 2
,2 \ 2+ (4 - 4)

(17)

and

C(x2, x3) =  (1 + x2 +  x3)(l + x 2 — x3)(l + x 3 — x2)

x (x2 + x3 -  1) { 1 +  - j  +  - j ) .  (18)
V x 2 x 3 J

These shape functions are displayed in the upper plots of 
Fig. 2 where, without loss of generality, we have ordered 
the variables by assuming x3 < x2 < 1, with the triangle 
inequality given by x2 -  x3 < 1 < x2 +  x3. The left-hand 
plot shows the function log(|£>|) and suggests that non- 
Gaussianities proportional to 1/Y peak in the folded 
configuration. The right-hand plot shows the function C 
and suggests that non-Gaussianities proportional to the 
overall factor k2/Y  produced in the bouncing phase peak in 
the equilateral, take intermediate values in the squeezed, 
and are small in the folded configuration.

Another way to determine the shapes of non- 
Gaussianities produced in a bouncing phase in a largely 
model-independent way consists in assuming the Bardeen 
potential to have reached, at rj =  the frozen state 
characteristic of super-Hubble inflationary evolution, so 
that one has T' « : T, leading to P w  « ; Pm , Pm . 
Denoting for simplicity P(k,) =  P$$(k,-), this then leads to

where

180 ^ [P (k 1),P (k2),P (k3),x2,x3] - k 2g[P(k1) ,f ( k 2),P (k3),x2,x3] 
243Y P{kx)P{k2) + E(k1)P(k3) +  P(k2)P(k3)

(19)

F[P{kx),P(k2),P(k3),x2,x3\
1 2 
3 +  3

1 +xl
- 3

1 - x \

+ \  + \ ( x 22+ x l ) - 3 ( x \ - -4)2

P(kx)P(k2) + 

P(k2)P(k3),

7 2 / l + x | \  
3 3 \  x2 J - 3 'I  P(kj)P(k3)

(20)
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FIG. 2 (color online). Shape functions derived from Eq. (10) showing the relative contributions of the various possible non-Gaussian 
configurations. Top figures: log(|£|) (left) and C (right) obtained assuming K ^ K ^ k j )  ^  K3(ku k2,k3). Lower figures: almost 
scale-invariant “frozen” state approximation (P,v ,v  <£ <sc P ^  oc with ns =  0.9603); the figures are the shape functions 
obtained by combining Eqs. (20) to (24). In the figures on the left, / NL a  T -1. In the figures on the right, f  NL a  {k2J  Y). In all four 
figures, x2 = k2/ k x and x3 =  k3/ k t . The differences in the amplitude as a function of the configuration {kx,k2,k3} highlight the 
dependence of the shape function on the details of P.

and

G[P(k l ) ,P(k2) , P ( k 3),X2,X3\ — (1 +  X2 + * 3 )(1  +  X2 — ^3)(1 +  X3 ~  X2)(x2 +  X3 — 1)

X
| * ( W * 2) , PikiWi)

2 ' 9 + P (k 2)p(k3) . (21)

In order to go one step further and actually evaluate the 
non-Gaussianities produced during the contraction-to- 
expansion transition, we assume, as is often done, that 
the spectrum produced during the contraction phase not 
only passed through the bounce unchanged but also that it 
------------------------------------------------------------------------- 1

is in agreement with the data. Assuming observational 
constraints to be those of Planck, we obtain that, in our 
notations, this requires the power spectrum to behave as a 
power law P{k) <x kn'~A, with [1] ns = 0.9603 ±  0.0073. 
The ratios of power spectra in Eq. (19) then read

___________ P(h)P{k2)___________
P(h)P{k2) +  p(kx)p(k2) +  p(k2)p(k3)

1 - 4+ x3s (22)

_____________P j k j P f a ) _____________

P i k ^ k , )  + P(k,)P(k3) + P(k2)P(k3)

ns- 4

____________ P(k2)P(k3)____________
P{h)P{k2) +  P{h)P(k3) +  P(k2)P(k3) =  [1 + fe )4̂ +  f e ) 4-"*]-1.

(23)

(24)

The shape functions that can be formed by combining Eqs. (20) to (24) are shown in the lower panel of Fig. 2. In this case, 
the equilateral configuration is favored while both the squeezed and folded configurations are subdominant.
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To conclude, let us discuss two interesting limiting 
behaviors of the model. The first is the quasi-de Sitter 
approximation which, as mentioned before, is equivalent to 
having Y <K 1. In this limit, and contrary to the single field 
slow-roll inflationary situation, Eqs. (13)—(15) show that 
large amounts of non-Gaussianities are produced in all 
possible shapes, with / NL oc Y_1 »  1. Thus, although large 
non-Gaussianities in inflation often stem from a violation 
of slow roll, in the bouncing case, the closer one is to a de 
Sitter bounce, the more non-Gaussianities are produced. 
The second limiting behavior is perhaps more relevant for 
comparison with observational data, as it is not based on 
any prerequisite regarding the structure of the bounce. 
As seen from Eqs. (13) to (15), the parameter / NL is scale 
dependent, and in particular, is proportional to k2 in the 
equilateral and squeezed configurations. In a cosmological 
background with closed spatial sections and with a present
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