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ABSTRACT
In this work we propose a new matrix-free implementation of the Wiener sampler which is tra-
ditionally applied to high-dimensional analysis when signal covariances are unknown. Specifi-
cally, the proposed method addresses the problem of jointly inferring a high-dimensional signal
and its corresponding covariance matrix from a set of observations. Our method implements a
Gibbs sampling adaptation of the previously presented messenger approach, permitting to cast
the complex multivariate inference problem into a sequence of univariate random processes. In
this fashion, the traditional requirement of inverting high-dimensional matrices is completely
eliminated from the inference process, resulting in an efficient algorithm that is trivial to imple-
ment. Using cosmic large-scale structure data as a showcase, we demonstrate the capabilities
of our Gibbs sampling approach by performing a joint analysis of three-dimensional density
fields and corresponding power spectra from Gaussian mock data. These tests clearly demon-
strate the ability of the algorithm to accurately provide measurements of the three-dimensional
density field and its power spectrum and corresponding uncertainty quantification. Moreover,
these tests reveal excellent numerical and statistical efficiency which will generally render the
proposed algorithm a valuable addition to the toolbox of large-scale Bayesian inference in
cosmology and astrophysics.

Key words: methods: data analysis – methods: statistical – cosmic background radiation –
large-scale structure of Universe.

1 IN T RO D U C T I O N

Ever increasing amounts and precision of modern cosmological
and astrophysical data demands fast and robust methods to ad-
dress corresponding large-scale inference problems of analysing
these observations and extracting new knowledge on our Universe.
Particularly, the Wiener filter has become a standard tool for the
analysis of large data sets, often involving many millions of pa-
rameters, with widespread applications in cosmology and astro-
physics. Even though relying on a linear data model and Gaussian
statistics, the Wiener filter approach is still a standard and well-
valued method when requiring a robust approach for the inference
of high-dimensional signals as occurring in the analysis of large-
scale structure (LSS) or cosmic microwave background (CMB)
data. For this reason, Wiener filtering has been frequently applied
to a variety of LSS analysis problems, specifically the inference of
the three-dimensional density field from galaxy observations (see
e.g. Bertschinger & Dekel 1989; Ganon & Hoffman 1993; Fisher,
Scharf & Lahav 1994; Hoffman 1994; Lahav et al. 1994; Fisher
et al. 1995; Sheth 1995; Zaroubi et al. 1995; Zaroubi, Hoffman
& Dekel 1999; Zaroubi 2002; Erdoğdu et al. 2004, 2006; Kitaura
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& Enßlin 2008; Kitaura et al. 2009; Jasche et al. 2010; Jasche &
Wandelt 2013). Further, it has been used to generate constrained
realizations of Gaussian random fields (see e.g. Hoffman & Ribak
1991, 1992).

In the field of CMB analysis, the Wiener filter is frequently
employed as a map-making algorithm or for the joint infer-
ence of temperature fluctuations and corresponding power spec-
tra (see e.g. Eriksen et al. 2004, 2007; Jewell, Levin & Anderson
2004; O’Dwyer et al. 2004; Wandelt, Larson & Lakshminarayanan
2004; Larson et al. 2007; Smith, Zahn & Doré 2007; Elsner &
Wandelt 2013). Similar approaches have also been used for the op-
timal reconstruction of images from radio interferometry (Sutton
& Wandelt 2006; Sutter et al. 2014) or to generate improved maps
of the galactic Faraday emission (Oppermann et al. 2012). Fur-
thermore, the Wiener filter also constitutes an integral part of the
recently presented general purpose statistical analysis framework
Numerical Information Field Theory (NIFTY; Selig et al. 2013).

Traditionally, numerical implementations of the Wiener filter rely
on Krylov space methods, such as conjugate gradients, to invert
matrices and solve high-dimensional systems of linear equations
(see e.g. Kitaura & Enßlin 2008, and references therein). By design
Krylov space approaches are matrix-free methods, in the sense that
they do not require to store full rank matrices in computer memory
in order to solve a linear system of equations. However, in order
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for the iterative Krylov process to be numerically efficient in high-
dimensional settings the linear system has to be preconditioned
by a suitable matrix. In their simplest forms these preconditioning
matrices consist in tri- or block-diagonal matrices which have to
be explicitly applied to the linear system of equations prior to the
execution of the Krylov method. Implementation and testing of these
numerically demanding methods also constitute a certain hurdle and
generally require some investment into code development before
such methods can be used for specific scientific applications.

Recently a particular elegant and simple way of implementing
the Wiener filter via a messenger method has been proposed, which
remedies the hurdle of implementing numerical matrix inversion
techniques for very high dimensional systems (Elsner & Wandelt
2013). In particular, Elsner & Wandelt (2013) proposes to introduce
a messenger field to mediate between different preferred orthogo-
nal bases, in which signal and noise covariance matrices can be
expressed conveniently. In this approach information from the data
is transmitted to the signal via a messenger field that can generally
be transformed efficiently from one bases representation to another.
In this fashion the algorithm avoids the requirement to apply the
inverse Wiener covariance matrix to data. Also note that the mes-
senger method completely evades the need of designing suitable
preconditioning matrices, typically required for iterative Krylov
space methods.

In this work, we will pick up these ideas and propose an effi-
cient and easy to implement Gibbs sampling approach to address
Bayesian large-scale inference problems in cosmology or astro-
physics. Our primary intention is to propose a simple, nevertheless
powerful, algorithm for the joint inference of a signal and cor-
responding covariance matrix from observations that can be im-
plemented and operated by everyone, even inexperienced users.
Specifically, in this work, we will exemplify the performance of
this algorithm in the case of a LSS analysis aiming at the joint
inference of the three-dimensional density field and cosmological
power spectrum from galaxy surveys.

The introduction of a messenger field yields an augmented
Wiener posterior distribution, whose structure lends itself to an
ideal multiple block sampling approach. In a first step the messen-
ger field is realized from a normal distribution conditional on the
observation in real space, followed by a second step of sampling
the signal conditional on the previously sampled messenger field
in Fourier space. Here, the augmented Wiener posterior distribu-
tion is chosen such that sampling these two random fields can be
trivially achieved by generating a sequence of univariate normal
random variates in their respective basis representations. Iterating
these processes will then provide samples from the Wiener poste-
rior without the need of performing matrix inversions or any other
multiparameter operation, except for basis transformations. Further
we will complement this algorithm by a power spectrum sampling
method to jointly infer the signal and its covariance matrix. Like-
wise, as described in the following, this algorithm will also only
require the ability to generate univariate normal and inverse gamma
variates.

Consequently, we arrive at an efficient algorithm, which, at every
stage, reduces the full joint problem to a sequence of independent
univariate subproblems. The advantage of this algorithm lies in
its ease of implementation, thus greatly reducing the required in-
vestment in code development for large-scale Bayesian inference
projects. In the following we will describe the implementation of
this algorithm and exemplify it in the case of a mock LSS analysis.
The paper is structured as follows. In Section 2 we will describe the
messenger approach and the resulting augmented Wiener posterior

distribution. Section 3 describes the numerical implementation of
the proposed method. To estimate the performance of the algorithm
in a realistic scenario, as an example, we will apply it to an artificial
galaxy survey, which will be described in Section 4. In Section 5 we
will discuss the results of these tests and conclude the paper with a
summary and conclusion in Section 6.

2 T H E AU G M E N T E D W I E N E R P O S T E R I O R

As described in the Introduction, the aim of this work is to present
an easy to implement algorithm for the large-scale Bayesian prob-
lem of jointly inferring a signal and its covariance matrix in a
high-dimensional setting. Specifically, we aim at exploring the joint
posterior distribution �(s, S|d) of the signal s and its covariance
matrix S conditional on observations d. Using Bayes rule this pos-
terior distribution can be rewritten as

� (s,S|d) = � (S) � (s|S)
� (d|s)

� (d)
, (1)

where �(S) is the signal covariance prior, �(s|S) is the signal prior
and �(d|s) is the likelihood normalized by the evidence �(d). Note
that observations d are assumed to be conditionally independent of
the signal covariance matrix once the signal is given, specifically
�(d|S, s) = �(d|s). In the following we will assume linear data
models of the form

d = R s + ε, (2)

where R is a linear measurement response operator and ε is a nor-
mally distributed noise vector with zero mean and noise covariance
matrix N. Further, assuming a Gaussian prior for the signal yields
the famous Wiener posterior for the inference of the signal s given
as

� (s|S)
� (d|s)

� (d)
= e− 1

2 sTS−1 s

√
det2π S

e− 1
2 (d−Rs)TN−1(d−Rs)

√
det2π N

= � (s|S, d) .

(3)

Complication in inferring signals from the Wiener posterior arises
for the analysis of large and complex data sets since the sizes of
signal and noise covariance matrices scale quadratically with the
number of signal parameter and data points (Elsner & Wandelt
2013). This fact generally renders storage and processing of dense
systems impractical. Although it is often possible to find a set of
bases in which the respective noise and signal covariances can be
represented by sparse matrices, it is generally not possible to jointly
represent them as sparse systems in a single basis. As a consequence
traditional Markov chain Monte Carlo (MCMC) methods rely on the
implementation of complex numerical algorithms such as Krylov
space methods or gradient-based hybrid Monte Carlo (HMC) ap-
proaches to solve the corresponding sets of linear equations (e.g. in
cosmological applications; see e.g. Ganon & Hoffman 1993; Fisher
et al. 1994, 1995; Hoffman 1994; Lahav et al. 1994; Zaroubi et al.
1995, 1999; Zaroubi 2002; Erdoğdu et al. 2004, 2006; Eriksen
et al. 2004, 2007; Jewell et al. 2004; O’Dwyer et al. 2004; Wandelt
et al. 2004; Larson et al. 2007; Kitaura & Enßlin 2008; Kitaura et al.
2009; Jasche et al. 2010; Jasche & Wandelt 2013).

In this situation Elsner & Wandelt (2013) proposed to introduce
a normally distributed messenger field t with covariance matrix T,
to mediate between the respective bases in which S and N can be
represented as sparse systems. In particular, the covariance matrix T
is chosen to be proportional to the diagonal matrix, a property which
is conserved under orthogonal basis transforms. The introduction
of this additional random field to the inference process yields an
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augmented Wiener posterior for the joint inference of the signal s
and the messenger field t given as

�(s, t|S,T, d) = e− 1
2 sTS−1 s

√
det2π S

e− 1
2 (s−t)TT−1(s−t)

√
det2π T

e− 1
2 (d−Rt)TÑ

−1(d−Rt)

√
det2π Ñ

.

(4)

Note, if the messenger covariance matrix T is proportional to a
diagonal matrix T= τ 1, marginalizing over the messenger field will
yield the target distribution, given in equation (3), if the augmented
noise covariance Ñ is chosen as

Ñ = N − RTTR. (5)

Furthermore, requiring the augmented noise covariance matrix Ñ
to be positive definite, yields

0 < τ ≤ [(R−1)TNR−1]i ∀ i, (6)

specifically we choose τ to be the minimum of all entries in
(R−1)TNR−1 in the observed domain.

3 A LARGE-SCALE G IBBS SAMPLER

This section describes the derivation of our algorithm and describes
its numerical implementation.

3.1 Generating signal realizations

The augmented Wiener posterior distribution given in equation (4)
lends itself to a multiple block sampling approach. In particular, the
problem of jointly exploring the augmented Wiener posterior can
be reduced to the task of sequentially sampling the signal field s and
the messenger field t . Specifically we propose to generate random
variates of the respective fields via the following two step sampling
approach:

s � � (s|S,T, t, d) = � (s|S,T, t) , (7)

t � � (t|S,T, d, s) = � (t|T, d, s) . (8)

Iterating these processes will yield samples from the joint aug-
mented Wiener posterior distribution. Marginalization is then triv-
ially achieved by simply discarding the respective realizations of
the messenger field t , yielding signal realizations s correctly drawn
from the target Wiener posterior given in equation (3). The impor-
tant point to remark, as demonstrated by the augmented Wiener
posterior distribution, given in equation (4), and as manifested by
the proposed sampling procedure given in equation (8), is that in-
formation between data d and signal s is not transmitted directly
between those two fields but is mediated via a third messenger field.
As the messenger covariance matrix T is diagonal in the respective
bases in which signal and noise covariances can be described as
sparse diagonal systems, random variates for signal and messenger
fields can be generated by independently drawing univariate normal
realizations for the individual elements of the respective fields in
the respective bases. Specifically signal realizations are generated
via the process

ŝi �

e
− 1

2
(ŝi−μŝ

i )
2

(σ ŝ
i )2√

2π
(
σ ŝ

i

)2
∀ i ∈ M, (9)

with μŝ
i = Ŝi/(Ŝi + T̂i) t̂i and (σ ŝ

i )2 = Ŝi T̂i/(Ŝi + T̂i). The index i
labels the different elements of the respective vectors, and the hat

operator indicates that all quantities have been transformed to the
basis in which the signal covariance matrix S assumes its diagonal
shape Ŝ. In an analogous fashion univariate normal variates can be
generated for the individual elements of the messenger field t as

ti �

e
− 1

2
(ti−μt

i)
2

(σ t
i )

2√
2π

(
σ t

i

)2
∀ i ∈ M, (10)

with

μt
i =

{
Ti

(Ti R2
i +Ñi)

Ri di + Ñi

(Ti R2
i +Ñi)

si if R2
i > 0,

si otherwise
(11)

and

(
σ t

i

)2 =
{

Ti Ñi

(Ti R2
i +Ñi)

if R2
i > 0,

Ti otherwise.
(12)

Note that for sampling the messenger field t all quantities are given
in the basis in which the noise covariance N becomes a diagonal
matrix. It should also be remarked that the messenger covariances
Ti and T̂i are the same only for normalized orthogonal transforms,
otherwise they differ by the multiplicative normalization constant.

Consequently, generating random signal variates s from the
Wiener posterior given in equation (3) only relies on the ability to
draw univariate Gaussian random numbers and to perform orthonor-
mal basis transformations to switch between different basis repre-
sentations. In typical cosmological applications these orthonormal
basis transformations are used to switch between real and Fourier
space, which is achieved via fast and efficient implementations of
the fast Fourier or spherical harmonic transformation algorithms
(see e.g. O’Dwyer et al. 2004; Kitaura & Enßlin 2008; Jewell et al.
2009; Jasche & Wandelt 2013).

As can be seen from the derivation presented above, at no point
does our approach rely on the storage and inversion of covariance
matrices. A pseudo-code for the proposed signal sampling algorithm
is given in Algorithm 1.

Algorithm 1 Signal sampler.

1: procedure SIGNAL_SAMPLER(s, t)
2: for i = 0 → (M − 1) do

3: ti = μt
i +

√(
σ t

i

)2
Gi (0, 1) G(0,1) is a unit normal

random number
4: end for
5: t̂ = ONT(t) ONT = Ortho-Normal-Transform
6: ŝ = ONT(s)
7: for i = 0 → N do

8: ŝi = μŝ
i +

√(
σ ŝ

i

)2
Gi (0, 1)

9: end for
10: s = ONT−1(ŝ)
11: return s, t
12: end procedure

3.2 Sampling the signal covariance

Once a realization of the signal s as generated by Algorithm 1 is
available, sampling the signal covariance matrix becomes a particu-
larly trivial task in the basis where it assumes its diagonal form. As
can be seen from the full joint posterior distribution given in equa-
tion (1), the conditional signal covariance posterior solely depends
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on the covariance and signal prior once a signal realization has been
specified:

�(S|d, s) = �(S|s) ∝ �(S) �(s|S) ∝ �(Ŝ) �(ŝ|Ŝ), (13)

where for the last proportionality we used the fact that the de-
terminant of the Jacobian of the coordinate transform induced by
the orthonormal transformation is one. For the analysis of the in-
dividual elements of the diagonal signal covariance matrix Ŝi we
propose to use Jeffreys’ prior given by �(Ŝ) = ∏M−1

i=0 (Ŝi)−1, which
factorizes in the individual matrix elements. Jeffreys’ prior is a
solution to a measure invariant scale transformation, and hence is
a scale-independent prior, as different scales have the same prob-
ability (Jeffreys 1946). For this reason, Jeffreys prior constitutes
an optimal choice for many applications, such as the inference of
cosmological power spectra, which constitute scale measurements,
since it does not introduce any bias on a logarithmic scale (also see
discussions in Jasche et al. 2010; Jasche & Wandelt 2013).

Since due to the diagonal shape of Ŝ in the corresponding ba-
sis representation, also the second factor �(ŝ|Ŝ) in equation (13)
factorizes in the matrix elements Ŝi , all these elements can be sam-
pled independently. In particular, simple algebraic manipulation of
equation (13) reveals that the individual matrix elements Ŝi have to
be drawn from an inverse gamma distribution:

Ŝi �

(
1
2 ŝ2

i

) 1
2

�
(

1
2

) (
Ŝi

)− 3
2 e

− 1
2

ŝ2
i

Ŝi ∀ i ∈ M. (14)

Again the complex joint sampling process of all signal covariance
matrix elements can be reduced to the trivial task of independently
realizing inverse gamma variates. In particular, introducing the co-
ordinate transformation ûi = ŝ2

i /Ŝi yields a chi-square distribution
which gives rise to the sampling algorithm outlined in Algorithm 2.

Algorithm 2 Signal covariance sampler.

1: procedure SIGNAL_COVARIANCE_SAMPLER(s)
2: ŝ = ONT(s)
3: for i = 0 → (M − 1) do
4: ûi = (Gi (0, 1))2

5: Ŝi = |ŝ|2i
ûi

6: end for
7: return Ŝ
8: end procedure

In particular, sequential iteration of Algorithms 1 and 2 yields sam-
ples of the joint posterior distribution of the signal and its covari-
ance matrix conditional on data. It should be remarked, that in some
cases additional symmetries can be exploited to further reduce the
required number of parameters to describe the signal covariance
matrix. In particular, for cosmological applications one can exploit
the homogeneity and isotropy of the Universe to average the covari-
ance matrix over spherical shells in Fourier space. For a discussion
of the inverse Gamma sampler in a cosmological setting and the
required minor modifications to Algorithm 2 the reader is referred
to see e.g. Jasche et al. (2010) and Jasche & Wandelt (2013).

3.3 Improving statistical efficiency

The algorithms, as outlined above, already provide a correct MCMC
approach to explore the joint distribution of a signal and correspond-

ing signal covariance. While this approach provably converges to
the target posterior at all regimes probed by the data, it may take
prohibitive computational time to generate a sufficient amount of
independent samples in the low signal-to-noise ratio regime (for a
discussion of this issue see e.g. Jewell et al. 2009; Jasche & Wan-
delt 2013). In particular, the variations in subsequent samples of the
signal covariance are solely determined by signal variance, whereas
the full joint posterior distribution is governed by signal variance
and noise. As a consequence the algorithms described above per-
mit rapid exploration of parameters in the high signal-to-noise ratio
regime, but yield poor statistical efficiency in low signal-to-noise
ratio regimes, where signal variance is typically less than noise. Typ-
ically this results in a prohibitively long correlation length of the
sequence of sampled signal covariances in the low signal-to-noise
ratio regime, requiring unfeasible long Markov chains to gener-
ate sufficient numbers of independent samples (Jewell et al. 2009;
Jasche & Wandelt 2013). Fortunately, the messenger approach per-
mits to devise a particularly simple approach to overcome these
limitations via a simple change of coordinates. Rather than separat-
ing the steps of sampling the signal and covariance matrix, as was
described above, here we propose to combine the sampling steps
of the signal ŝ and its covariance matrix Ŝ conditional on a realiza-
tion of the messenger field t̂ by exploring the conditional posterior
distribution:

�(s,S|d, t) = �(s,S|t) ∝ �(Ŝ) �(ŝ|Ŝ) �( t̂|ŝ)

∝
∏

i

1(
Ŝi

) 3
2

e
− 1

2
ŝ2
i

Ŝi e
− 1

2
(ŝi−t̂i )2

T̂i . (15)

Introducing the following change of coordinates ŝi =
√

Ŝi x̂i then
yields the transformed distribution:

�(x̂, Ŝ| t̂) ∝
∏

i

√
Ŝi e− 1

2 x̂2
i e

− 1
2

(
√

Ŝi x̂i−t̂i )2

T̂i , (16)

which again factorizes in the individual elements. Exploring the
joint distribution of x̂ and Ŝ can then again be achieved by sampling
individual elements via a block sampling algorithm. In the first step
realizations for the x̂i components are drawn via the following
process:

x̂i �

e
− 1

2
(x̂i−μx̂

i )2

(σ x̂
i )2√

2π
(
σ x̂

i

)2
∀ i ∈ M, (17)

with

μx̂
i = T̂i

Ŝi + T̂i

√
Ŝi t̂i (18)

and

(
σ x̂

i

)2 = T̂i

Ŝi + T̂i

. (19)

Conditional on these realizations of x̂i samples for the elements
Ŝi of the signal covariance can be generated by drawing random
variates from the conditional distribution:

�
(
Ŝi | t̂ i , x̂i

) ∝
√

Ŝie
− 1

2

(√
Ŝi x̂i−t̂i

)2

T̂i . (20)

Unfortunately, sampling this distribution directly is not possible.
Consequently, the proposed MCMC approach has to rely on a
Metropolis–Hastings acceptance step. For this purpose we introduce
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the change of coordinate ûi =
√

Ŝi , which yields the distribution

�
(
ûi | t̂ i , x̂i

) ∝ (ûi)
2 e

− 1
2

(ûi x̂i−t̂i )2

T̂i ∝ (ûi)
2 e

− 1
2

(
ûi − t̂i

x̂i

)2

T̂i /x̂
2
i . (21)

It can be seen that the resultant distribution for ûi is essentially a
normal distribution multiplied by the factor û2

i which ensures that
samples of the covariance matrix will be strictly positive definite.
Although direct sampling from this distribution is not possible, our
tests have shown that generating proposals from a truncated normal
distribution yields nearly ideal acceptance rates in a Metropolis–
Hastings step. In particular we propose to use an independence
sampler by generating proposals û′

i via the process

û′
i � �

(
û′

i

)
e
− 1

2

(
ûi − t̂i

x̂i

)2

T̂i /x̂
2
i , (22)

where �(x) denotes the Heaviside function. Using this particular
proposal distribution then yields the standard Metropolis–Hastings
acceptance probability for each individual element:

α = min

(
1,

(
û′

i

ûi

)2
)

. (23)

As in the previous sections, the proposed algorithm only relies on
independent updates in the Markov chain and hence is trivial to im-
plement. The pseudo-code for this algorithm is given in Algorithm 3.

Algorithm 3 Mixing sampler.

1: procedure MIXING_SAMPLERt, Ŝ
2: t̂ = ONT(t)
3: for i = 0 → (M − 1) do

4: x̂i = μx̂
i +

√(
σ x̂

i

)2
Gi (0, 1)

5: while û′
i < 0 do

6: û′
i = t̂i

x̂i
+

√
T̂i

x̂2
i

Gi (0, 1)

7: end while
8: ûi =

√
Ŝi

9: αi = Ui(0, 1) (U(0, 1) is a unit random number

10: if
(

û′
i

ûi

)2
> αi then

11: Ŝi = (
û′

i

)2

12: end if
13: ŝi =

√
Ŝi x̂i

14: end for
15: s = ONT−1(ŝ)
16: return s, Ŝ
17: end procedure

The proposed algorithm is optimal to sample the low signal-to-noise
ratio regime. In particular, introducing the initial change of coor-
dinates ŝi =

√
Ŝi x̂i moved the covariance matrix from the signal

prior to the messenger posterior distribution in equation (16). As a
consequence, step size between subsequent covariance matrix sam-
ples is not determined by the prior variance but by the larger noise
variance represented by T̂i .

4 G E N E R ATI O N O F G AU S S I A N M O C K DATA

To demonstrate the numerical performance of the proposed method
in a realistic setting, we will generate artificial galaxy observa-

tions, following the approach previously described in Jasche et al.
(2010) and Jasche & Wandelt (2013). In particular, we will per-
form a mock analysis on a cubic equidistant grid of side length
1600 h−1 Mpc consisting of 1283 grid nodes. The underlying cos-
mic density contrast field δi, being the signal to infer, is generated
from a zero-mean normal distribution with the covariance matrix
corresponding to a cosmological power spectrum, including baryon
acoustic oscillations, generated via the prescription of Eisenstein &
Hu (1998) and Eisenstein & Hu (1999). Specifically, we assume a
standard � cold dark matter (�CDM) cosmology with the set of
parameters given as (�m = 0.24, �� = 0.76, �b = 0.04, h = 0.73,
σ 8 = 0.74, ns = 1).

As a next step, according to the likelihood described in equation
(3), this density field will be masked with the survey geometry
and selection functions and normal distributed noise will be added.
Following the description in Jasche & Wandelt (2013), we aim
to emulate characteristic features of the Sloan Digital Sky Survey
Data Release 7 (SDSS DR7; Abazajian et al. 2009). In particular,
we employ the redshift completeness of the SDSS DR7, which was
computed with the MANGLE code provided by Swanson et al. (2008)
and has been stored on a HEALPIX map with nside = 4096 (Górski
et al. 2005). Further, we assume a radial selection function following
from a standard Schechter luminosity function with standard r-band
parameters (α = −1.05, M∗ − 5log10(h) = −20.44), and we limit
the survey to only include galaxies within an apparent Petrosian
r-band magnitude range 12.5 < r < 19.5 and within the absolute
magnitude ranges Mmin = −21.3 to Mmax = −23.1. As usual, the
radial selection function f(z) is then given by the integral of the
Schechter luminosity function over the range in absolute magnitude.
The product of the two-dimensional survey geometry M(αi, δi) and
the selection function f(z) at each point in the three-dimensional
volume yields the survey response operator:

Ri = M(αi, δi)f
l(zi), (24)

where αi and δi are the right ascension and declination coordinates
corresponding to the ith volume element, and zi is the correspond-
ing redshift. Given these definitions and a realization of the three-
dimensional density field δi, a realization for the artificial galaxy
number counts is obtained by

Ni = N̄ Ri (1 + δi) +
√

N̄ Ri εi , (25)

where εi is a white noise field drawn from zero-mean and unit
variance normal distribution, and the expected average number of
galaxies N̄ is obtained via integration of the Schechter luminosity
function by

N̄ =
∫ Mmax

Mmin

(M) dM. (26)

We note that Gaussian mock data do not necessarily reflect the com-
plexity of real galaxy surveys, varying possibly also with the type of
galaxy population under study. Depending on whether galaxies live
preferentially in linear or non-linear regimes and whether galaxy
biases may be assumed as linear crucially determines the appropri-
ateness of the assumptions on a linear data model, inherent to any
Wiener processes. Whether or not a Wiener posterior is appropriate
for a specific data analysis task has to be decided on a case by
case basis. For the case of LSS analyses as presented here, Jasche
et al. (2010) demonstrated that the Wiener Gibbs sampling approach
is capable of recovering the correct cosmological power spectrum
from mock galaxy surveys relying on numerical LSS simulations.
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5 R ESULTS

In this section we discuss the results of the application to artificial
galaxy data, with particular emphasis of the statistical efficiency
of the algorithm. We note even though the proposed methodology
works with arbitrary orthonormal basis transforms, for the sake of
the present showcase we employ normalized fast Fourier transforms
(FFT) to translate between different basis representations.

5.1 Statistical efficiency

Generally, in a Bayesian context the ill-posed inverse problem of
inferring signals from observations, being subject to statistical un-
certainty, is addressed by providing numerical representations of
the corresponding posterior distribution. Here we achieve this goal
via the proposed Gibbs sampling process, providing random real-
izations of the LSS and corresponding power spectra conditioned to
observations. This sampled representation of the posterior distribu-
tion then permits to address the inverse problem by providing sum-
mary statistics, accurately accounting for all uncertainties involved
in the inference process. Nevertheless, MCMC methods generally
draw random variates from the posterior distribution by generating
a sequence of solutions satisfying ergodicity.

This approach generally yields a highly correlated sequence of
solutions, which will almost surely converge to the target posterior
distribution in the large sample limit. As we seek to provide sum-
mary statistics for the parameters of interest, the performance of
the proposed Gibbs sampler is determined by its ability to generate
independent samples. This statistical efficiency consequently is of
crucial importance for any MCMC method, and is usually quanti-
fied by the number of iterations required to generate a statistically
independent sample. In order to determine the statistical efficiency
of the proposed method, we will follow the standard procedure
of estimating the correlation length of power spectrum amplitudes
within the chain (see e.g. Eriksen et al. 2004; Jasche et al. 2010;
Jasche & Wandelt 2013). Assuming all parameters in the Markov
chain to be independent of each other, the correlation between sub-

sequent power spectrum amplitudes P(k)i can be quantified in terms
of the autocorrelation function:

C(P (k))n =
〈

P (k)i − 〈P (k)〉√
Var (P (k))

P (k)i+n − 〈P (k)〉√
Var (P (k))

〉
, (27)

where n is the distance in the chain measured in iterations. The
results of this analysis are presented in the right-hand panel of
Fig. 1, where we estimated the correlation length from 80 000
recorded samples obtained by the application of our method to
mock data. In our tests we recorded every 10th sample generated
by the Markov chain. Typically we determine the correlation length
by the lag nc in samples that is required for the autocorrelation
function to drop below 10 per cent (Eriksen et al. 2004). Given this
definition of correlation length, the test clearly indicates correlation
lengths nc ≤ 50 samples for all recorded power spectrum modes.
The interested reader may also want to compare the right-hand
panel of Fig. 1 to the right-hand panel of fig. 6 in Jasche et al.
(2010). This comparison shows that the present implementation of
the Gibbs sampler exhibits improved mixing efficiency, increasing
its ability to generate independent samples by at least a factor of 2
up to orders of magnitude, depending on the Fourier mode under
consideration. Consequently, besides the ease of implementation
the proposed method also exhibits excellent statistical efficiency
for large-scale statistical applications in modern cosmology and
astrophysics.

5.2 Inferring density maps and power spectra

The messenger sampler, as proposed in this work, aims at the joint
inference of a signal and its corresponding unknown correlation
matrix. Specifically, here, we propose to use this method for the
joint inference of the cosmological three-dimensional density field
and its cosmological power spectrum from observations. As dis-
cussed above, inference of signals from noisy data is generally an
ill-posed task, as there exists no unique solution. The proposed
method addresses this issue by exploring the joint posterior of the

Figure 1. Ensemble mean power spectrum (left-hand panel) and correlation length (right-hand panel) estimated from 80 000 samples. The left-hand panel
demonstrates the ensemble mean power spectrum (red curve) together with the corresponding 1σ (light grey) and 2σ (dark grey) confidence regions. The black
curve indicates the true underlying power spectrum from which the mock signal was generated. As can be seen the inferred power spectrum correctly follows
the true underlying power spectrum throughout the entire range of Fourier modes. We note that the algorithm also correctly treats numerical discretization
effects by increasing uncertainty towards the Nyquist frequency, which is maximally underconstrained in the Fourier domain. The right-hand panel shows the
correlation length between subsequent samples of power spectrum amplitudes for different Fourier modes as indicated by the colour coding. As can be seen,
the correlation length quickly drops to zero indicating that independent power spectrum samples can be generated at about every 50th step of the Markov chain.
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Figure 2. Marginalized posterior mean density (top panels) and variance (bottom panels) fields. The fields are estimated by taking the average over 80 000
samples of the posterior. The structure of those fields reflects the non-trivial survey geometry such as the one covered by the SDSS DR7 main galaxy sample.
We show a slice through x = −750 h−1 Mpc (left-hand panels), y = 0 h−1 Mpc (middle panels), z = 750 h−1 Mpc (right-hand panels).

cosmic density field and the power spectrum via an efficient Gibbs
sampling approach, providing a set of solutions being compatible
with the observations. As a scientific result, this method therefore
provides a numerical representation of the target posterior in terms
of random realizations of density fields and power spectra condi-
tioned to the observations. In this fashion, the ensemble of gener-
ated density fields and power spectra permits us to generate any
desired statistical summary of the parameters under consideration
and to account for all joint and correlated uncertainties (see also
Eriksen et al. 2004; Jasche et al. 2010; Jasche & Wandelt 2013). As
an example, we inferred the ensemble mean of the cosmic power
spectrum and corresponding uncertainties from the set of 80 000
generated power spectrum samples. The results for the ensemble
mean power spectrum together with the 1σ and 2σ confidence re-
gions are presented in left-hand panel of Fig. 1. It can be seen that
the inferred power spectrum nicely follows the underlying fiducial
power spectrum from which the mock realization was drawn. It can
also be seen, that the Gibbs sampling approach correctly accounts
for discretization effects and numerical representations of data. This
fact is particularly reflected by the increase of uncertainty in recov-
ered power spectra towards the Nyquist frequency of the Fourier
domain, being fundamentally underconstrained, hence being max-
imally uncertain. Further, we do not observe any particular bias
throughout the entire range of recovered Fourier modes. Note, as
a remark, that these results are generally compatible with previous
approaches relying on different sampling strategies (see e.g. Jasche
et al. 2010; Jasche & Wandelt 2013).

Besides the cosmological power spectrum, the method also pro-
vides maps of the three-dimensional matter distribution. In partic-

ular, in Fig. 2 we demonstrate the ensemble mean density field
estimated from 80 000 density samples along with the correspond-
ing standard deviations, quantifying the uncertainty. As anticipated
from standard Wiener filtering approaches, the inferred density field
recovers the underlying signal best in regions of high signal-to-noise
ratio and approaches mean density in regions of low signal-to-noise
ratio (see e.g. Kitaura & Enßlin 2008; Kitaura et al. 2009; Jasche
et al. 2010; Jasche & Wandelt 2013). The corresponding standard
deviations for each volume element of the inferred density field are
presented in the lower panels of Fig. 2 indicating corresponding
uncertainties at all spatial points in the observed domain. In this
fashion the proposed method not only provides single estimates
of the parameters under consideration but also provides thorough
uncertainty quantification and means for error propagation. These
results therefore permit to derive any desired statistical summary
and corresponding uncertainties, which are generally of crucial im-
portance in order not to misinterpret the data.

6 SU M M A RY A N D C O N C L U S I O N

Modern cosmology has an ever increasing demand for fast and accu-
rate statistical inference methods to counter present and upcoming
avalanches of cosmological and astrophysical data. As pointed out
in the Introduction, inference of signals from observations sub-
ject to noise is an ill-posed problem requiring sophisticated sta-
tistical methods to quantify corresponding statistical uncertainties.
Specifically large-scale Bayesian inference, such as the joint infer-
ence of three-dimensional matter density fields and corresponding
cosmological power spectra, from observations relies on complex
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and numerically expensive MCMC methods, often involving im-
plementations of Krylov space methods or gradient-based HMC
approaches (see e.g. Kitaura & Enßlin 2008; Jasche & Wandelt
2013). Not only are these methods numerically expensive but are
also hard to test and debug especially in large-scale applications
(Cook, Gelman & Rubin 2006). Besides these issues, the require-
ment to implement Krylov space or HMC methods constitutes a
significant hurdle for rapid prototyping and development of large-
scale Bayesian inference methods in cosmology and astrophysics.
To address these issues, in this work we present a new, efficient
and trivial to implement Gibbs sampling approach for the joint in-
ference of cosmological density fields and power spectra for linear
data models. This approach picks up basic ideas of the recently
proposed messenger method for Wiener filtering, described by
Elsner & Wandelt (2013), and does not require any matrix inver-
sions to explore high-dimensional parameter spaces. As described in
Section 2, introducing a messenger field to mediate between differ-
ent preferred bases, in which signal and noise covariance matrices
can be expressed conveniently, yields an augmented Wiener pos-
terior distribution which can be efficiently explored via a multiple
block Gibbs sampling approach (Elsner & Wandelt 2013). In par-
ticular, the proposed method turns the cumbersome approach of
inverting multimillion-dimensional matrices into the task of se-
quentially drawing random numbers from only univariate normal
distributions. While trivial to implement, iteration of this process
yields full multivariate random fields drawn from the desired tar-
get Wiener posterior distribution, hence correctly addressing the
large-scale inference problem. To address also problems in which
the covariance matrix of the signal to infer is unknown, we add
a power spectrum block sampler to jointly infer the signal and its
power spectrum.

As described in Section 3, this power spectrum sampler permits
to efficiently explore the high as well as the low signal-to-noise ratio
regime. While low signal-to-noise ratio regimes are dominated by
stochastic noise, high signal-to-noise ratio regions are dominated
solely by the much smaller sample variance. Using this sample
variance to determine step sizes in Markov transitions will result in
correct sampling of the target posterior, but may also yield unfea-
sibly long Markov chains as parameters in the low signal-to-noise
ratio regime remain correlated over many steps. To counter this
problem, in Section 3 we introduced a coordinate transform which
permits to perform larger steps in low signal-to-noise ratio regimes
via a Metropolis–Hastings transition step. The combination of both
approaches yields a covariance matrix sampler that is efficient at
all regimes, while only requiring the ability to generate univariate
random numbers.

In this fashion the task of jointly sampling a signal and its covari-
ance matrix can be addressed purely by a sequence of univariate
sampling processes.

In Section 5 we exemplify the performance of our method in
a cosmological setting by applying it to an artificial galaxy mock
data, described previously in Section 4, aiming at the joint inference
of the three-dimensional density distribution and its cosmological
power spectrum from observations. This artificial data set emulates
dominant features of the SDSS DR7, in particular survey geome-
try, selection effects and noise, and thus constitutes a realistic test
scenario.

A particular important aspect, when dealing with MCMC al-
gorithms, is the determination of their statistical efficiency. As
any MCMC method generates a sequence of correlated samples
the amount of actually produced independent samples is limited
by the total length of the chain. In Section 5.1 we therefore analysed

the intrachain correlation length between subsequently generated
samples of the cosmological power spectrum. These test demon-
strates formidable statistical efficiency for the proposed method
over the entire range of Fourier modes present in the analysis.
Specifically these tests indicate that the proposed Markov algo-
rithm generates independent samples at every 50th iteration of the
Markov chain, where we chose one cycle to consists in 10 Markov
transitions.

Section 5.2 discusses the results obtained by the proposed Markov
method. In particular, the method provides estimates for the en-
semble mean cosmological power spectrum and corresponding
uncertainty quantification. The inferred power spectrum recovers
the underlying true signal and shows no sign of bias throughout the
entire range of Fourier modes under consideration. These results are
also consistent with previous results (see Jasche et al. 2010; Jasche
& Wandelt 2013).

Furthermore, in our example case, the method also provides in-
ferred three-dimensional maps of the cosmic matter distribution.
In Fig. 2 we demonstrate ensemble mean estimates of the density
field and ensemble covariance maps quantifying the corresponding
uncertainty. The proposed method therefore not only provides sin-
gle estimates of signals, but also provides means to quantify and
propagate statistical uncertainties for any finally inferred quantity,
as is required for modern precision cosmology.

The ease of implementation, numerical and statistical efficiency
renders this method an ideal tool for large-scale Bayesian applica-
tions involving million-dimensional problems and linear data mod-
els. A particularly important feature of the method is that it only
requires the ability to sample from univariate distributions and thus
can be trivially implemented and tested by even inexperienced users
or can be used for rapid prototyping and development of more com-
plex inference frameworks.

In summary, we propose a statistical and numerically efficient
Gibbs sampling approach for the inference of an unknown sig-
nal and its covariance matrix from observations subject to statis-
tical uncertainties and systematics. Particularly due to the ease of
implementation we anticipate this method to greatly add to the
propagation of high precision large-scale data analysis methods in
cosmology and astrophysics, eventually leading to a more complete
understanding of our Universe.
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