Scaling Relations Between Warm Galactic Outflows and Their Host Galaxies
Abstract
We report on a sample of 48 nearby, star-forming galaxies observed with the Cosmic Origin Spectrograph on the Hubble Space Telescope. We measure the kinematics of warm gas in galactic outflows using a combination of four Si ii absorption lines. We use multi-wavelength ancillary data to estimate stellar masses (M*), star formation rates (SFR), circular velocities (vcirc), and morphologies. The galaxies cover four orders of magnitude in M* and SFR, and sample a wide range of morphologies from starbursting mergers to normal star-forming galaxies. We derive 3.0-3.5σ relations between outflow velocity and SFR, M*, and vcirc. The outflow velocities scale as SFR0.08-0.22, {M}*0.12-0.20 and {v}{circ}0.44-0.87, with the range depending on whether we use a maximum or a central velocity to quantify the outflow velocity. After accounting for their increased SFR, mergers drive 32% faster outflows than non-merging galaxies, with all of the highest velocity outflows arising from mergers. Low-mass galaxies (log(M*/ M⊙) < 10.5) lose some low-ionization gas through galactic outflows, while more massive galaxies retain all of their low-ionization gas, unless they undergo a merger.