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ABSTRACT
Combining our knowledge of halo structure and internal kinematics from cosmological dark
matter simulations and the distribution of halo interlopers in projected phase space measured
in cosmological galaxy simulations, we developMAGGIE, a prior- and halo-based, probabilistic,
abundance matching (AM) grouping algorithm for doubly complete subsamples (in distance
and luminosity) of �ux-limited samples. We testMAGGIE-L and MAGGIE-M (in which group
masses are derived from AM applied to the group luminosities and stellar masses, respec-
tively) on groups of at least three galaxies extracted from a mock Sloan Digital Sky Survey
Legacy redshift survey, incorporating realistic observational errors on galaxy luminosities and
stellar masses. In comparison with the optimal Friends-of-Friends (FoF) group �nder, groups
extracted withMAGGIE are much less likely to be secondary fragments of true groups; in pri-
mary fragments, its galaxy memberships (relative to the virial sphere of the real-space group)
are much more complete and usually more reliable, and its masses are much less biased and
usually with less scatter, as are its group luminosities and stellar masses (computed inMAGGIE

using the membership probabilities as weights). FoF outperformsMAGGIE only for high-mass
clusters: for the reliability of the galaxy population and the dispersion of its total mass. In
comparison with our implementation of the Yang et al. group �nder,MAGGIE reaches much
higher completeness and slightly lower group fragmentation and dispersion on group total
masses, luminosities and stellar masses, but slightly greater bias in the latter two and lower re-
liabilities. MAGGIE should therefore lead to sharper trends of environmental effects on galaxies
and more accurate mass–orbit modelling.

Key words: methods: numerical – galaxies: clusters: general – galaxies: groups: general –
dark matter.

1 INTRODUCTION

In the hierarchical growth of structure in the Universe, dominated
by gravity (and dark energy), matter �ows from low- to high-density
regions. To �rst order, galaxies, which form in small dark matter
haloes, follow this evolution and cluster into galaxy systems called
clustersor groups, depending on their mass (clusters are often de-
�ned with masses within the virial radius greater than 1014 M� ).

The properties of galaxies within these systems (hereafter de-
noted asgroupsfor simplicity), now attached to dark mattersub-
haloes, are likely to be modi�ed by the peculiar environment of their
parent groups. Many physical processes should indeed alter galaxy
properties in groups: the high galaxy density in groups will lead to
galaxy interactions and possibly mergers; the deeper gravitational
potentials of the more massive groups will produce higher velocity
dispersions for the galaxy population, favouring rapid �ybys over

� E-mail: acanthostega@hotmail.fr(MD); gam@iap.fr(GAM)

mergers (e.g. Mamon1992); the tides from the group potential will
prevent outer gas from accreting on to galaxy discs (Larson, Tinsley
& Caldwell 1980); the diffuse intragroup gas will exert ram pres-
sure on the galaxy’s gas (Gunn & Gott1972) and either compress
it, enhancing star formation (e.g. Kennicutt, Bothun & Schommer
1984), or when the pressure gets very high it will expel the gas
(Gunn & Gott1972), decreasing subsequent star formation.

Galaxy groups and clusters thus represent an ideal laboratory
to test the environmental effects on galaxies in models of galaxy
formation and evolution. Groups and clusters are also an important
tool to probe cosmological parameters, such as the dark energy
parameter (Wang & Steinhardt1998). Moreover, clusters have been
recently used to test a major prediction of general relativity, with
the recent discovery of weak but signi�cant signs of gravitational
redshifts (Wojtak, Hansen & Hjorth2011).

Since the early discovery of morphological segregation of galax-
ies in clusters (Shapley1926; Hubble1936; van den Bergh1960),
i.e. where inner regions of clusters preferentially contain ellip-
tical galaxies, whose red colours are indicative of old stellar

C� 2015 The Authors
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populations, it has been clear that the ef�ciency with which stars
form within galaxies must depend on their environment. In other
words, high-density environments act toquenchstar formation in
galaxies. More speci�cally, the speci�c star formation rate (SSFR)
of galaxies (star formation rate divided by stellar mass) is likely to
be a function of two separate environmental parameters: theglobal
environmentcharacterized by the total mass of their group and the
local environmentthat measures the position of the galaxy within
its group.

Peng et al. (2010) studied the dependence of SSFR with stellar
mass and environment, where they quanti�ed the latter by the dis-
tance to the �fth nearest neighbour. They found that, at low stellar
mass, the SSFR varied more with the density of the environment,
while at high mass, the environmental effects are small and the
SSFR anti-correlates with stellar mass. Unfortunately, the use of an
environment tracer such as the �fth nearest neighbour produces a
mix of the global and local environments. In contrast to Peng et al.
(2010), Weinmann et al. (2006) and von der Linden et al. (2010)
both considered indicators of both the global and local environ-
ments. Weinmann et al. (2006) found that the fraction of late-type
satellite galaxies appears more anti-correlated with group mass than
with stellar mass, while von der Linden et al. (2010) found that high-
mass galaxies also show some moderate dependence of SSFR with
the relative distance to the group/cluster centre (albeit limited to
low clustercentric radii).

These possible disagreements highlight the importance of prop-
erly measuring the global and local environments. Unfortunately, a
clean characterization of thereal-spaceenvironment from thered-
shift spaceobserved distribution of galaxies is dif�cult since the
redshift distortions(Jackson1972) caused by the velocity disper-
sion of the galaxy group distort the group into elongated structures
pointing towards the observer, i.e. Fingers of God (Tully & Fisher
1978). Moreover, because of redshift distortions, real-space groups
can be merged into single groups in redshift space. Conversely,
grouping algorithms inevitably lead to some fragmentation of real-
space groups, so that the secondary fragments do not represent bona
�de groups of their own (although some may represent subgroups of
real-space groups). Finally, even without group merging and frag-
mentation, a group �nder may miss some of the real-space group
galaxies, leading to incomplete galaxy membership, or conversely
may include additional galaxies that lie outside of the virial sphere
of the real-space group, producing unreliable galaxy membership.
One then wonders to what extent the strength of environmental
effects on galaxy properties may be washed out by the imperfect
extraction of the global and local environments by the grouping
algorithm (group �nder).

Many galaxy group catalogues have already been published, usu-
ally following the �rst publications of data from galaxy surveys.
First attempts were made with visual selections based on well-
de�ned criteria (Abell1958; Zwicky et al. 1961 for clusters and
Rose1977; Hickson1982for compact groups). The �rst automated
(and simple) algorithm has been the percolation, Friends-of-Friends
(FoF) method, �rst introduced by Turner & Gott (1976) and Huchra
& Geller (1982), in which groups are built by collections of galax-
ies linked, two-by-two, by their proximity. Redshift distortions are
taken into account by the use of two different linking lengths, along
the line-of-sight (LOS) and transverse directions. There is a fairly
wide range of pairs of linking lengths used in the literature. In a
previous study (Duarte & Mamon2014, hereafter Paper I), we have
analysed several mock Sloan Digital Sky Survey (SDSS) samples of
galaxies to optimize the pairs of linking lengths for minimal group
fragmentation and merging, maximal galaxy completeness and

reliability, and maximal group mass accuracy (see also Eke et al.
2004; Berlind et al.2006; Robotham et al.2011), and compared their
optimal linking lengths with those of 10 previous implementations
of the FoF algorithm. Another fairly non-parametric grouping al-
gorithm is to partition redshift space into Voronoi cells, constructed
from Delaunay triangulation, providing local galaxy number den-
sities that are inversely proportional to the volumes of the Voronoi
cells (Marinoni et al.2002, see also Gerke et al.2005).

Building on our recently gained knowledge from cosmological
N-body simulations, grouping algorithms have begun to appear,
where priors on galaxy group properties are incorporated to im-
prove their extraction from galaxy redshift surveys. In pioneering
studies, Yang et al. (2005, 2007) developed an iterative method
halo-based group �nder that uses a density contrast criterion in
projected phase space (PPS, i.e. projected radius and LOS velocity
dispersion), assuming a Navarro, Frenk & White (1996, hereafter
NFW) surface density pro�le and a Maxwellian LOS velocity dis-
tribution, both in reasonably good agreement with what is found in
the group- and cluster-mass haloes of dissipationless cosmological
simulations. In the Yang et al. (2005, 2007) group �nder, the group
masses, hence virial radii, are determined by abundance matching
(AM, �rst introduced by Marinoni & Hudson2002), which assumes
a one-to-one correspondence between group luminosity or stellar
mass and its total (halo) mass to match the cumulative distribution
functions (CDFs) of the cosmic halo mass function (HMF) and
the group luminosity or stellar mass function (measured, here, in
the previous iteration of the algorithm). AM between groups and
haloes has also been introduced by Muñoz-Cuartas & M̈uller (2012)
in their FoF algorithm that links haloes rather than galaxies: they
consider halo virial radii in the transverse direction and maximum
circular velocity in the LOS direction, combining the two links in
an ellipsoidal fashion.

But galaxy surveys come with observational problems that are
dif�cult to handle: surveys suffer from edge effects and from bright
(saturated) stars masking regions, and those with photometric red-
shifts have large and sometimes catastrophic redshift errors. Prob-
abilistic methods appear to be a promising way to deal with these
aspects. For example, Liu et al. (2008) designed a probabilistic FoF
method for surveys with photometric redshifts, Ascaso, Wittman &
Beń�tez (2012) incorporated priors on the galaxy luminosity func-
tion, while Rykoff et al. (2014) assumed a prior on the existence
of the red sequence (see also Gladders & Yee2000). Doḿ�nguez
Romero, Garć�a Lambas & Muriel (2012) have recently adapted the
Yang et al. (2007) group �nder into a probabilistic algorithm: they
initially assign haloes to single galaxies, and use AM like Yang et al.
(2007) to assign group masses and radii. But Dom�́nguez Romero
et al. (2012) end their algorithm with a hard assignment of galaxies
to their groups.

These studies can be improved in several respects.

(i) In their prediction of the density in PPS, Yang et al. (2005,
2007) and Doḿ�nguez Romero et al. (2012) assumed that the LOS
velocity dispersion is independent of projected radius, while cos-
mologicalN-body simulations (starting with Cole & Lacey1996)
indicate a convex pro�le in log–log. One can easily predict this
LOS velocity dispersion pro�le (see Mamon & �okas2005for a
single integral expression) by solving the Jeans equation of local dy-
namical equilibrium, adopting the velocity anisotropy pro�le of the
particles in the haloes of� cold dark matter (� CDM) cosmological
simulations (hereafter� CDM haloes).

(ii) Yang et al. (2005, 2007) and Doḿ�nguez Romero et al. (2012)
assumed that the LOS velocity distribution is Maxwellian, whereas
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the velocity anisotropy alters this Gaussianity (Merritt1987); hence,
one can do better and predict its precise shape from the three-
dimensional velocity distribution (Mamon, Biviano & Boué2013).

(iii) Rather than using a threshold in the PPS density as pro-
posed by Yang et al. (2005, 2007) and Doḿ�nguez Romero et al.
(2012), one can take advantage of our knowledge of the distribution
of galaxies in PPS for two terms: (a) the galaxies within the virial
sphere of the parent real-space group (hereafter thehalo term); (b)
the galaxies that are in the virial cone but outside the virial sphere
(hereafter theinterloper term). The interloper PPS density was
quanti�ed by Mamon, Biviano & Murante (2010) using a cosmo-
logical simulation, and it turns out to be fairly independent of halo
mass (for cluster-mass haloes). Comparing the PPS densities from
the halo and interloper terms yields a probability of membership.
There is no need to perform a hard assignment of galaxies to groups
in the end as was done by Dom�́nguez Romero et al. (2012): group
properties are easily obtained using the membership probabilities
as weights.

(iv) Yang et al. (2007) employ a complicated and imprecise
scheme (see their �g. 4) to estimate how the luminosity incom-
pleteness varies with redshift in their �ux-limited sample. Errors in
the luminosity incompleteness will propagate, among other places,
to the AM technique they use to infer group masses. However, the
issue can be entirely avoided by restricting the group �nder to sub-
samples that are doubly complete in both distance and luminosity.
Admittedly, such samples are, at best, less than one-third the size
of the parent �ux-limited samples (see Tempel et al.2014for the
SDSS). However, the very large sizes of the samples from recent or
ongoing galaxy spectroscopic surveys [250 000 for the Two Degree
Field Galaxy Redshift Survey (Colless et al.2001), 125 000 for the
Six Degree Field Galaxy Survey (Jones et al.2009), 700 000 for the
primary spectroscopic sample of the SDSS (Abazajian et al.2009),
300 000 for the ongoing Galaxy and Mass Assembly (GAMA) sur-
vey (Hopkins et al.2013)] lead to substantial sizes for doubly com-
plete subsamples, which can be used for studies of environmental
effects on galaxies. Moreover, it is wiser to study environmental ef-
fects on a group catalogue derived from a doubly complete galaxy
subsample, rather than start with a group catalogue derived from
a �ux-limited subsample and then cut it into a doubly complete
subsample of groups to study environmental effects. For example,
Tempel et al. (2014) have recently produced publicly available FoF
group catalogues that they had run on doubly complete SDSS galaxy
subsamples.

(v) Yang et al. (2005, 2007), Muñoz-Cuartas & M̈uller (2012)
and Doḿ�nguez Romero et al. (2012) wisely tested their grouping
algorithms using mocks. However, their adopted de�nitions for pu-
rity and contamination take values above (and below) unity, while
we prefer a measure of the reliability that is restricted to values
between zero and unity (see Section 3.3 below). Moreover, these
mocks should include observational errors (on galaxy luminosities
and stellar masses), and while this is brie�y mentioned by Yang
et al. (2005), it is not clear what level of errors were considered by
them and Yang et al. (2007), while observational errors were not
mentioned by Doḿ�nguez Romero et al. (2012)

In this work, we present a new probabilistic grouping algorithm,
Models and Algorithms for Galaxy Groups, Interlopers and Envi-
ronment, akaMAGGIE. The galaxy membership ofMAGGIE groups is
determined probabilistically, combining the distribution of interlop-
ers in PPS such as measured by Mamon et al. (2010) with a realistic
model for the distribution in PPS of halo members, while the group

masses are determined by AM in an iterative fashion, as in Yang
et al. (2005, 2007).

We presentMAGGIE in Section 2, and our mocks and testing pro-
cedure are described in Section 3. We compare, in Section 4, the
optimal FoF group �nder with two implementations ofMAGGIE, on
their ability to recover physical properties and galaxy membership
of real-space groups; we discuss our �ndings in Section 5 and sum-
marize our results in Section 6.

2 MAGGIE

We present here a complete description of the different steps of
MAGGIE. We start with a basic description of the algorithm, and then
we explain how we take into account the edges of the galaxy sample.

2.1 Basic group Þnder

We assume that we have a galaxy sample that is doubly complete in
distance and luminosity, with positions on the sky (right ascension
and declination), redshifts, as well as apparent magnitudes in a given
waveband and/or stellar masses. This is the minimum required data
set.

MAGGIE groups are built around the most luminous galaxy
(MAGGIE-L) or the most massive in stars (MAGGIE-M). This galaxy
is assumed to be thecentral galaxyand at rest relative to the group.
Although the most massive group galaxies can be offset and not at
rest with the group (e.g. Skibba et al.2011), we prefer this de�ni-
tion to the barycentre, since the galaxy number density pro�les in
clusters are known to be less cuspy when clusters are centred on
their barycentres (Beers & Tonry1986), and indeed most analyses
adopt the central galaxy as the position of the group centre.

MAGGIE then builds groups with the following iterative method.
Steps (2) to (4) are similar to those of Yang et al. (2005, 2007).

(1) Sort galaxies by decreasing stellar mass and loop over po-
tential groups: we loop over the potential group central galaxies,
sorted by decreasing galaxy stellar mass (MAGGIE-M) or luminosity
(MAGGIE-L), performing the following steps.

(2) Group total masses

(2a) Initial group total masses: on �rst pass, we determine the
mass of each group, either by adopting group massesM = 300Lr

(MAGGIE-L) or using the relation between halo mass and central
galaxy stellar mass (MAGGIE-M) that Behroozi, Conroy & Wechsler
(2010) derived from AM (basically matching the halo mass and
central galaxy stellar mass CDFs). This initial choice has no effect
on the �nal outcome (see Section 5.3.1).

(2b) Group total masses on subsequent iterations: on subsequent
passes, we determine the group mass by performing our own AM
between our group luminosity (MAGGIE-L) or group stellar mass
(MAGGIE-M) function (determined in the previous pass) and a chosen
HMF:

N(> L group) = N(> M ) (MAGGIE-L) (1)

N(> m group) = N(> M ) (MAGGIE-M), (2)

whereM is the group (halo) total mass, whileLgroup and mgroup

represent the group luminosity and stellar mass, respectively.1

(In this AM, we must assume that the group has the same cen-
tral galaxy as in the previous iteration, which is true for the great

1 We denote stellar masses asm and total (group/halo) masses (including
dark matter and gas) asM.
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MAGGIE group �nder 3851

majority of groups.) The cumulative mass functions are considered
for the comoving volume of the subsample, i.e.

N(> M ) =
� zmax

zmin

�
dV
dz

�
dz

� �

M
f (M �, z) dM �, (3)

wheref(M) is the differential HMF. Numerically solving equation
(1) or (2) together with equation (3) provides the group total mass as
a function of the group luminosity or stellar mass. Practical details
on the HMF are provided in Section 5.3.2.2

(3) Group radii: we estimate the group radius from the group
mass, using

r200 =
�

G M200

100H 2(z)

� 1/ 3

, (4)

wherer200 is our proxy for the virial radius and is the radius of the
sphere (hereaftervirial sphere) centred on the position of the central
galaxy and whose mean density is 200 times thecritical densityof
the Universe,� crit = 3H 2(z)/ (8 � G), while M200 is the mass within
the virial sphere. The Hubble constant, in equation (4), for a �at
Universe, is

H (z) = H0

�
� m(1 + z)3 + 1 Š � m, (5)

where� m is the cosmological density parameter atz = 0.
The factor 100 in equation (4) is really�/ 2 for the overdensity
relative to critical of� = 200.3

(4) Coordinates in PPS: the projected separationR (hereafter
projected radius) and LOS velocityv of a galaxy relative to a
central group galaxy (assumed at rest in the group) are written with
the standard cosmological formulae:

R = � d ang(zgroup), (6)

v = c

�
z Š zgroup

	

1 + zgroup
, (7)

where� is the angular separation,c is the speed of light,

dang(z) =
c

1 + z

�
dz�

H (z�)

is the cosmological angular distance (for a �at Universe) andzgroup

is the redshift of the central group galaxy.4

(5) Membership probability: in MAGGIE, galaxies are not assigned
to groups, but are provided with probabilities that they belong to a
given group, i.e. to the virial sphere of the real-space group.

2 In this work, the cumulative HMFN( > M) is derived by a maximum
likelihood estimate of the parameters of the analytical differential HMF of
Tinker et al. (2008) to the list of halo masses (within the sphere of radius
r200) of the Millennium-II simulation from which our mocks were built. A
theoretical HMF can be chosen when working on real data. Also, while it
would be preferable to �t an analytical form to the group luminosity function
or stellar mass function, to avoid shot noise and cosmic variance, such a �t
is dif�cult with a single or double Schechter (1976) function. We therefore
use the raw list of luminosities or stellar masses for the AM. We solve
equation (1) or (2) by performing linear interpolation (in log–log space) of
the cumulative HMF (which is not analytical despite the analytical nature
of the differential HMF).
3 Note that Yang et al. (2007) use virial radii corresponding to mean den-

sities equal to 180 times themean densityof the Universe, which for their
assumed� m = 0.238 corresponds to 43 times the critical density of the
Universe. For typical NFW density pro�les, the virial radius used by Yang
et al. (2007) is roughly 1.86 (c/ 10)Š0.052 times the radiusr200 used here.
4 In this paper, all instances of the symbolv represent LOS velocities of

galaxies relative to the group.

The probability that a galaxy lies within the virial sphere of the real-
space group is necessarily zero if the galaxy is outside thevirial
cone(circumscribing the virial sphere). Inside, the virial cone, the
probability is obtained by comparing the predicted densities in PPS
of the halo members (galaxies within the virial sphere) and the
interlopers(galaxies within the virial cone, but outside the virial
sphere). This can be written as

p(R, v) =



���

��

gh(R, v)
gh(R, v) + gi(R, v)

R � r200

0 R > r 200

, (8)

wheregh andgi are the densities in PPS of the halo members and
interlopers, respectively. In practice, since the computation of the
�rst expression of equation (8) is limited to the galaxies within the
virial cone, there are few galaxy distances to compute around each
group centre.

(5a) Halo density in PPS: given a galaxy number density pro�le
� (r), the density of halo particles in PPS is (following Mamon et al.
2013, replacing in�nities by the virial radius)

gh(R, v) = 	 sph(R) �h(v|R, r )� LOSŠsph, (9)

where	 sph is the surface density of the galaxies limited to the virial
sphere:

	 sph(R) = 2
� r200

R
� (r )

r dr
	

r 2 Š R2
, (10)

while h(v|R, r) is the probability of having an LOS velocityv at the
position in space given by (R, r), or when taking an LOS coordinate
whose origin is at the group centre, at position (R, z=

	
r 2 Š R2).

Combining equations (9) and (10), one obtains

gh(R, v) = 2
� r200

R
� (r ) h(v|R, r )

r dr
	

r 2 Š R2
. (11)

Assuming Gaussian (Maxwellian) three-dimensional velocities,5

Mamon et al. (2013) have shown that the LOS velocity distribu-
tion at position (R, r) is also a Gaussian:

h(v|R, r ) =
1

�
2� 
 2

z (R, r )
exp

�
Š

v2

2
 2
z (R, r )

�
, (12)

with


 2
z (R, r ) =

�
1 Š � (r )

R2

r 2

�

 2

r (r ), (13)

where� = 1 Š 
 2
� /
 2

r is the velocity anisotropy (for radial velocity
dispersion
 r and one component of the tangential velocity dis-
persion
 � ). In the presence of measurement errors of the LOS
velocity, assumed Gaussian with zero bias and standard deviation
� (v), the new distribution of LOS velocities is the convolution of
the zero-errorh(v|R, r) of equation (12) by a Gaussian of standard
deviation� (v). Then, in the expression ofh(v|R, r) (equation 12),
the local LOS velocity variance
 2

z in equation (13) is replaced by

 2

z (R, r ) + � 2(v).

5 It is easy to improve this model using the jointq-Gaussian (Tsallis)
velocity dispersion that Beraldo e Silva et al. (2015) found to represent
better the 3D velocity distribution in� CDM haloes.
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3852 M. Duarte and G. A. Mamon

The radial velocity variance
 2
r in equation (13) is obtained (equa-

tion A1 in Appendix A) from the stationary spherical Jeans equation
of local dynamical equilibrium

d
�
�
 2

r

	

dr
+ 2� (r )

�
 2
r

r
= Š �

GM (r )
r 2

, (14)

whereM(r) is our chosen total mass pro�le.6

We assume that the galaxy distribution follows the mass distribution,
and assume an NFW model for these two quantities. Denotinga the
scale radius of the NFW density pro�le

� NFW(r ) 

1

r (r + a)2 ,

(in the NFW model,a happens to be equal to the radius where
the logarithmic slope of the density pro�le is equal toŠ2), we
de�ne the concentration parameter c200 = r200/ a. We adopt the
scaling betweenr200 andM200 = M(r200) from the measurements
on � CDM haloes atz = 0 by Maccìo, Dutton & van den Bosch
(2008). The NFW density pro�le can then be written as

� (r ) =
N200

4� r 3
200

��
�

r
r200

�
, (15)

�� (x) =
1

ln(c200 + 1) Š c200/ (c200 + 1)
xŠ1

(x + 1/c )2 , (16)

whereN200 is the number of predicted galaxies (above some mini-
mum luminosity or stellar mass) within the virial sphere. We shall
see, below, that the normalizationN200 cancels from equation (8).
The mass pro�le of the groups is

M (r ) = M200
ln(x + 1) Š x/ (x + 1)

ln(c200 + 1) Š c200/ (c200 + 1)
, (17)

where, again,x = r/ r200.
Finally, we adopt the velocity anisotropy pro�le that Mamon &
�okas (2005) found to represent well the particles in cluster-mass
� CDM haloes

� (r ) =
1
2

r
r + r�

, (18)

with r� � r200/ c200 (Mamon et al.2010).
For our choice of NFW mass model and Mamon & �okas (2005)
anisotropy model, the radial velocity variance is given in equation
(A2) of Appendix A.

(5b) Interloper surface density in PPS: analysing the distribu-
tion of dark matter particles within a hydrodynamical cosmological
N-body simulation, Mamon et al. (2010) have found that the distri-
bution of interlopers in PPS can be written as a Gaussian of the LOS
velocity plus a constant term, where the coef�cients of the Gaussian
depend on projected radius:

gi(R, v) =
N200

r 2
200v200

�gi

�
R

r200
,

v
v200

�
, (19)

�gi(X, u ) = A(X) exp
�
Š

1
2

u2

�
 2
i (X )

�
+ B, (20)

6 The general form of the Jeans equation in an expanding Universe contains
extra terms that do not appear in our ‘standard’ Jeans equation (14) for the
density of the Universe, dark energy, streaming motions and non-stationarity
(Falco et al.2013). However, the solution of equation (A1) of the ‘standard’
Jeans equation is a highly accurate solution of the ‘general’ Jeans equation
for r < 2r100 � 2.7r200 (Falco et al.2013).

where

A(X) = dex
�
Š1.061+ 0.364X 2 Š 0.580X 4

+ 0.533X 6	
, (21)

�
 i (X ) = 0.612Š 0.0653X 2, (22)

B = 0.0075, (23)

where cosmic variance �uctuations are 0.11, 0.23 and 0.40 dex for
�
 i (X ), A(X) andB, respectively (Mamon et al.2010).
The velocity v200 is the circular velocity at r200, i.e.
v200 = 10H(z) r200. In the presence of velocity measurement er-
rors of dispersion� (v), one should replace�
 2

i by �
 2
i + � 2(v)/v 2

200.
Since galaxies are somewhat biased tracers of the dark matter distri-
bution, one needs to re-estimate the functionsA(X), 
 i (X), as well as
B from a mock that is built from the galaxy distribution rather than
the dark matter particles. In Appendix B, we present our analysis of
thez = 0 output of the semi-analytical model (SAM) of Guo et al.
(2011), deriving

log10 A(X) = Š 1.092Š 0.1922X 3 + 0.1829X 6, (24)


 i (X ) = 0.6695Š 0.1004X 2, (25)

B = 0.0067. (26)

We thus adopt, in this work, the functional �ts provided in equations
(24), (25) and (26), which admittedly are close to those of equations
(21), (22) and (23).
Equations (19)–(23) depend little on halo mass in the cluster-mass
regime (Mamon et al.2010), and we assume here that these equa-
tions extend to group masses, in particular for the functional forms
(equations 24–26) that we derived in Appendix B for the Guo et al.
(2011) SAM.

We note that the normalizationN200 appears in bothgh andgi, so it
cancels out of the probabilityp(R, v) of equation (8).
In our scheme, central galaxies haveR= 0 andv = 0, by de�nition,
and we set to unity their probability of membership (since the NFW
central surface density diverges). To avoid too much group frag-
mentation, we do not assign a galaxy as a potential central group
galaxy if it has a probabilityp > pcen of belonging to another group
of greater central galaxy stellar mass (since we proceed with groups
of decreasing central galaxy stellar masses). Here,pcen is a free
parameter ofMAGGIE. If pcen = 1, all galaxies can be group centres
(case of maximum group fragmentation and no group merging). If
pcen = 0, no satellite galaxy of a massive group can be the centre
of another one (no group fragmentation, but maximal group merg-
ing). In other words, withpcen = 0, galaxies lying in the virial cone
of a massive central galaxy, but far in the foreground/background,
will be assigned membership probabilities to the group around this
�rst galaxy, but will not be assigned membership probabilities to
potential groups around potential central galaxies lying in the same
virial cone. However, if the central galaxy of the �rst group was
wrongly determined, then one can effectively have group fragmen-
tation, even withpcen = 0 (but this occurs very rarely). Our tests
showed that the performance ofMAGGIE was independent ofpcen for
0 < pcen < 0.5, and we adoptedpcen = 0.001.

(6) Group global properties: the group global properties are ob-
tained by using the galaxy membership probabilities as weights,
i.e. group luminositiesLgroup and stellar massesmgroup are
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obtained with

L group =
�

i

p(Ri , vi ) L i , (27)

mgroup =
�

i

p(Ri , vi ) mi , (28)

over all galaxies withp(R, v) � pmem, wherepmem is another free
parameter ofMAGGIE. If pmem = 1, the group luminosities and stellar
masses will correspond to the values of the central galaxies, while
if pmem = 0, all galaxies within the virial cone will be considered
when computing the luminosities and stellar masses, even those that
contribute a small probability. Clearly, there should be little differ-
ence between settingpmem = 0.001 and 0. But physically, galaxies
with extremely lowpmemtypically correspond to interlopers that are
many group standard deviations in the foreground or background,7

in projection and it makes little sense to keep them in the group. We
thus choose to setpmem = 0.001.

(7) Loop convergence: we return to step (1), waiting for conver-
gence when the number of groups found in the current pass matches
the numbers found in the previous three passes. While the number
of groups evolves towards a �xed value, it does not converge after
20 passes; hence, we stop the iteration after the 20th pass.8

Note that the central galaxy is in general the most luminous
(MAGGIE-L) or the most massive in stars (MAGGIE-M). However, there
are rare exceptions where a group may contain a galaxy that is more
luminous or massive than its central, and yet is not the central of
another previously found group, i.e. a group whose central is more
luminous or massive.

2.2 Edge effects

Aside from all-sky surveys, galaxy surveys have edges on the sky.
Moreover, all volume-limited subsamples of galaxy surveys (in-
cluding all-sky) will have edges in redshift space. Galaxy groups
lying too close to an edge may be truncated. The grouping algorithm
may detect the truncated group without knowing how much of the
group lies beyond the survey edge. There is therefore no simple
recipe to handle survey edges.

For groups lying near a survey edge, following Yang et al. (2007)
we generate 700 galaxies [Yang et al. (2007) use 200] following
the NFW pro�le, using the halo concentration estimated by the halo
mass from Maccìo et al. (2008). Then, we project galaxies on the
celestial sphere and we estimate the number of galaxies weighted by
their probabilities that fall outside the galaxy survey zone. For this,
we also need to generate galaxy velocities. We assume that the 3D
velocity distribution is Maxwellian and that the velocity anisotropy
is that given by Mamon & �okas (2005). Next, we compute the
fraction of galaxies that are outside the survey (still weighted by
galaxy probabilities) and then the total stellar mass and luminosity
of the group are corrected by dividing by this fraction (see Yang
et al.2007). Admittedly, if a large group is centred just beyond the
survey edge, only a small fraction of this group will intersect our
survey mask, so we will underestimate its virial radius and mass.

7 Groups lying very close to the virial cone also have very low membership
probabilities.
8 The number of groups oscillates around a value, but in an aperiodic

fashion.

Table 1. Doubly complete subsamples of the mock SDSS/Legacy survey.

Subsample zmin zmax M max
r Lmin / L Galaxies

Nearby 0.01 0.053 Š19.0 0.14 72 510
Distant 0.01 0.102 Š20.5 0.56 213 546

3 TESTS OF MAGGIE ON MOCK
CATALOGUES

We testMAGGIE using realistic mock, doubly complete in distance
and luminosity, galaxy redshift catalogues, which we had previously
used in Paper I to optimize the FoF linking lengths. The construction
of the mock catalogues and the description of the tests are discussed
in detail in Paper I, and are brie�y recalled below.

3.1 Mock galaxy sample

We have constructed a mock galaxy catalogue corresponding to the
extent on the sky and depth of the largest contiguous (2.2 sr) region
of the primary (Legacy) spectroscopic sample of the SDSS. For
this, we replicated the galaxy outputs atz = 0 generated from the
Guo et al. (2011) SAM of galaxy formation and evolution, which
was run on the halo merger trees extracted from the Millennium-II
dissipationless cosmologicalN-body simulation (Boylan-Kolchin
et al.2009), which itself had been run in a box of comoving size
Lbox = 100hŠ1Mpc, with cosmological parameters� m = 0.25,
� � = 0.75,H0 = 73 and
 8 = 0.9, and particle mass 1.1 × 107 M� .
Haloes were identi�ed by applying the FoF technique to the real-
space particle data.

In the output of the Guo et al. (2011) SAM, each galaxy is asso-
ciated with a halo, making it easy to compare the groups extracted
from our algorithm to the real-space groups. Guo et al. (2011)
found that thez = 0 galaxy luminosity and stellar mass functions
agree well with the corresponding observed functions, making their
galaxy catalogue realistic and useful to test our algorithm on data
similar to observations.

The maximal redshift spanned by the simulation box is approx-
imately H0Lbox/ c � 0.025. Simulating the SDSS survey requires
a deeper sample (see Table1). For this, we have juxtaposed sev-
eral boxes of the galaxy catalogue, applying random translations
and rotations in galaxies’ coordinates to avoid perspective effects
(Blaizot et al.2005). This produced a largersuperboxcomposed
of the replicas of the galaxies in the computation box. We placed
the observer at the middle of one of the sides of the superbox (see
�g. 1 of Paper I). Redshifts of the galaxies were computed using
velocities given in the galaxy catalogue and adding the Hubble �ow
to it (see Paper I).

Our mock survey had no holes caused by saturated stars or bad
data. Nevertheless, we allowed for observational errors on galaxy
luminosities and stellar masses. According to Appendix C1, the
errors on galaxy stellar masses, determined by comparison of dif-
ferent stellar mass algorithms on hundreds of thousands of SDSS
galaxies, are roughly 0.2 dex. This value is much more conservative
than the value of 0.10 dex (Taylor et al.2011) and 0.15 dex (Mendel
et al.2014), but consistent with the 95 per cent con�dence errors of
0.30 and 0.35 dex for blue and red galaxies, as deduced by Conroy,
Gunn & White (2009). In Appendix C2, we estimate the errors on
galaxy luminosities, taking into account errors in photometry and
redshift, uncertainties on extinction corrections andk-corrections,
and neglect of peculiar velocities. We �nd that the errors on galaxy
luminosities are of the order of 0.08 dex at our minimum redshift
of z = 0.01 decreasing to 0.06 dex at our maximum redshift of
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3854 M. Duarte and G. A. Mamon

z � 0.1. In our analysis, we have therefore generated Gaussian
errors without bias and with dispersion of 0.2 dex for log stellar
masses and 0.08 dex for log luminosities.

From our �ux-limited mock galaxy survey, we constructed sev-
eral subsamples that are doubly complete in distance and luminosity.
We focus our results on the two subsamples shown in Table1.

3.2 Flags

We �agged all galaxies belonging to real-space FoF groups contain-
ing at least one member that was on the other side of the periodic
box (their groups would thus be split by the transformations of the
box).

We also �agged the galaxies in the extracted groups that lie close
to the redshift space edges of the doubly complete subsamples: to
be very conservative, we �agged all extracted groups lying closer
(roughly 2.5 Mpc) to the angular edges than would be the virial
radius of a massive (log10M = 15.2) cluster, and all groups lying
closer to the redshift limits than 13 times this distance (see Mamon
et al.2010) to account for redshift distortions.9

We ranMAGGIE on all galaxies of the mock (�agged or un�agged),
and subsequently �ag the groups that contain at least one �agged
galaxy withp > pmem.

3.3 Testing procedures

Following Paper I, we applied a suite of tests to groups containing no
�agged galaxies to assess the performance ofMAGGIE, its robustness
to some of the assumptions, and to compare it to other group �nders.
The tests check how well the sample ofextracted groups(hereafter
EGs) in redshift space matches the sample oftrue groups(hereafter
TGs) in real space. The TGs are de�ned as the set of galaxies that lie
within the virial sphere around the centre of the real-space group, i.e.
the position of the most bound particle of the halo (Boylan-Kolchin
et al.2009).

In an optimal grouping algorithm, the TGs minimally suffer from
fragmentationinto several EGs. A fragmented TG contains the
central galaxies (see beginning of Section 2.1) of several EGs. There
should also be minimalmergingof several TGs into a unique EG (the
EG contains the central galaxies of several TGs, each withp� pmem).
Following Yang et al. (2007) and Paper I, the EGs and TGs are linked
by their respective central galaxies. When fragmentation occurs,
the primary EG is that containing the central galaxy of the parent
TG. When merging occurs, the primary TG is that containing the
central galaxy of the EG. We refer the reader to �g. 3 of Paper I for
illustrations of group fragmentation and merging.

Also, in the optimal grouping algorithm, the galaxies of the EG
should represent a maximallycompletesample of the parent TG
galaxies and a maximallyreliable (pure) sample, i.e. with as high
as possible fraction of galaxies that belong to the parent TG (recall
that the TG is the set of galaxies within the virial sphere).

Finally, the optimal grouping algorithm should produce EG lu-
minosities, stellar masses and total masses as close as possible to
those of the parent TG, i.e. with minimalbias andscatter. While
bias can be corrected for, a measurement with strong scatter will be
inef�cient.

When TGs are fragmented, it makes little sense to measure the re-
liability of the galaxy membership of the secondary EGs (secondary

9 The number of un�agged galaxies depends on the group �nder and the
subsample.

fragments), and when TGs are merged, it would similarly not be
useful to measure the completeness of the galaxy membership of a
secondary TG. And it only makes sense to compare EG properties
with the corresponding TG ones for primary fragments or relative to
primary parent TGs. So all measures of completeness, reliability, as
well as bias and scatter of group luminosity, stellar and total masses
are limited to the primary EGs. The reader is referred to Paper I for
more details.

Since the galaxy membership ofMAGGIE groups is probabilistic,
some of the statistical tests must be modi�ed. In Paper I, we de�ned
the galaxy reliability as10

R =
TG � EG

EG
=

Ni � TG� EG

Ni � EG
, (29)

where we adopt the notationNi � E to represent the number of el-
ements in spaceE. For our probabilisticMAGGIE group �nder, we
modify equation (29) to

R =
TG � EG

EG
=

�
i � TG� EG pi�

i � EG pi
, (30)

wherepi � p(Ri, vi ) is the probability of membership of galaxyi
(equation 8). The equivalent of equation (30) for the completeness
would be

C =
TG � EG

TG
=

�
i � TG� EG pi

Ni � TG
. (31)

However, it is inconsistent to consider probabilities in the numerator
of equation (31) and not in its denominator. We therefore adopt
instead a de�nition based on hard assignments:

C =
TG � EG

TG
=

Ni � TG� EG AND pi >p mem

Ni � TG
. (32)

Since our chosen value ofpmem is very small, the de�nition of
completeness in equation (32) is very close to the de�nition of
Paper I.

For group luminosities and stellar masses, we use the probabilities
as in equations (27) and (28), respectively.

Finally, we did not measure group merging in this work. The
logical way of estimating group merging is to request that two TG
centrals are members of the same EG. But with a probabilistic
method such asMAGGIE, a given galaxy may be a member of sev-
eral EGs (with different membership probabilities in each, all with
p > pcen). So it is not clear whether a group merger occurs when
one of the TG centrals is a member of two EGs, with a much lower
probability of membership in the EG that contains the central of the
other TG compared to the probability of membership in the other
EG.

4 RESULTS

We now present the results of our tests on group fragmenta-
tion, galaxy completeness and reliability, accuracies of group total
masses, luminosities and stellar masses. We ran these tests on both
MAGGIE-L andMAGGIE-M, using mocks without or with the inclusion
of observational errors of 0.08 dex in luminosity and 0.2 dex in
stellar masses. We, however, defer the discussion of the impact of
observational errors to Section 5.2.

10 Note that ourreliability, which can take values in the range [0–1], is
different from thepurity used by Yang et al. (2007) and Doḿ�nguez Romero
et al. (2012), de�ned as TG/EG= R/ C, and also different from one minus
theircontamination, de�ned as (EGŠTG� EG)/TG= C(1/ RŠ1), which can
be both greater or smaller than unity.
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MAGGIE group �nder 3855

Figure 1. Fraction of Extracted groups that are secondary fragments as
a function of their estimated group mass, for un�agged groups of at least
three members (for both the Extracted groups and True groups), for both
the nearby (top) and distant (bottom) subsamples. The line colours are dark
green and red forMAGGIE-M and MAGGIE-L, with respective observational
errors of 0.2 dex on stellar mass and 0.08 dex on luminosity, and light green
and orange forMAGGIE-M andMAGGIE-L, with zero observational errors. The
error bars are computed with the Wilson (1927) formula (see the text). The
points have their abscissa slightly shifted for clarity.

4.1 Fragmentation

Fig.1 displays the fraction of EGs that are secondary fragments as a
function of estimated group mass. The error bars are obtained with
the Wilson (1927) formula.11

Both versions ofMAGGIE lead to fragmentation of typically
15 per cent, even when realistic errors on galaxy luminosities and
stellar masses are considered. The fragmentation inMAGGIE is fairly
independent of the chosen doubly complete subsample, except that
EGs with low estimated masses (logMest/ M� < 12.5) are more
likely to be secondary fragments when in the distant subsample,
which is limited to high galaxy luminosities, hence high true group
stellar masses. In the high-mass end, one �nds that theMAGGIE-M

EGs are less likely to be secondary fragments than theirMAGGIE-L

counterparts.

11 The Wilson (1927) formula avoids zero errors when the frac-
tion is zero or unity. It is described in the Wikipedia entryBino-
mial proportion con�dence interval, http://en.wikipedia.org/wiki/Binomial_
proportion_con�dence_interval.

Figure 2. CDFs of the galaxy membership completeness [left, computed
with equation (32)] and reliability [right, both relative to the virial sphere
of the True groups, computed with equation 30)] in bins of estimated group
masses, for the nearby subsample (un�agged galaxies in groups of at least
three true and three extracted members that are not secondary fragments).
The colours are the same as in Fig.1.

Figure 3. Same as Fig.2, but for the distant subsample.

4.2 Completeness and reliability

Figs2and3show that the EGs fromMAGGIE-M (dark green lines) and
MAGGIE-L (red lines) that are primary fragments are highly complete
in galaxies. For the nearby subsample (Fig.2), in the worst per-
forming amongMAGGIE-M andMAGGIE-L, with observational errors,
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3856 M. Duarte and G. A. Mamon

Figure 4. Median bias and scatter (using 16th and 84th percentiles) of
estimated group total mass within the virial sphere (for un�agged primary
groups of at least three true and three extracted galaxies), for the nearby (top)
and distant (bottom) subsamples. The error bars for the bias and scatter are,
respectively,
/

	
N and
 / 2 [2/ (N Š 1) + / N]1/ 2, where is the kurtosis

excess. The points have their abscissa slightly shifted for clarity. Same
colours as in Figs1 and15.

100 per cent completeness is achieved for 85, 89 and 75 per cent
of the groups, for the low-, intermediate- and high-mass bins, re-
spectively, and 90 per cent completeness is reached for 90, 93 and
95 per cent of the groups in the same respective mass bins. The
completeness is even higher for the distant subsample (Fig.3). The
galaxy completeness values are roughly the same withMAGGIE-L

andMAGGIE-M, except for the high-mass end whereMAGGIE-L shows
higher completeness.

The galaxy reliability ofMAGGIE decreases with increasing EG
mass. For the worst performing amongMAGGIE-M andMAGGIE-L with
observational errors, the fractions of 90 per cent reliable groups are,
respectively, 82, 43 and 4 per cent for the nearby subsample. The
median galaxy reliabilities for the high-mass bin are more similar:
while they are, respectively, 80 and 82 per cent (78 and 81 per cent)
with MAGGIE-L (MAGGIE-M), again with observational errors. The
galaxy reliabilities are very similar betweenMAGGIE-L andMAGGIE-M,
except thatMAGGIE-L shows higher reliability in the low-mass bin of
the distant subsample.

4.3 Accuracy in group total masses

Fig. 4 shows the bias and scatter in group mass. Both �avours of
MAGGIE, without or with errors, have their group masses biased low
at low masses, by typically 0.4 dex at logMest/ M� = 12.5. The esti-
mated masses are unbiased at logMest/ M� � 13.5 and are slightly
positively biased at high mass, especially at logMest/ M� � 14,
where the bias reaches� 0.1 dex. The bias is never more than 0.1
dex in absolute value for groups with logMest/ M� > 12.8. There
are no signi�cant differences in group total mass bias between
MAGGIE-L andMAGGIE-M.

While bias can be corrected for, scatter is a more serious con-
cern. The dispersion inMest/ Mtrue decreases with EG mass, from
typically 0.2 dex at logMest/ M� = 12–13 to better than 0.1 dex at
logMest/ M� = 14.8.

4.4 Accuracy in group luminosities and stellar masses

Figs 5 and 6 show the bias and inef�ciency of the recovered
group luminosities and stellar masses, respectively (using equa-

Figure 5. Same as Fig.4, but for group luminosity.

Figure 6. Same as Fig.5, but for group stellar mass.

tions 27 and 28).MAGGIE groups with low estimated total masses
are slightly biased low, by up to typically 0.03 dex (7 per cent) at
logMest/ M� = 12 (but 0.05 dex for group luminosities in the dis-
tant subsample). At high estimated group masses, the bias is less
well measured (given the lower number of groups in the higher
mass bins), and some �uctuations appear, but the overestimate of
the group total masses is typically limited to 0.04 dex (10 per cent).
There are virtually no differences in the luminosity and stellar mass
biases betweenMAGGIE-L andMAGGIE-M.

Surprisingly, the inef�ciencies in group luminosity or stellar mass
estimation with both �avours ofMAGGIE increase with EG mass, typ-
ically from 0.03 or 0.04 dex in the low EG mass end to 0.05 dex at the
high end (0.08 dex for the distant subsample).MAGGIE-L andMAGGIE-
M have comparable dispersions in luminosity and stellar mass, ex-
cept thatMAGGIE-L is worse in one mass bin (Mest/ M� � 14), but
this bad performance ofMAGGIE-L in a single mass bin might be of
statistical nature.

5 DISCUSSION

Our tests have been performed in an idealized situation forMAGGIE,
with perfectly known scaling relations, yet with realistic measure-
ment errors on galaxy luminosities and stellar masses. We now
discuss the general features ofMAGGIE (Section 5.1), and then the
performance ofMAGGIE in terms of its sensitivity to observational
errors (Section 5.2), and its robustness relative to the adopted initial
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MAGGIE group �nder 3857

mass–luminosity scaling relation (Section 5.3.1), the HMF (Sec-
tion 5.3.2), cosmological parameters (Section 5.3.3), and the precise
choice for the density of interlopers in PPS,gi(R, v) (Section 5.3.4),
before comparing its performances in Section 5.4 to two popular
group �nders: FoF and the halo-based group �nder of Yang et al.
(2005, 2007).

5.1 General features ofMAGGIE

Thanks to its probabilistic nature,MAGGIE generally performs well
with galaxy membership reliability, since the least reliable galaxies
along the LOS are assigned low probabilities. In general, extracted
global properties of groups should be less biased and errors in
membership are usually tempered by the low probabilities assigned
to uncertain members.

Since at high group (halo) mass, group luminosity and stellar
mass are less sensitive to group (halo) mass (Marinoni & Hud-
son 2002), the group mass that is obtained with the AM tech-
nique is more sensitive to the observable group luminosity or stellar
mass. Moreover, high-mass groups (clusters), which are known
to have a more prominent red sequence of galaxies, should have
higher stellar mass-to-luminosity ratios. This means that measur-
ing group mass with AM will be more accurate using group stel-
lar masses than with group luminosities. This is, indeed, what is
seen (Fig.4) in our tests of the accuracies ofMAGGIE group to-
tal masses without observational errors, asMAGGIE-M (light green)
masses are signi�cantly more accurate than those ofMAGGIE-L

(orange). But the greater observational errors on stellar masses
relative to luminosities reverse this hierarchy, makingMAGGIE-L

slightly more accurate thanMAGGIE-M in extracting group total
masses.

MAGGIE assigns non-zero probabilities to all galaxies lying within
the virial cone, and only considers those for whichp> pmem= 0.001.
If the virial radius is overestimated,MAGGIE will be more prone to
group merging and the galaxy membership will be less reliable. The
bloated sizes of high-mass groups, as witnessed by the mass bias
going from negative to positive forMAGGIE groups (left-hand panels
of Fig. 4), explain the strong decrease in reliability with increasing
estimated group mass (Figs2 and3), especially inMAGGIE.

5.2 Robustness ofMAGGIE to observational errors

While geometric-based algorithms such as FoF or Voronoi–
Delaunay methods are immune to observational errors on lumi-
nosities and stellar masses, such errors can affect group �nders that
derive group total masses by AM with group luminosities or stellar
masses, as those of Yang et al. (2007), Muñoz-Cuartas & M̈uller
(2012), Doḿ�nguez Romero et al. (2012) andMAGGIE.

We have runMAGGIE both with and without the observational
errors on galaxy luminosities and stellar masses. Figs1– 6 show the
effects of going from no observational errors (orange forMAGGIE-L

and light green forMAGGIE-M) to realistic observational errors (red
for MAGGIE-L and green forMAGGIE-M).

Including observational errors produces only small extra group
fragmentation, by typically 10 per cent forMAGGIE-L and 20 per cent
MAGGIE-M, both in relative terms (Fig.1).

Using the Kolmogorov–Smirnov (KS) test, we see (Figs2 and3)
that the observational errors signi�cantly worsen the galaxy com-
pleteness ofMAGGIE-M for low-mass EGs of the nearby subsample
(and marginally so for the intermediate- and high-mass EGs of the
distant subsample), whileMAGGIE-L does not seem affected. Neither

MAGGIE-L nor MAGGIE-M see their galaxy reliability affected by the
observational errors.

The inef�ciency of group mass estimation is signi�cantly wors-
ened by the observational errors forMAGGIE-M (at virtually all
EG masses), but not forMAGGIE-L (Fig. 4). While, with mocks
that do not include observational errors,MAGGIE-M produces sig-
ni�cantly more accurate group total mass estimation than does
MAGGIE-L, the inclusion of observational errors inverses this hi-
erarchy, with MAGGIE-L producing slightly more accurate group
masses.

On the other hand, observational errors do not worsen the inef-
�ciency of the estimation of group luminosities (Fig.5) and stellar
masses with either �avour ofMAGGIE (Fig. 6).

5.3 Robustness ofMAGGIE to details of the model

5.3.1 Initial halo mass–central stellar mass relation

We tested howMAGGIE is affected by our initial relation between
halo mass and central stellar mass (item 2a of Section 2.1). We
found thatMAGGIE is insensitive to our adopted scheme of relating
luminosity or stellar mass to halo mass in its �rst pass: the �nal
variation of groupM/ Lr versusLr is precisely the same whether
one adoptsM/ Lr = 300 or the relation ofM/ Lr versusLr that
Behroozi et al. (2010) derived from AM. The same effect has been
previously noticed by Yang et al. (2007).

5.3.2 HMF model

The estimation of the virial mass (or virial radius) is a crucial step
(item 2 in Section 2.1) ofMAGGIE [and of other methods that use
priors such as Yang et al. (2007) and Doḿ�nguez Romero et al.
(2012)]. A biased estimate of group masses will affect the ob-
served trends of galaxy properties with the global environment. The
AM technique, used inMAGGIE [as well as by Yang et al. (2007),
Muñoz-Cuartas & M̈uller (2012) and Doḿ�nguez Romero et al.
(2012)], appears to be a good way to estimate the virial mass of
galaxy group haloes. There are, however, three issues that need to be
considered.

First, there may be haloes with no galaxies that may per-
turb the halo-group bijectivity assumption of AM. We checked
that no haloes above 1011 M� in the Millennium-II simulation
have zero galaxies assigned to them in the SAM of Guo et al.
(2011).

Secondly, deriving group total masses by AM between an HMF
and the inferred distribution of group galaxy luminosities or stellar
masses should cause inef�cient estimation of group masses when
these are in the high range (14< log10 Mest/ M� < 15), because
of the lower slope of the high-mass end of the group luminosity
(or stellar mass) as a function of halo mass at high halo mass (e.g.
Yang, Mo & van den Bosch2008, 2009).12

Thirdly, most analytical HMFs described in the literature are
based on �ts to the FoF mass of the haloes instead of the spherical
overdensity mass, which is how we de�ned the virial mass of the
halo. Since we used the galaxy catalogue from Guo et al. (2011),
whose SAM was applied on to the Millennium-II run, we �t the
halovirial mass function directly on its output.

12 This issue is much more severe when one uses central galaxy (instead
of group) luminosity or stellar mass (e.g. Yang et al.2008, 2009; Cattaneo
et al.2011; Wojtak & Mamon2013).
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3858 M. Duarte and G. A. Mamon

Figure 7. Cumulativez = 0 halo mass functions (multiplied by halo mass
for clarity) for the output of the Millennium-II simulation for FoF masses
(red) and virial masses (M200, i.e. computed in the sphere whose mean
density is 200 times the critical density of the Universe, black), as well as
the analytical forms from Courtin et al. (2011) for the halo FoF mass function
(cyan) and from Tinker et al. (2008) for the halo mass function where the
masses are in the spheres of overdensity of 800 relative to the mean density
of the Universe (purple, corresponding to 200 times the critical density for
� m = 0.25 as in the Millennium simulation). Also shown is our maximum
likelihood �t to the virial mass function (green).

Fig. 7 shows the cumulative HMF computed in various ways.
The �gure clearly shows that the cumulative FoF HMF computed
from the Millennium-II simulation is typically 0.2 dex above the cu-
mulative virial mass function computed from the same simulation.
While the analytical approximation of Courtin et al. (2011, light
blue) matches very well the halo FoF mass function,13 Fig.7 shows
that the cumulative halo virial mass function obtained from the
analytical approximation of Tinker et al. (2008, purple) is slightly
offset, at low masses, relative to cumulative halo virial mass func-
tion extracted from the Millennium-II simulation.

We therefore chose, in our present tests, to �t ourselves the halo
virial mass function of the Millennium-II simulation with the Tinker
et al. (2008) model. Our maximum likelihood �t of the Tinker et al.
(2008) function to the set of halo masses (green curve) produces
Tinker et al. (2008) parametersa = 2.13,b = 1.97 andc = 1.75,
with normalizationA = 0.188 (instead of the corresponding values
of a = 1.87,b = 1.59,c = 1.58 andA = 0.248 that Tinker et al.
(2008) found for � m = 800, i.e.� = 200 given� m = 0.25 of the
Millennium-II simulation, purple curve).14

13 Other analytical forms of the halo FoF mass function by Jenkins et al.
(2001), Warren et al. (2006) and Crocce et al. (2010) are virtually identical
to that of Courtin et al. (2011).
14 Our �t is performed in the mass range 11< logM/ M� < 15.5.
Following Jenkins et al. (2001), Tinker et al. (2008) �t a simple form for
f (
 ) = (M/ � ) dn/ dM / (d ln 
 Š1/ d lnM ), where
 is the standard devia-
tion of primordial perturbations of massM (linearly extrapolated toz = 0).
The expressionf(
 ) turns out to be only very weakly sensitive to the cos-
mological parameters and fairly weakly sensitive to redshift (Jenkins et al.
2001). However, the cumulative HMF of the Jenkins/Tinker model can-
not be expressed in analytical form. Therefore, the normalization of the
probability density function of the halo mass distribution (required for the
maximum likelihood estimate) requires in turn the numerical integration of
the unnormalized HMF.

Fig. 8 shows how the performance ofMAGGIE is affected by the
choice of HMF, respectively, for group fragmentation, as well as the
mass accuracy, galaxy completeness and reliability of the primary
groups.

All three HMFs lead to similar group fragmentation, group total
mass inef�ciency and galaxy incompleteness. However, adopting
the analytical approximation (by Courtin et al.2011) to the halo FoF
mass function (light blue lines and symbols) leads to signi�cantly
positive mass bias (up to 0.3 dex) at high EG masses (upper-right
plot of Fig.8, and lower reliability at high EG masses (bottom plots
of Fig.8, only signi�cant for the distant subsample according to our
KS tests).

Substituting the HMF of Tinker et al. (2008), for overdensity of
800 relative to the mean density of the Universe [corresponding
to 200 times the critical density for the value of the cosmological
density parameter used in the Millennium-II simulation, on which
the galaxies of our mock were modelled with the SAM of Guo et al.
(2011)], yields very similar results to our standard HMF [which,
we recall, is a �t of the Tinker et al. (2008) form to the halo mass
distribution]: these two HMFs [purple lines and symbols for the
Tinker et al. (2008) HMF, green ones for our HMF] often lead
to indistinguishable positions in the various plots of Fig.8 (recall
that the points have their abscissa slightly shifted for clarity). This
similarity re�ects the similar HMFs seen in Fig.7 (purple versus
green curves). This suggests that one can use the Tinker et al. (2008)
analytical �ts to the halo virial mass function for the AM inMAGGIE.

5.3.3 Cosmological parameters

Groups extracted from group �nders will depend on the choice
of cosmological parameters. For example, when computing the
projected radius of a galaxy at the redshift of the group, we
implicitly need to compute the cosmological angular distance,
dA(z) = dL(z)/ (1 + z)2, hence the luminosity distance,dL(z),
which scales as the inverse dimensionless Hubble parameter,
1/ h = 100 km sŠ1 MpcŠ1/ H0, but also more subtly on� m and� � .
For our assumed �at� CDM Universe, the cosmological parame-
ters reduce toh and� m, and the luminosity distance is computed
using elliptic integrals (Liu et al.2011; see also Eisenstein1997).
Moreover, for all analytical HMFs tested in Section 5.3.2, we have
assumed the same cosmological parameters as in our mock, i.e.
those of the Millennium-II simulation, on which the galaxy SAM
output was constructed, which in turn was used to build our mock
redshift space survey. However, the observer may choose a different
set of cosmological parameters.

We tested the sensitivity ofMAGGIE to the choice of cosmo-
logical parameters, by comparing the results ofMAGGIE-M (with
observational errors) with the ‘true’ cosmology (� m = 0.25,
h = 0.73 as assumed in the Millennium-II simulation, on which our
mock is based) with analogous runs ofMAGGIE-M assuming instead
two ‘false’ cosmologies (i.e. inconsistent with our mock):Wilkin-
son Microwave Anisotropy Probe9 (WMAP9), with � = 0.279,
h = 0.70 (Bennett et al.2013) and Planck-2015 with� m = 0.308,
h = 0.678 (Planck Collaboration2015).

As seen in the plots of Fig.9, the choice of cosmological pa-
rameters affects very little the performance ofMAGGIE-M on the
fraction of groups that are secondary fragments (upper-left plot),
the inef�ciency of group total mass estimation (right-hand panels
of upper-right plot), as well as galaxy completeness, and accu-
racy in total group mass, with no statistically signi�cant trends
with � m.
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MAGGIE group �nder 3859

Figure 8. Effects of the choice of halo mass function on the fraction of fragments (top left), the accuracy in the recovered halo mass (top right), and the CDFs
of galaxy completeness and reliability of the groups (bottom) forMAGGIE-M (with 0.2 dex observational errors). The lines show the three adopted halo mass
functions: our �t to the halo virial mass function (green, as used throughout paper), and the analytical halo mass functions of Tinker et al. (2008, virial purple,
dashed, for overdensity of 800 relative to the mean, corresponding to 200 relative to critical for the cosmology of our mock) and Courtin et al. (2011, FoF, light
blue). The analysis is for un�agged groups of at least three true and three extracted members. The points in the upper plots have their abscissa slightly shifted
for clarity. The Tinker et al. (2008) lines are usually indistinguishable from those obtained with our �t.

However, withPlanck(royal blue), the galaxy reliability is signif-
icantly less reliable for the high EG mass bin of the distant sample
(right-hand panel of lower-right plot of Fig.9, again using a KS
test) than when the mock cosmology is assumed (green).

Moreover, assumingWMAP9 (magenta) and especially Planck-
2015 (royal blue) cosmologies leads to increasingly positive biases

in group total mass (left-hand panels of upper-right plot) at the high
EG mass end up to 0.15 dex higher (Planck) than with the cosmology
of our mock (green). Indeed, the lower Hubble constants of the
WMAP and especiallyPlanck cosmologies, relative to the value
used in the Millennium-II simulation, hence in our mock, lead to
halo masses that are larger by the inverse ratio of Hubble constants in
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3860 M. Duarte and G. A. Mamon

Figure 9. Effects of the choice of cosmological parameters on the fraction of fragments (top left), the accuracy in the recovered halo mass (top right), and the
CDFs of galaxy completeness and reliability of the groups (bottom) forMAGGIE-M (with 0.2 dex observational errors). The analysis is for un�agged groups of at
least three true and three extracted members. The colour code is green for the Millennium simulation cosmology (� m = 0.25,h = 0.73), magenta forWMAP9
(� m = 0.279,h = 0.70) and royal blue forPlanck(� m = 0.308,h = 0.678).

our AM technique.15 This bias should thus be log(hMSŠII /h WMAP) �
0.02 and log(hMSŠII /h Planck) � 0.03, both independent of mass. The

15 The group luminosities and stellar masses are also affected by the Hubble
constant, but this does not affect the group total masses (halo masses) derived
with AM, since the ranking of the group luminosities or stellar is independent
of the Hubble constant; hence, the �rst-rank group (by luminosity or stellar
mass) will be assigned the highest halo mass, which scales as 1/ h, hence
will be higher.

left-hand panels of the upper-right plots con�rm that the bias is
roughly independent of EG mass16, but is roughly three times greater
than expected.

This general lack of sensitivity to cosmological parameters is ex-
pected, given the low maximal redshift of our subsamples (z = 0.1,

16 We also �nd (not shown) that the bias in group total mass is even more
independent of the TG mass.
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MAGGIE group �nder 3861

see Table1). One expectsMAGGIE to be more sensitive to the choice
of cosmological parameters when applied to deeper galaxy surveys.

5.3.4 Effects of the form for the density of interlopers in PPS

We now probe the sensitivity ofMAGGIE-M to the choice of the
functional forms that enter in the expression of the density of in-
terlopers in PPS,gi(R, v) (see equations 19 and 20), namely the
radial dependence of the normalizationA and standard deviation
 i

of the Gaussian component ofgi , as well as the level of the constant
component,B.

Fig. D1 in Appendix D shows only small effects (note that the
symbols in the upper plots have their abscissa shifted for clarity) on
the performance ofMAGGIE-L andMAGGIE-M (both with observational
errors) on group fragmentation, galaxy completeness and reliability
and group mass accuracy, when switching from equations (21)–
(23), derived by Mamon et al. (2010) on the dark matter particles of
a hydrodynamical cosmological simulation, to equations (24)–(26),
which we �t to the mock that we extracted from the SAM by Guo
et al. (2011).

5.4 Comparison ofMAGGIE to other group Þnders

5.4.1 Other grouping methods

We now compareMAGGIE to other group �nders. We �rst con-
sider the FoF algorithm with the dimensionless linking lengths
of b� = 0.06 andb� = 1.0, which, in Paper I, we had deter-
mined to be optimal for studies of environmental effects on galax-
ies (for the cosmology of the mock we are using here). These
linking lengths are close to the valuesb� = 0.06, b� = 1.08
optimized by Robotham et al. (2011). We consider two imple-
mentations of the FoF, where, for testing purposes, the central
galaxy is the most luminous (‘FoF-L’) or the most massive in stars
(‘FoF-M’).

Yang et al. (2007) provided extensive tests of their group
�nder, but these are dif�cult to compare with ours, in partic-
ular, because (1) their mocks are �ux-limited, so they had to
include uncertain corrections for luminosity incompleteness of
groups in performing their AM, and (2) their mocks do not in-
clude observational errors. We therefore additionally consider a
simple implementation of the Yang et al. (2005, 2007) group
�nder.

Yang et al. (2005, 2007) assigned a galaxy to a group
according to a minimum density in PPS, which they trans-
formed into a number density contrast of galaxies in redshift
space:17

PM (R, �z ) =
H0

c
	 NFW(R)

n
pGauss(�z |R) > B, (33)

wheren is the mean galaxy density at redshiftzgroup, c is the speed of
light, H0 is the present-day Hubble constant,	 NFW(R) is the NFW
surface density pro�le,pGaussis the Gaussian probability distribution
function and�z = z Š zgroup.18 Combining our notation with theirs,

17 Equation (33) comes from writing the number of objects in a
shell (R, R+ dR) and redshift interval (z, z+ �z ) as N(R, �z ) =
2� R 	 NFW(R) pGauss(�z |R), while the mean number of galaxies ex-
pected in the same volume dV = 2� R dR (c/H 0) d�z is N = n dV =
2� (c/H 0) n R dR d�z .
18 Yang et al. (2005, 2007) assume thatpGauss(�z |R) is in fact independent
of R, i.e. that
 LOS is independent ofR.

the total PPS density (what we would callg = gh + gi in MAGGIE)
is

g(R, v) = 	 NFW(R) pGauss(v|R)

= 	 NFW(R)
�

1 + zgroup

c

�
pGauss(�z |R) (34)

=
(1 + zgroup)

H0
n PM (R, �z ), (35)

where the second and third equalities are, respectively, obtained
with equations (7) and (33). Equations (33) and (35) lead to an
expression of the Yang et al. criterion in terms of the PPS density:

g(R, v) > B
1 + zgroup

H0
n. (36)

In our implementation of the Yang et al. algorithm, the probabil-
ities of membership of equation (8) are replaced by

p(R, v) =

�
1 for PM (R, �z ) � B

0 for PM (R, �z ) < B
, (37)

where equation (7) linksv with �z . In Appendix E, we argue
that since we adopt different cosmological parameters (from the
Millennium-II simulation) than Yang et al. did (from their cosmo-
logical simulations), we need to convertB = 10 toB = 29.19 How-
ever, Fig.E1 in Appendix E indicates that the fraction of EGs that
adoptingB = 10 leads to slightly lower group fragmentation, much
higher galaxy completeness, and less dispersed total masses than
with B = 29, but at the expense of much lower galaxy reliability.
We therefore adoptB = 10.

We have implemented the Yang et al. group �nder in this fashion
using AM to obtain halo masses with either the group luminosities
(hereafter Yang-L) or the group stellar masses (hereafter Yang-M),
which we collectively refer to as ‘Yang’. Both of these implemen-
tations are a streamlined version of the Yang et al. (2005, 2007)
group �nder (which also has two �avours according the observable
used for the AM), as a full implementation is beyond the scope of
the present paper.

5.4.2 Fragmentation

Fig. 10 shows that the fraction of FoF-L groups that are sec-
ondary fragments is over 30 per cent for intermediate EG masses
(13 � logMest � 14), while the fraction of FoF-M groups that are
secondary fragments is over 38 per cent at all masses. In compari-
son, the fraction ofMAGGIE and Yang et al. groups that are secondary
fragments is typically less than 20 per cent, on average nearly three
times less than that for FoF-M groups of the same estimated mass.
This very high contamination of FoF groups by secondary frag-
ments had already been noticed in Paper I, where the fractions of
groups that are secondary fragments were found to be 49, 23 and
46 per cent for the three bins of estimated mass in the nearby sub-
sample and 28, 29 and 26 per cent for the corresponding mass bins
in the distant subsample. The higher levels of fragmentation found
in the present work are caused by the inclusion of observational
errors in our analysis, which become more important for stellar
masses (0.2 dex) than for luminosities (0.08 dex).

The fraction of secondary fragments is quite similar between
MAGGIE-L and Yang-L on one hand, and betweenMAGGIE-M and

19 In Appendix E, we actually obtainB = 6.1 for the cosmology adopted by
Yang et al. (instead ofB = 10), which translates toB = 20 in our cosmology.
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3862 M. Duarte and G. A. Mamon

Figure 10. Fraction of extracted groups withMAGGIE-M, MAGGIE-L, FoF and
our slimmed-down version of Yang et al. that are secondary fragments, as
a function of their estimated group mass, for un�agged groups of at least
three members (for both the extracted groups and true groups), for both the
nearby (top) and distant (bottom) subsamples. The line colours are green
for MAGGIE-M, red for MAGGIE-L, blue for FoF (with dashed and solid lines
for FoF-L and FoF-M, respectively), brown for Yang-L and dark green for
Yang-M (the latter two with thresholdB = 10). All group �nders were run
on a catalogue with errors of 0.2 dex on stellar masses. The error bars are
computed with the Wilson (1927) formula. The points have their abscissa
slightly shifted for clarity.

Yang-M on the other. On average,MAGGIE performs slightly bet-
ter than Yang by a few per cent in the absolute fraction of secondary
fragments (4 and 2.5 per cent for the L and M �avours, respectively),
in the range 12.5 < logMest/ M� < 14, which is statistically sig-
ni�cant in the distant subsample (bottom panel of Fig.10). These
observational errors can cause another galaxy to become the most
luminous or massive, thus changing the linking between EGs and
TGs, and hence affecting the performance of FoF.

The fraction of secondary fragments in Fig.10 shows that the
FoF EG masses are limited to logMest/ M� = 14.4. This is the
consequence of the very high level of fragmentation at high TG
masses, as illustrated in Fig.11. This high level of fragmentation of
FoF groups at high TG mass was also seen in �gs 4 and 6 of Paper
I. While MAGGIE and Yang see their fraction of secondary fragments
increase fairly moderately from 0 to 40 to 60 per cent (depending on
the subsample) from low to high TG masses, the FoF groups show
much higher fractions of secondary fragments, increasing to over
80 per cent at high TG masses.

Figure 11. Same as Fig.10but as a function of true group mass.

In the lower portion20 of the right-hand panel of their �g. 1,
Doḿ�nguez Romero et al. (2012) found that the mean number of
secondary fragments was zero with less than 0.05 errors at all TG
masses. In contrast,MAGGIE and Yang lead to much higher mean
numbers of fragments, while FoF is even worse.

However, Doḿ�nguez Romero et al. (2012) restricted their sec-
ondary fragments to those accounting for at least 10 per cent of the
TG mass, and de�ned their primary fragments as the most mas-
sive, while our de�nition of primary is the fragment containing the
central galaxy.

Fig. 15, further down, shows that a small minority of our sec-
ondary fragments are more massive than the TG, so to make a clean
comparison with Doḿ�nguez Romero et al. (2012), we show in
Fig. 12 the mean number of secondary fragments with mass be-
tween 0.1 and 1 times the TG mass. Fragmentation worsens with
increasing TG mass, as we had found in Paper I for FoF. But Fig.12
also indicates that, using the measure of group fragmentation of
Doḿ�nguez Romero et al. (2012), MAGGIE, Yang, and FoF are un-
able to match the zero mean number of secondary fragments per
TG that Doḿ�nguez Romero et al. (2012) found. This discrepancy
would be even stronger had we used errors on the means instead
of standard deviations for the points of Dom�́nguez Romero et al.
(2012).

20 The two panels of �g. 1 of Doḿ�nguez Romero et al. (2012) are confusing
as they each mix two quantities.

MNRAS 453,3848–3874 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/453/4/3848/2593658 by C
N

R
S

 - IS
T

O
 user on 25 A

pril 2022



MAGGIE group �nder 3863

Figure 12. Mean number of secondary fragments (estimated mass between
0.1 and 1 times the true group mass) per true group as a function of true group
mass for FoF (blue),MAGGIE-M (green),MAGGIE-L (red), our implementation
of Yang et al. (brownB = 10) and for Doḿ�nguez Romero et al. (2012,
black). The upper and lower panels correspond to the nearby and distant
subsamples, respectively, with the same Dom�́nguez Romero et al. (2012)
values in both. All catalogues were given errors of 0.2 dex in stellar mass,
exceptMAGGIE-L, which performed abundance matching with luminosities
that were given 0.08 dex errors, and Dom�́nguez Romero et al. (2012), which
did not consider observational errors (and were measured on a �ux-limited
sample). The error bars indicate errors on means for all group �nders except
Doḿ�nguez Romero et al. (2012), for which standard deviations are used.
The points have their abscissa slightly shifted for clarity.

5.4.3 Galaxy completeness

The left-hand panels of Figs13 and14 show that the galaxy com-
pleteness ofMAGGIE is considerably higher than that for FoF and
Yang, regardless of the �avour (L or M). For example, according
to Fig. 14, the fractions of EGs in the distant subsample (which
has better statistics) with better than 80 per cent incompleteness are
91, 97 and 97 per cent forMAGGIE-M and even higher forMAGGIE-L,
compared to 80, 73 and 67 per cent for Yang and 77, 63 and only
9 per cent for FoF. Similar values are found for the nearby subsam-
ple (Fig.13). The superior galaxy completeness ofMAGGIE relative
to Yang is statistically signi�cant (with the KS test) in all three EG
mass bins and in both subsamples. Similarly, Yang is signi�cantly
more complete than FoF in all EG mass bins and in both subsam-
ples, except for the low EG mass bin of the nearby subsample, for
which FoF is signi�cantly more complete than Yang.

The decrease of galaxy completeness with increasing group mass
was already noticed by Yang et al. (2007, upper panels of their
�g. 2), although this decrease in completeness with mass is not as

Figure 13. CDFs of the galaxy membership completeness (left, equa-
tion 32) and reliability (right, equation 30), for groups extracted withMAGGIE,
FOF and Yang for the nearby subsample [un�agged galaxies in groups of at
least three members (for both the estimated and true groups) that are not
secondary fragments]. Both completeness and reliability are relative to the
virial sphere of the true groups, and are derived in bins of estimated group
masses. Same colours and line types as in Fig.10.

Figure 14. Same as Fig.13, but for the distant sample. In the lowest mass
bin, the completeness ofMAGGIE-L is virtually the same as that ofMAGGIE-M

(which hides the former).
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3864 M. Duarte and G. A. Mamon

severe in their study, which considers bins of TG mass rather than
EG mass (and is also for a �ux-limited sample).

The left-hand panel of �g. 2 of Doḿ�nguez Romero et al. (2012)
indicates median galaxy completeness of 96, 91 and 92 per cent for
the three mass bins we used here (but for TG masses). In con-
trast, according to Figs13 and 14, we arrive at median galaxy
completeness of 100 per cent forMAGGIE in all mass bins and in
both subsamples, while our implementation of the Yang algorithm
leads to 100 per cent galaxy completeness in the low-mass bin and
85 per cent in the high-mass bin (somewhat worse in bins of true
mass). A more direct test involves a comparison to the �ux-limited
mock analysed by Yang et al. (2007), whose upper-left panel of �g.
2 indicates 100 per cent completeness in all mass bins.

The FoF algorithm produces increasingly incomplete galaxy ex-
tractions for increasing estimated group masses (see above). The
lower galaxy completeness of FoF at high estimated group masses
is a consequence of the very high fragmentation of high-mass real-
space groups (see Fig.11). If a TG has non-negligible secondary
fragments, then its primary fragment will tend to be incomplete.
Consider, for example, a TG with �ve galaxies that is fragmented
into an EG of three galaxies (containing the TG’s central) and an-
other EG of two galaxies; the EG of three galaxies will have a
completeness of 3/5= 0.6, a reliability of unity, and will not be
counted as a secondary fragment, while the EG of two galaxies will
be considered a secondary fragment, but will not have completeness
and reliability measured.

Finally, we compare the completeness levels to those that Muñoz-
Cuartas & M̈uller (2012) derived from the analysis of the groups
of at least two members that they extracted with their FoF-like
group �nder on a doubly complete subsample withMr < Š19
(matching our nearby doubly complete subsample). According to
the bottom panel of their �g. 13, the fraction of their EGs with over
90 per cent completeness is 82 per cent. In contrast, in the nearby
subsample, our Fig.2 indicates that the fractions of EGs with
90 per cent galaxy completeness are higher in all mass bins: 85,
94 and 100 per cent forMAGGIE-L and 87, 92 and 96 per cent for
MAGGIE-M.

5.4.4 Galaxy reliability

The right-hand panels of Figs13 and14 indicate that the rankings
of the group �nders in terms of galaxy reliability depend on EG
mass. For the distant subsample (which has better statistics), at low
EG mass (upper-right panel of Fig.14), the fraction of groups with
100 per cent reliability is higher with Yang (90 per cent) than with
MAGGIE (80 per cent) or FoF (70 per cent). At 80 per cent reliability,
MAGGIE and Yang have similar reliabilities (90 per cent). The overall
differences in the CDFs, as quanti�ed by the KS test, indicate that
overall Yang-M is signi�cantly more reliable thanMAGGIE-M, while
Yang-L andMAGGIE-L cannot be distinguished. In turn,MAGGIE is
signi�cantly more reliable than FoF.

At intermediate EG mass (middle-right panel of Fig.14), all three
group �nders lead to similar fractions of roughly three-quarters of
groups with over 80 per cent reliability (80 per cent for Yang-M).
Yang is signi�cantly more reliable than eitherMAGGIE or FoF, while
MAGGIE is signi�cantly more reliable than FoF (although FoF has a
marginally signi�cantly higher fraction of groups with 100 per cent
reliability).

At high EG mass (lower-right panel of Fig.14), there is a clear
hierarchy, where FoF is signi�cantly more reliable than Yang,

which in turn is signi�cantly more reliable thanMAGGIE. The frac-
tion of groups with 80 per cent reliability is roughly 80 per cent
for FoF, roughly two-thirds for Yang and slightly more than half
for MAGGIE.

Our probabilistic method of measuringMAGGIE’s galaxy relia-
bility (equation 30) leads to values that are rarely low or near
100 per cent. This can be clearly seen in the intermediate-mass EG
groups (middle-right panel of Fig.14), where forMAGGIE relative
to FoF or Yang, the decrease of the CDF is slower for reliabilities
below 80 per cent and faster at higher reliabilities.

5.4.5 Mass accuracy

Fig.15shows how the estimated total masses (of the EGs) compare
with the total masses (within the virial sphere) of the TGs (for clarity,
we hereafter drop the term ‘total’ before ‘mass’ in this subsection),
both for the primary (large coloured circles) and secondary (black
crosses) fragments.

The FoF method, with the virial theorem to estimate masses
(with the formula from Heisler, Tremaine & Bahcall1985), leads
to frequent strong underestimation of the mass for the primary
fragments of low-mass TGs. This is analogous to what is found by
most group mass estimation methods when the group centre and
its velocity are provided [see Old et al. (2014), although Old et al.
(2015) �nd that a Bayesian �tted slope of the estimated versus true
mass relation is typically unity]. Fig.15 shows thatMAGGIE and
Yang do not underestimate the EG masses of primary fragments as
frequently as does the FoF algorithm. This better behaviour is likely
to be the result of the use of AM to derive group masses.

As expected, in secondary fragments, the estimated mass is usu-
ally lower than the TG mass (often by several dex). However, in
some secondary fragments, the estimated mass is higher than the
TG mass. This can occur when the group luminosity or stellar mass
is higher in the group with the lower central luminosity or stel-
lar mass (which is how secondary fragments are de�ned). Fig.15
also shows that the trend of estimated versus true mass for the sec-
ondary fragments has a shallower slope than unity in contrast to the
analogous trend for primary fragments.

The left-hand panels of Figs15 and 16 show that the virial-
theorem masses of FoF EGs are biased low by a factor as great
as 10 at the lowest estimated masses and by over 0.15 dex at high
estimated masses. Similar trends of strong mass underestimation
with FoF were found in Paper I for low-richness EGs. The mass
biases ofMAGGIE and Yang vary in a similar way as a function of EG
mass as for FoF, except that the biases are much lower (the mass
ratio is much closer to unity): while the FoF mass bias is greater
than 15 per cent at all EG masses, the mass biases ofMAGGIE and
Yang are better than 15 per cent for logMest/ M� > 13.

Since bias can, in principle, be corrected for, it is more important
to consider the scatter in the mass estimation. The right-hand panels
of Fig. 16 indicate that, at low EG masses, FoF EGs have much
greater mass dispersion than theirMAGGIE and Yang counterparts. For
example, at logMest/ M� � 12.7, the FoF mass scatter is 0.1 dex
worse than that ofMAGGIE, with Yang in between (nearby subsample)
or as good asMAGGIE (distant subsample).

At intermediate EG masses,MAGGIE remains the group �nder
with the lowest scatter in group masses (roughly 0.24 and 0.26
dex in the nearby and distant subsamples, respectively), with Yang
slightly worse (0.25 dex and 0.30 dex scatter, respectively), and FoF
slightly worse than Yang in the nearby subsample (0.28 dex scatter)
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MAGGIE group �nder 3865

Figure 15. Estimated mass versus true mass for the un�agged non-secondary (�lled coloured circles) and secondary (black crosses) EGs with at least three
members (for both the estimated and true groups) for six group �nders (from left to right): FoF-L, FoF-M, Yang-L, Yang-M (both withB = 10), MAGGIE-L

andMAGGIE-M. The diagonal lines indicate perfect mass recovery. There are roughly as manyMAGGIE groups as there are FoF groups, but the former occupy
identical positions in the plots due to the replications of the simulation boxes causing identical stellar masses, hence identical group masses after the abundance
matching used to infer group masses.

Figure 16. Median bias and scatter (using 16th and 84th percentiles) of EG
total mass within the virial sphere, for groups extracted withMAGGIE, FOF

and our implementation of Yang et al. The top and bottom panels are for
nearby and distant subsamples, respectively (for un�agged primary groups
of at least three true and three extracted members). The error bars for the
bias and scatter are, respectively,
/

	
N and
 / 2 [2/ (N Š 1) + / N]1/ 2,

where is the kurtosis excess. Same colours as in Fig.10.

and much worse in the distant subsample (0.38 dex scatter). Given
the errors in the dispersions, these trends are statistically signi�cant.

At high EG masses, the hierarchy between group �nders is more
dif�cult to appraise. The factor of 2 typical underestimate of group
masses with FoF prevents high EG masses with FoF, which explains
why there are no points for FoF beyond logMest/ M� = 14.4 in
Fig. 16. At this EG mass, FoF-M produces lower dispersion (0.06
and 0.12 dex for the nearby and distant subsamples, respectively),
while FoF-L is not as accurate (0.09 and 0.24 for the two subsam-
ples, respectively). At this EG mass, the corresponding dispersions
on EG masses are 0.12, 0.13, 0.17 and 0.19 forMAGGIE-L, Yang-L,
MAGGIE-M and Yang-M for the nearby subsample, and 0.16, 0.16,

0.18 and 0.22 for the distant subsample (in the same order of group
�nders). Averaged over the full bin of high EG masses,MAGGIE and
Yang are comparable in the nearby subsample, whileMAGGIE is more
accurate than Yang by 0.04 dex in the distant subsample.

The scatter in group total mass of the original Yang et al. algo-
rithm was shown in �g. 7 of Yang et al. (2007). Considering the
case where no correction for luminosity incompleteness is required
(their panel c), one �nds that the scatter divided by

	
2 is
 Q � 0.23

for group estimated log masses in the range 12–14.4 (solar units),
leading to a scatter of

	
2 × 0.23= 0.33.21

The dispersion in group mass found with our implementation
of Yang on our doubly complete subsamples (with observational
errors) is thus much lower, and diminishes with increasing EG
mass from 0.3 to 0.1 dex (right-hand panels of Fig.16), contrary
to the situation with the �ux-limited sample (without observational
errors) analysed by Yang et al. (2007).

5.4.6 Accuracy of group luminosity and stellar mass

Figs17and18, respectively, show the accuracy on EG luminosities
and stellar masses. The left-hand panels of both �gures show that,
at low EG mass, FoF and Yang have zero median bias of luminosity
and stellar mass, whileMAGGIE is biased low (always less than 0.05
dex). The median bias of zero for FoF and Yang is expected since the
reliability of the primary EGs in the low EG mass bin is 100 per cent
for all group �nders. The negative median bias ofMAGGIE at low
EG mass must therefore be linked to its probabilistic method of
measuring luminosity (equation 27) and stellar mass (equation 28).

At intermediate EG mass, the biases in luminosity and stellar
mass with Yang-M remain at zero, those with Yang-L are within

21 We do not understand the factor of
	

2 in equation 14 of Yang et al. (2007),
since the halo masses to which the group masses are compared are highly
accurate as they are derived by summing over 1000 simulation particles,
leading to 0.014 dex mass scatter from Poisson shot noise.
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3866 M. Duarte and G. A. Mamon

Figure 17. Same as Fig.16, but for group luminosity.

Figure 18. Same as Fig.16, but for group stellar mass.

0.01 dex of zero, those withMAGGIE increase to typically 0.03 dex
from zero, while those with FoF decrease to reachŠ0.07(� Š 0.10)
dex at logMest/ M� = 14.0 for the distant (nearby) subsample.

At high EG mass, Yang andMAGGIE have comparable biases in
luminosity and stellar mass, typically within 0.03 dex from zero
(except Yang-M at the highest EG mass bin for stellar masses,
which is biased low by typically 0.06 dex). On the other hand, the
group luminosities and stellar masses are biased low by FoF by
typically Š0.08 dex for FoF-M and as much or worse thanŠ0.10
dex for FoF-L (all with fairly large uncertainties).

The FoF, Yang andMAGGIE group �nders all lead to comparable
inef�ciencies in EG luminosity or stellar mass in the low EG mass
bin of the nearby subsample, 0.04 dex forMAGGIE, 0.045 dex for
FoF and 0.05 dex for Yang. In the distant subsample, while FoF re-
mains at 0.05 (luminosities) or 0.04 (stellar masses) dex inef�ciency,
MAGGIE has lower dispersion of 0.03 dex, while Yang reaches even
lower dispersions at the lowest EG masses.

At intermediate EG mass, EGs extracted with FoF have the high-
est dispersion (typically 0.09 dex), whileMAGGIE EGs have the low-
est dispersion in luminosity and stellar mass (typically 0.05 dex),
and Yang EGs are in between. However,MAGGIE-L and Yang-L (to
a lesser extent) have a spike in dispersion in luminosity and stellar
mass at logMest/ M� = 14.0 in the nearby subsample.

At high EG masses (logMest/ M� > 14.0), FoF groups only
reach logMest/ M� > 14.4. At that EG mass, FoF andMAGGIE-L

groups have the lowest dispersions in luminosity and stellar mass in

Figure 19. Group richness versus total mass. Top three panels: estimated
quantities for un�agged groups extracted withMAGGIE-L (top), Yang-L
(middle) and FoF-L (bottom), all for the distant subsample. The primary
fragments are shown in colour (red forMAGGIE-L, brown for Yang-L and
blue for FoF-L), while the secondary fragments are shown in black. Bottom
panel: true richness (galaxies more luminous thanMr = Š 20.5, which cor-
responds to the luminosity limit of the distant subsample) versus total mass
of real-space groups (dark grey). In all panels, the thick green line shows
N = M/ 1013 M� , simply to guide the eye.

the nearby subsample (typically 0.04 dex only), whereasMAGGIE-M

and Yang-M have the highest dispersions (0.06 dex in luminosity
and 0.08 dex in stellar mass), while Yang-L is in between. In the
distant subsample at the same EG mass, all group �nders lead to the
same dispersions in luminosity (0.09 dex) and stellar mass (0.075
dex), except thatMAGGIE-L has signi�cantly lower dispersions (0.05
dex), while FoF-L has very high dispersions (over 0.16 dex). At the
highest EG mass, where logMest/ M� = 14.8, MAGGIE-M and Yang-
M lead to the lowest dispersions in the nearby subsample (0.03
dex only), whileMAGGIE-L and Yang-L are marginally less ef�cient
(0.075 dex). In the distant subsample at this very high EG mass,
both �avours ofMAGGIE lead to the lowest dispersions in luminosity
and stellar mass (0.10 dex in luminosity and 0.08 dex in stellar
mass), while Yang-M is marginally worse (0.12 dex in luminosity
and 0.10 dex in stellar mass).

5.4.7 Richness versus total mass

We complete the comparison ofMAGGIE with Yang and FoF by
comparing the richness–mass relations of the three group �nders.
Fig. 19 shows the estimated richness versus the estimated mass
for MAGGIE-L, Yang-L and FoF-L, as well as the true richness ver-
sus true mass (where the richness is measured for galaxies more
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luminous thanMr = Š 20.5, conforming to the luminosity limit
of the distant subsample).22 The richness–mass relations ofMAG-
GIE and Yang resemble one another, although the estimated galaxy
numbers are integers for Yang (and FoF), while they are �oating
numbers forMAGGIE, making the �gure forMAGGIE more continuous.
In particular, the mean trend and scatter are very similar. On the
other hand, the poor mass accuracy of FoF causes scatter and the
negative bias of mass shows here as higher richness for given mass.
The richness–mass relations are very similar for the nearby sample
and for the M �avour of the three group �nders. One also notices
in Fig. 19 that the overall trend of the estimated richness–mass re-
lations match fairly well that of the true relation, with Yang, and to
a lesser extentMAGGIE showing a slight negative bias in richness at
given mass relative to the real-space trend.

5.4.8 Synthesis

A comparison ofMAGGIE with other group �nders, performed on the
same mock catalogue, with the same observational errors, does not
point to a single superior group �nder among the six tested group
�nders (three algorithms:MAGGIE, FoF and Yang; two de�nitions of
central galaxy: most luminous or most massive in stars).

Since most of our tests involve the primary fragments of the
EGs, group fragmentation appears to be the most serious issue.
Our tests indicate thatMAGGIE has the least group fragmentation,
with Yang a close second, while FoF suffers tremendously from
group fragmentation. This hierarchy is repeated when we consider
galaxy completeness of primary groups, which is related to group
fragmentation, since groups with important secondary fragments
will necessarily have lower galaxy completeness.

Galaxy reliability is generally the highest in the Yang group
�nder, with MAGGIE second and FoF last, except at high EG masses,
where FoF is most reliable whileMAGGIE is the least.

Group total mass is severely underestimated by the virial-theorem
mass of the FoF group �nder. This, again, is a consequence of
the heavy fragmentation of FoF groups.MAGGIE and Yang perform
much better, with a slight advantage forMAGGIE. The ranking of
the group �nders concerning the dispersion in group total mass
depends on the interval of EG mass considered. At low EG mass,
FoF performs poorly and Yang performs slightly better thanMAGGIE.
At intermediate EG mass,MAGGIE performs slightly better than Yang
(starting at logMest/ M� = 12.5) and considerably better than FoF.
At high EG mass,MAGGIE performs slightly better than Yang, with
FoF even better, but limited to half the high EG mass bin, given its
negative bias.

Group luminosity and stellar mass are measured without bias
with FoF and Yang for low EG mass groups, whileMAGGIE is slightly
biased low (by typically less than 0.05 dex). At intermediate EG
mass, Yang EG luminosities and stellar masses remain unbiased,
FoF is biased low andMAGGIE is only slightly biased (in either
direction). At high EG mass,MAGGIE is the least biased and FoF the
most.

Finally, the richness–mass relations ofMAGGIE and Yang are much
less scattered than that of FoF, althoughMAGGIE and Yang are biased
low in richness (at given mass), by 0.2 dex (MAGGIE) and 0.3 dex
(Yang), while FoF is not.

22 The lower number of groups in the real space panel is a consequence of
the smaller volume of the Millennium-II simulation box in comparison to
that of the distant doubly complete subsample.

In summary, relative to FoF,MAGGIE suffers much less from frag-
mentation, is much more complete, more reliable, except at high
EG masses, with much less biased group masses, considerably less
dispersed group masses, except for cluster-mass EGs, and produces
more accurate group luminosities and stellar masses, except for
low-mass EGs, where the median bias, although very small, is not
zero as in FoF.

Relative to our implementation of Yang,MAGGIE is slightly less
affected by group fragmentation, considerably more complete but
less reliable in its galaxy membership, slightly more accurate in
group total masses, slightly more biased but slightly less dispersed
in group luminosities and stellar masses.

These tests permit us to assess how the characteristics of the
group �nder in�uence its performance in reproducing the real-
space groups. FoF is a group �nder that makes no assumptions
on the physics of groups and of projection effects (once its linking
lengths have been optimized). The group �nder by Yang et al. (2005,
2007) introduced priors on the galaxy distribution in PPS as well as
AM to determine EG masses.MAGGIE improved the adopted priors
on the distribution of galaxies in PPS and adopted a probabilis-
tic approach for the membership of galaxies in groups, following
Doḿ�nguez Romero et al. (2012), but keeping the memberships
probabilistic instead of �nishing with hard group assignments as
done by Doḿ�nguez Romero et al. (2012). Our tests indicate that,
overall, there are fewer differences betweenMAGGIE and Yang, than
between either and FoF. This suggests that the probabilistic mem-
bership ofMAGGIE and its more re�ned priors on the distribution of
galaxies in PPS play a smaller role than the use of priors, as well as
the AM used for measuring group masses.

6 CONCLUSIONS

We have introduced a new prior- and halo-based, fully probabilistic
group �nder calledMAGGIE, where the total group/cluster masses are
obtained by AM between the assumed known HMF and the derived
group luminosity (MAGGIE-L) or stellar mass (MAGGIE-M) function.
This grouping algorithm is similar to that of Yang et al. (2005,2007),
but uses a more re�ned and probabilistic membership criterion,
and is meant to be applied to subsamples that are complete in
both luminosity and distance, to avoid the unavoidable luminosity
incompleteness in �ux-limited samples, which are very dif�cult to
accurately correct for.

We extensively testedMAGGIE as well as our implementations of
the FoF group �nder with the optimal linking lengths derived by
Duarte & Mamon (2014) as well as a simpli�ed version of the group
�nder of Yang et al. (2005, 2007). For our tests, we used a mock
SDSS Legacy spectroscopic survey derived from the Guo et al.
(2011) SAM, itself run on the Millennium-II cosmological dark
matter simulation. We also compared the performances ofMAGGIE

with the similar published tests by Yang et al. (2007), Doḿ�nguez
Romero et al. (2012) and Mũnoz-Cuartas & M̈uller (2012) of their
respective group �nders, in all instances where this could be done.

We �nd that both �avours ofMAGGIE perform better than FoF
in all our tests (fragmentation, galaxy completeness and reliability,
accuracy in group total mass, luminosity and stellar mass), except
for cluster-mass EGs, whereMAGGIE produces less reliable galaxy
members and more dispersed total masses. The superiority ofMAGGIE

relative to FoF appears to be linked with the very high fraction of
secondary fragments that FoF produces.

The performance ofMAGGIE is much closer to that of our sim-
ple implementation of the Yang et al. group �nder:MAGGIE per-
forms much better on galaxy completeness, slightly better on group
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3868 M. Duarte and G. A. Mamon

fragmentation, and dispersion of group total masses, luminosities
and stellar masses, but slightly worse on bias in group luminosities
and stellar masses, and also worse on galaxy reliabilities.

Given its use of realistic priors, AM and probabilistic galaxy
membership,MAGGIE-M is an ideal grouping algorithm to be applied
on large galaxy spectroscopic surveys such as the SDSS and the
GAMA, for several applications: environmental effects on galaxy
properties such as SSFR, as well as mass/orbit modelling of groups
and clusters (possibly stacking the groups), for whichMAGGIE will
lead to more realistic results compared to the Yang et al. group
�nder, given the more realistic priors of the former. Moreover,
MAGGIE should in principle be able to work for much deeper spectro-
scopic surveys, possibly including surveys based upon photometric
redshifts (sinceMAGGIE naturally handles redshift errors), with ap-
plications to the evolution of environmental effects, dark matter
properties (normalization, concentration) and velocity anisotropy
(orbital shapes).

In particular,MAGGIE should be very useful for dark energy sur-
veys such as the Dark Energy Survey,Euclid and theWide-Field
Infrared Survey Telescope(yet to be approved) that will constrain
dark energy parameters not only with cosmic shear and baryonic
acoustic oscillations, but also by measuring the mass function and
clustering of galaxy clusters. However, the AM method – used to
determine group masses – involves an assumption on the HMF,
which is cosmology dependent. This implies that the current im-
plementation ofMAGGIE cannot be used as a cosmographic tool to
determine cosmological parameters from the derived HMF. Nev-
erthelessMAGGIE should be an excellent tool to optimally detect
and measure groups and clusters in dark energy surveys, if a given
cosmology is assumed. Moreover, by replacing AM by other tech-
niques,MAGGIE could be adapted into a powerful cosmographic tool
for such surveys.
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MNRAS, 452, 944
Berlind A. A. et al., 2006, ApJS, 167, 1
Blaizot J., Wadadekar Y., Guiderdoni B., Colombi S. T., Bertin E., Bouchet

F. R., Devriendt J. E. G., Hatton S., 2005, MNRAS, 360, 159
Borgani S. et al., 2004, MNRAS, 348, 1078
Boylan-Kolchin M., Springel V., White S. D. M., Jenkins A., Lemson G.,

2009, MNRAS, 398, 1150
Brinchmann J., Charlot S., Heckman T. M., Kauffmann G., Tremonti C.,

White S. D. M., 2004, preprint (astro-ph/0406220)
Bruzual G., Charlot S., 2003, MNRAS, 344, 1000
Cattaneo A., Mamon G. A., Warnick K., Knebe A., 2011, A&A, 533, A5
Chen Y.-M. et al., 2012, MNRAS, 421, 314
Chilingarian I. V., Melchior A.-L., Zolotukhin I. Y., 2010, MNRAS, 405,

1409
Cole S., Lacey C., 1996, MNRAS, 281, 716
Colless M. et al., 2001, MNRAS, 328, 1039
Conroy C., Gunn J. E., White M., 2009, ApJ, 699, 486
Courtin J., Rasera Y., Alimi J.-M., Corasaniti P.-S., Boucher V., Füzfa A.,
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Macciò A. V., Dutton A. A., van den Bosch F. C., 2008, MNRAS, 391,

1940
Mamon G. A., 1992, ApJ, 401, L3
Mamon G. A., �okas E. L., 2005, MNRAS, 363, 705
Mamon G. A., Biviano A., Murante G., 2010, A&A, 520, A30
Mamon G. A., Biviano A., Boúe G., 2013, MNRAS, 429, 3079
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APPENDIX A: RADIAL VELOCITY DISPERSION FOR NFW MODEL WITH ML VELOCITY
ANISOTROPY

The expression for the radial velocity dispersion can be obtained from the Jeans equation (14), yielding (van der Marel1994; Mamon &
�okas 2005)


 2
r (r ) =

G
� (r )

� �

r
exp

�
2

� s

r
� (t)

dt
t

�
� (s)

M (s)
s2

ds, (A1)

where the term in brackets is expressed in analytical form for simple anisotropy models in an appendix of Mamon et al. (2013).23 With the
anisotropy model of equation (18), the exponential in equation (A1) becomes (s + r200/ c)/ (r + r200/ c). The solution of equation (A1) for a
pure NFW model (equation 16) with the Mamon & �okas (2005) velocity anisotropy (equation 18) is then


 2
r (r )

GM200/r 200
=

c/ [6 y (y + b)]
ln(c + 1) Š c/ (c + 1)

×
�

6 (3b Š 2)y2(y + 1)2Li 2(Šy) + 6b y4 cothŠ1(2y + 1) Š 3b y2(2y + 1) lny

+ 3
�
2y (y + 1) (2y + 1) Š b

�
4y3 + 8y2 + 2y Š 1

	�
ln(y + 1)

+ (3b Š 2)y2(y + 1)2
�
� 2 + 3 ln2(y + 1)

�
+ 3y

�
(4 Š 7b) y2 + (5 Š 9b) y Š b

��
, (A2)

wherey = c r/ r200, b = c r� / r200, while Li2 is the dilogarithm or Spence function:

Li 2(x) = Š
� x

0
ln(1 Š u)

du
u

=
��

i = 1

xi

i 2
. (A3)

For our choice ofr� = rŠ2, i.e.b = 1, equation (A2) simpli�es to


 2
r (r )

GM200/r 200
=

c/ [6 y (y + 1)]
ln(c + 1) Š c/ (c + 1)

×
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. (A4)

In equations (A2) and (A4), the dilogarithm of negative argument, Li2( Š x), can be approximated using series expansions aroundx = 0,
x = 1 andx � � , yielding

Li2(Šx) �



����������
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10�
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xŠi
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, (A5)

23 Even if the halo component is limited to the virial radiusr200, the upper integration limit in equation (A1) must be in�nity.
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Table A1. Coef�cients for the approximation of the dilogarithm
(equation A5).

i 1 2 3 4 5 6 7 8 9 10

ai 0 1 5 1 131 661 1327 1163 148 969 447 047
bi 1 4 24 6 960 5760 13 440 13 440 1935 360 6451 200

Figure B1. Parameters of the density of interlopers in projected phase space versus projected radius, taken from thez = 0 galaxies of the semi-analytical
model of Guo et al. (2011). The values are from maximum likelihood �ts, assuming that the scale radius is 1/6th the virial radius, and the error bars represent
the uncertainties on these values. The curves are the best �ts given by equations (B1), (B2), and (B3).

where the coef�cientsai andbi given in TableA1. Equation (A5) has relative accuracy better than 2.5× 10Š6 for all x. With the approximation
of equation (A5) for Li2( Š x), the radial velocity dispersion
 r in equation (A4) has relative accuracy better than 10Š4 for all r.

APPENDIX B: PPS DENSITY OF INTERLOPING GALAXIES

We estimate the PPS density of interloping galaxies following Mamon et al. (2010), this time using the galaxies from thez = 0 output of the
SAM of Guo et al. (2011) instead of the dark matter particles of the hydrodynamical cosmological simulation of Borgani et al. (2004).

Fig. B1 shows the variations with projected radius of the interloper PPS density parametersA, 
 i andB (de�ned in equation 20). The
best-�tting parameters are

log10 A(X) = Š 1.092Š 0.1922X 3 + 0.1829X 6, (B1)


 i (X ) = 0.6695Š 0.1004X 2, (B2)

B(X) = 0.0067, (B3)

whereX = R/ r200.

APPENDIX C: SDSS ERRORS ON GALAXY LUMINOSITY AND STELLAR MASS

Despite its very high quality, the SDSS survey is not immune to errors on galaxy stellar mass and luminosity. We estimate these errors below.

C1 SDSS errors on stellar mass

The SDSS-DR10 data base contains eight measures of stellar mass for the primary spectroscopic sample.
Fig. C1 compares these eight different measures. Apart from those from the Wisconsin group, the models generally agree to better

than 0.3 dex, i.e. the errors on individual masses are of the order of 0.3/
	

2 = 0.2 dex. In particular, the MPA/JHU masses agree with
all others to typically better than 0.2 dex for
 and 0.3 dex for the rms (

�
µ 2 + 
 2). We therefore adopt an error of 0.2 dex on stellar

mass.
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C2 SDSS errors on galaxy luminosity

Writing ther-band absolute magnitude of a galaxy as

Mr = r Š µ(z) Š kr (z) Š AGal
r Š Aint

r , (C1)

whereµ is the distance modulus, whiler, kr , AGal
r andAint

r are, respectively, the apparent magnitude,k-correction, Galactic extinction and
internal extinction, all in ther band. The photometric errors are expected to be less than 0.05 mag, i.e. less than 0.02 dex on luminosity. The
error caused by the uncertain distance can be written as the quadratic sum of the error on redshift (as a distance indicator) and the neglect of

Figure C1. Comparison of the eight measures of log stellar mass (solar units) in the SDSS-DR10 data base. The biases (µ ) and bias-corrected differences (
 ) are
highlighted. These measures are from the following models. FSPSGranEarlyDust, FSPSGranEarlyNoDust, FSPSGranWideDust and FSPSGranWideNoDust:
logMass , respectively, fromstellarMassFSPSGranEarlyDust , stellarMassFSPSGranEarlyNoDust , stellarMassFSPSGranWide-
Dust andstellarMassFSPSGranWideNoDust (Conroy et al.2009); PassivePort and StarFormingPort:logMass , respectively, fromstellarMass-
PassivePort andstellarMassStarFormingPort (Maraston et al.2009); PCAWiscM11 and PCAWiscBC03:mstellar_median , respectively,
from stellarMassPCAWiscM11 and stellarMassPCAWiscBC03 (Chen et al.2012), respectively, using the Maraston & Strömb̈ack (2011) and
Bruzual & Charlot (2003) stellar population synthesis models; MPAJHU:lgm_tot_p50 from GalSpecExtra (Brinchmann et al.2004) using the Bruzual
& Charlot (2003) stellar population synthesis model.
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3872 M. Duarte and G. A. Mamon

group peculiar velocities relative to the observer. We do not consider here the galaxy peculiar velocities within a group, as the group �nders
handle this,

� (log10 L r ) =
1

ln 10

� �
� (v)
cz

� 2

+
�


 (vp)
cz

� 2
� 1/ 2

� 0.056 dex

for � (v) � 30 km sŠ1, 
 (vp) � 200 km sŠ1 andz > 0.01 (where the assumption of zero difference in peculiar velocity between the galaxy and
the observer dominates the error). According to �g. 2 of Chilingarian, Melchior & Zolotukhin (2010), the intrinsic scatter in thek-correction
is of the order of 0.015 mag, i.e. 0.006 dex. Admittedly, thek-correction of Chilingarian et al. (2010) suffers from some catastrophic errors,
but since 99.9 per cent of the galaxies withz < 0.12 havek-corrections betweenŠ0.15 and 0.25, it suf�ces to impose these limits tokr. Finally,
since SDSS spans high galactic latitudes, the uncertainty on the Galactic extinction should be� 0.075 mag (the medianr-band extinction of
SDSS/Legacy galaxies), i.e. 0.03 dex. The uncertainty on internal extinction is more dif�cult to measure, but can be estimated to be 0.1 mag,
i.e. 0.04 dex. Combining these six errors (photometry, redshift, assumption of no peculiar velocity,k-correction, Galactic extinction and
internal extinction) in quadrature, we deduce that the error on luminosity is of the order of 0.08 dex.

APPENDIX D: GRAPHICAL REPRESENTATION OF THE EFFECTS OF THE INTERLOPER DENSITY
IN PPS ON THE PERFORMANCE OF MAGGIE

In this appendix, we illustrate, in Fig.D1, the effects of two choices for the dimensionless density of interlopers in PPS,�gi(X, u ) (equation 20)
on the performance ofMAGGIE-L andMAGGIE-M. See the discussion in Section 5.3.4.

APPENDIX E: DIMENSIONLESS SURFACE DENSITY THRESHOLD FOR THE YANG ET AL. GROUP
FINDER

Yang et al. (2005) de�ned the redshift space local density contrast (relative to the mean density of the Universe) at the edge of the group as

B =
Vsph(rv)
Vcyl(rv)

� (rv)
� U

, (E1)

where the �rst term represents the ratio of volumes of the virial sphere in real space to the virial cylinder in redshift space, the second term
is the local overdensity at the surface of the virial sphere and the galaxy number density �eld is assumed to trace the mass density �eld.
With Vsph = 4� / 3r 3

v andVcyl = 2 (
 v/H 0) � r 2
v (assuming that the cylinder’s half-length is
 v/ H0),24 and assuming an NFW density pro�le

(equation 16), the local mass density at the virial sphere is

� NFW(rv) =
� � U

3 � m

[c� / (c� + 1)]2

ln(c� + 1) Š c� / (c� + 1)
, (E2)

where� is the overdensity of the group relative to the critical density of the Universe,� U is the mean density of the Universe,� m is the
cosmological density parameter andc� is the concentration of the group. Combining equations (E1) and (E2), one �nds

B =

	
8 �

9 � � m
f B (c� ), (E3)

f B (c) =
[c/ (c + 1)]2

ln(c + 1) Š c/ (c + 1)
, (E4)

where� = 
 v/v v is the ratio of velocity dispersion to virial velocity for the group.
Yang et al. (2005, 2007) adopted an overdensity of 180 relative to the mean density of the Universe, and used a cosmologicalN-body

simulation with� m = 0.3 to calibrate their group �nder. This corresponds to an overdensity relative to critical of� = 0.3 × 180 = 54.
We can solve for the concentrationc54 relevant for the median Yang et al. haloes, loghM54,median � 13.5 as follows. We loop over values of
logM200, for which we extractc200 from the relation of Maccìo et al. (2008), which also considersh. Assuming the NFW density model, we
then solve forc54 givenc200, as well asM54 givenM200. Given our derived relation betweenc54 andM54, we solve for the medianc54, which
yieldsc54,median= 8.72. Then, through equations (E3) and (E4), we obtainB = 6.14, which can be contrasted toB = 10 estimated by Yang
et al. (2005), and adopted by Yang et al. (2007).

We can also apply equations (E3) and (E4) to our case, where� = 200, � m = 0.25 (the Millennium-II simulation on which the
mock catalogue was built) and a median halo mass of logM200,median � 13.5 (without theh term). This yieldsc200,median= 4.97 and
B = 19.9.

Given that Yang et al. (2005) checked thatB = 10 gave them the best results for the groups they extracted from their mock galaxy catalogue
(given their groups in real space), we need to rescale theirB = 10 to our values of� , � m andc. With equations (E3) and (E4), we �nd
B = 10× [

	
200/ 54/ (0.25/ 0.3)] × [f B (4.97)/f B (8.72)] = 29 (with a factor 2.3 from the �rst term in brackets and a factor 1.24 from the

second term).

24 Equation (E1) with these two formulae for the volumes is analogous to equation 11 of Yang et al. (2005), who seemed to have forgotten the factor 2 forVcyl.
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MAGGIE group �nder 3873

Figure D1. Effects of the choice of theA(X), 
 i (X) andB entering the expression of the density of interlopers in projected phase space (PPS) (equation 20) on
the performance ofMAGGIE-L (red) andMAGGIE-M (green), both with observational errors, comparing the expression for�gi (X, u ) derived by Mamon et al. (2010)
on the dark matter particles of a cosmological hydrodynamical simulation (equations 21–23, dashed) with that derived in Appendix B on the galaxies ofthe
semi-analytical model of Guo et al. (2011) at z = 0 (equations 24–26, solid). The analysis is for un�agged groups of at least three true and three extracted
members. The points in the upper plots have their abscissa slightly shifted for clarity.

We test the effects of the choice ofB in Fig. E1. The higher threshold ofB = 29 leads to slighter higher group fragmentation (upper-left
panel), much lower galaxy completeness, but much higher galaxy reliability (lower panels), yet slightly higher dispersion on group total
masses (upper-right panel).
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3874 M. Duarte and G. A. Mamon

Figure E1. Effects of the choice of the density contrast thresholdB on the performance of our implementation of the Yang et al. group �nder, for Yang-L
(brown), Yang-M ( dark green), withB = 10 (solid lines) andB = 29 (dashed lines), both with observational errors. The analysis is for un�agged groups of at
least three true and three extracted members. The points in the upper plots have their abscissa slightly shifted for clarity.
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