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The features of equatorial motion of an extended body in Kerr spacetime are investigated in the
framework of the Mathisson-Papapetrou-Dixon model. The body is assumed to stay at quasiequilibrium
and respond instantly to external perturbations. Besides the mass, it is completely determined by its spin,
the multipolar expansion being truncated at the quadrupole order, with a spin-induced quadrupole tensor.
The study of the radial effective potential allows us to analytically determine the innermost stable circular
orbit shift due to spin and the associated frequency of the last circular orbit.
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I. INTRODUCTION

The description of the gravitational interaction between
the constituents of a binary system in the general theory of
relativity requires taking into due account their internal
structure. The orbital dynamics of two bound compact
objects is tackled in the literature by plenty of different
methods resorting to various approximation schemes.
Analytic approaches include notably the post-Newtonian
approximation [1], possibly implemented using effective
field theory techniques [2], as well as the gravitational self-
force corrections to geodesic motion [3], which can both be
combined efficiently by means of the “effective-one-body”
approach [4,5].

When the mass of one body is much smaller than the
other, the problem boils down to studying the dynamics of
an extended body in a fixed background field, generated by
the heavier mass. In this approximation, a self-consistent
model describing the evolution of both linear and angular
momenta for pole-dipole sources was developed by
Mathisson [6], Papapetrou [7,8], Pirani [9], Tulczyjew
[10], and later generalized to bodies endowed with
higher multipoles by Dixon [11-15]. The Mathisson-
Papapetrou-Dixon (MPD) model accounts for the motion,
on a fixed background, of a point-size test object with
internal degrees of freedom, in the absence of significant
gravitational backreaction. Bailey and Israel [16] have
shown that the corresponding equations are actually
derivable from an effective Lagrangian. A Hamiltonian
scheme has also been designed in Ref. [17] in the case of
purely spinning bodies deprived of any higher-multipole
structure.
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The main astrophysical situation for which a fully
relativistic treatment is needed occurs when the object—
assumed to be compact to avoid tidal disruption—
experiences the strong field produced by a nearby black
hole. The MPD approach may then be used to investigate
the evolution of the system, but the parameters of the model
must be regarded as effective ones [18]. Although self-force
effects are not negligible on larger-than-orbital time scales,
they only yield higher-order corrections. Furthermore,
combined with dimensional regularization, the MPD model
is appropriate to describe the dynamics of (self-gravitating)
compact binaries including spins and associated finite-size
effects, in the post-Newtonian framework [19-21]. It yields
results that are dynamically equivalent, up to the third post-
Newtonian order at least, to those derived from suitable
effective actions [22-26] computed with methods building
on the early attempt [27] (see Ref. [28] for an extensive
presentation of a fully consistent Lagrangian reduction
valid to all orders in spins). The post-Newtonian reduction
of appropriate Arnowitt-Deser-Misner Hamiltonians leads
again to the same dynamics [29-31], as reported with more
detail in [32]. On the other hand, the MPD evolution is
entirely encoded into a “skeleton” stress-energy tensor,
known explicitly at the quadrupolar level [33]. The octu-
polar contributions have also been obtained recently [34]
assuming an effective, Bailey and Israel-type, Lagrangian
[16]. Those corresponding explicit expressions have been
used to build accurate theoretical templates for the signal of
gravitational radiation emitted by those sources [21,34-36],
in the context of the data analysis of gravitational-wave
observatories, such as the advanced Virgo [37] and LIGO
[38] detectors, the future cryogenic interferometer KAGRA

© 2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.92.104003
http://dx.doi.org/10.1103/PhysRevD.92.104003
http://dx.doi.org/10.1103/PhysRevD.92.104003
http://dx.doi.org/10.1103/PhysRevD.92.104003

DONATO BINI, GUILLAUME FAYE, AND ANDREA GERALICO

[39] or, possibly, the space-based observatory eLISA [40],
a candidate for the future L3 mission of the European Space
Agency. Most of the post-Newtonian expressions can be
checked by comparing them to the test-body counterparts,
in the extreme mass-ratio limit.

In this paper we study the dynamics of an extended body
endowed with both spin and quadrupole moment in a Kerr
spacetime using the MPD model. The motion is assumed to
be confined on the equatorial plane, the spin vector of the
body being aligned with the axis of rotation of the central
object. In previous works, we have discussed the effects
on the dynamics of a general quadrupole tensor in both
Schwarzschild and Kerr spacetimes [41-43]. Here we
consider more specifically the case of a spin-induced
quadrupole tensor. We assume that the object reaches
thermodynamic equilibrium in its proper frame on time
scales that are very short compared with the orbital period
and neglect the tidal deformations. Its internal state, thus,
depends adiabatically on the mass and the (instantaneous)
spin. Using effective field theory arguments, it is then
straightforward to check that the body quadrupole is
actually quadratic in the spin. This situation was described
in detail by Steinhoff and Puetzfeld [44], who developed
a very general framework to include quadratic in spin
corrections as well as tidal interactions in the MPD scheme,
with special attention to the study of the binding energy of
the system as obtained from the analysis of the associated
effective potential. Later, Hinderer et al. [45] performed
an analysis of the corresponding dynamics, in order to
compare the periastron advance and precession frequencies
with those of a different approach, but restricted themselves
to a very special (although physically motivated) choice of
the quadrupole tensor, leading to great simplifications in
the analytic treatment.

Here we shall assume the same form of the quadrupole
tensor as in Ref. [44], but neglect quadrupolar tides, i.e., our
quadrupole tensor is of the electric type only and is
proportional to the trace-free part of the square of the spin
tensor by a constant parameter, whose numerical value is a
property of the body under consideration. For neutron stars,
such a quantity depends on the equation of state [46], while
itis exactly 1 for black holes. We keep it a free parameter of
the model that can affect associated observables, like the
energy and the angular momentum, which we computed
explicitly and compared with the results of Ref. [45], or the
innermost stable circular orbit (ISCO) and its frequency,
discussed here in detail. We achieve a fully analytic
treatment of the MPD equations in a “perturbative” scheme,
obtaining corrections to geodesic motion up to the second
order in spin.

Throughout this work we use geometrical units, setting
the Newton constant G and the speed of light ¢ to 1.
Tensors are represented either in abstract notation or in
index notation combined with the Einstein convention,
depending on the context. Greek indices refer to spacetime
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coordinates and vary from 0 to 3, ie., u=0,1,2,3,
whereas Latin indices, ranging from 1 to 3, label space
coordinates. The notation 9, stands indifferently for the
partial derivative with respect to the uth coordinate x* or for
the coordinate basis vector associated to x#, while d denotes
the exterior derivative. The spacetime metric g,,, taken to
have signature (—, 4+, +, +), defines a unique Levi-Civita
covariant derivative V, and an associated Riemann curva-
ture R*,,5, with the convention that R¥,,;v" = (V,V; —
VsV, )v* for any vector field »#. Symmetrization of a
tensor 7 over a set indices is indicated by round brackets
enclosing them: TW®) = (T# 4 T%)/2. Instead, for
index antisymmetrization, square brackets are used:
T = (T — 1) /2.

I1I. MPD DESCRIPTION OF EXTENDED BODIES

In the quadrupole approximation, the MPD equations
read

DP# 1 1
F == _ERMU(Z/}U S ﬂ —EJ /jy‘SV"Raﬁyé
= Fl(lspin) + Fl(lquad)’ (21)
DS# 4
—= 2plkyH +§J /J’y[/th]yaﬁ
— P 1
- D(spin) + D(quad)’ (22)

where P* is the total 4-momentum of the body with mass
m= (—P*P,)"/? and direction u* = P*/m (hence, P* =
mu' and u-u=u'u, =—1 by definition), $* is the
(antisymmetric) spin tensor, J%7° is the quadrupole tensor,
and U* = dz#/dr is the timelike unit tangent vector—or
4-velocity—of the body “reference” line, parametrized by
the proper time 7 [with parametric equations x* = z#(7)],
used to make the multipole reduction.

In order to ensure that the model is mathematically self-
consistent, the reference point in the object should be
specified by imposing some additional conditions. Here we
shall take the Tulczyjew conditions [10,11],

S*u, = 0. (2.3)
With this choice, the spin tensor can be fully represented by
a spatial vector (with respect to u),

S()" = Sn(uyy, 7 = [Os] (24)
where 77(u4),5, = uqp,4" is the spatial unit volume 3-form
(with respect to u) built from the 4-volume form
Naprs = \/—9€apys>» With €45,5 (€9123 = 1) being the Levi-
Civita alternating symbol and g the determinant of the
metric in a generic coordinate grid. Using a fairly standard
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convention, hereafter we denote the spacetime dual of a
tensor S (such that *S% = n* 557°/2) by *S, whereas the
spatial dual of a spatial tensor S with respect to u is
represented by *(*)§. It is also useful to introduce the signed
magnitude s of the spin vector, which is not constant in
general along the trajectory of the extended body,

1

1
= S@PS(u)y = 5SS = =TS} (25)

with Tr[$2] = =S, 5%.

A. Spin-induced quadrupole tensor

The 1 4 3 decomposition of the quadrupole tensor J and
its general properties are briefly reviewed in Appendix A.
We will consider here the physically relevant case where it
is completely determined by the instantaneous spin struc-
ture of the body (see, e.g., Refs. [44,47]). More specifically,
we shall let the quadrupole tensor have the form

Ja/iyr‘i — 4M[(l%(u)ﬁ]b’u5]’ (26)
with
- 3C,
X(u) = > 29 [g2]STF 2.
() =32 (S (2.7)

where Cy is a “polarizability” constant and [S?]3™" denotes
the trace-free part of S?S Mﬂ , 1.e., in terms of both the spin
vector and the associated spin invariant,

1
[S2]STFap — Sang p — gP(u)“/}Sp,,S”f’

= SIS PP, (28)
The values of C, associated with compact objects are
given, e.g., in Ref. [32]. The normalization is such that
Cp =1 in the case of a black hole [48], whereas for
neutron stars C, depends on the equation of state and
varies roughly between 4 and 8 [46].

For the spin-induced quadrupole tensor (2.6), the link
between P, and U, takes a particularly simple form if
cubic-in-spin corrections are neglected. Indeed, contraction
of Eq. (2.2) with P, shows that, apart from corrections
of order J = O(S?), the difference (P-U)P* — P?U* is
precisely P,DS* /dr = —S**DP,/dz, which can be seen to
be of order O(S?) from Eq. (2.1). In the end, P* is
approximately proportional to U* and, as an important
consequence, the right-hand side of the precession equa-
tion (2.2) is at least quadratic in the spin. As, on the other
hand, the right-hand side of the precession equation (2.2) is
at least linear in the spin, we conclude that the time
differentiation of our kinematical variables actually multi-
ply any combination of them by a factor O(S).

PHYSICAL REVIEW D 92, 104003 (2015)

In Ref. [45], the MPD description of test bodies endowed
with a spin-induced quadrupolar structure is used to check
the consistency of the computation of the periastron
advance for a binary system with the effective-one-body
formalism in the extreme mass-ratio limit, including terms
that are quadratic in the spin. The quadrupole tensor is
assumed there to be that of a black hole and to take the form
(2.6) with Cy = 1, so that we must recover the results of
Ref. [45] for this particular value.

B. Simplified form of the MPD equations

The MPD equations can be written in a more convenient
form at quadratic order in the spin. First, the quadrupolar
contribution Ff’quad) in Eq. (2.1) splits into a parallel and a
perpendicular part with respect to the direction U*:

D

1 1
F = _6-] ﬁy&[P(U)]ﬂ vvRaﬂ75 + 8‘] ﬁyEUﬂaRaﬂyé.

(quad)

(2.9)

Next, neglecting remainders that are cubic in the spin, the
quadrupole J%7% and the velocity U* in the last term may
be moved under the operator D/dz, since their covariant
time differentiation would actually produce terms smaller
than the original ones by a factor O(S), as explained in the
previous subsection. The equations of motion then become

DP# 1 1
— — __RH vQap _ a/)’yﬁP wyJ R
dr 2 yaiU S 6J [ (U)] viapys
D
+—(m,;U"), (2.10)
dr
where we have posed
_ ljaﬁy(SR 2.11
m =g apys- (2.11)

Thus, defining a modified linear momentum p* = P —
m;U* effectively changes the quadrupolar force F ’(‘ quad) into

its projection [P(U)[*,F{,,q) orthogonal to U*, while the
"

spin force F (spin) is orthogonal to U*. The precession

equations are unaffected. More explicitly, Eqs. (2.1) and
(2.2) expressed in terms of p* become

Dp” 1 vV QQy 1 Qj

?:_QR'”D(I/}U S ﬂ—g.l ﬁyﬁle(l/}y5+O(S3)’ (2123)

DSw 4
d—zZpU‘U”] +§J"/’7V‘R”]mﬁ+0($3),
T

with V+ = [P(U)]*V,,. Now, if we multiply the equations
of motion (2.12a) by p, « U, + O(S?), we see that, at our
accuracy level, the first term on the right-hand side vanishes
by virtue of the Riemann-tensor symmetries, whereas the
second one is zero due to the contraction of U, with
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[P(U)]#. We conclude that the effective mass (—p, p*)'/?
is conserved, modulo cubic spin corrections (see also
Appendix B). It may be regarded as the “bare” mass of
the extended body, m,, at the quadratic order in the spin, so
that its mass m to order O(S?) is given by

m = my +my; + O(S?). (2.13)
Finally, the MPD equations (2.1)—(2.3) imply that the unit
vectors U and u are related by

u"—U”—I— ! D’“’

(quay Uy T 73

S’“’F(bpm) +O($3).

(2.14)

C. Conserved quantities

In stationary and axisymmetric spacetimes endowed
with Killing symmetries, the energy E and the total angular
momentum J are conserved quantities along the motion,
associated with the timelike Killing vector £ = 0, and the
azimuthal Killing vector n = d,, respectively. They are
given by
|

daMr

2Mr
2 _ _ 1= 2 _
ds ( s )dt

with  A=r>—2Mr+a*> and X =r?+a’cos’é.
Here, a > 0 and M > a denote the specific angular mo-
mentum and the total mass of the spacetime solution,
respectively. The event and inner horizons are located at
ry =M+ VM? —a’.

Let us introduce the zero angular-momentum observer
(ZAMO) family of fiducial observers, with 4-velocity

n=N"(0,-N?,) (3.2)

orthogonal to the hypersurfaces of constant ¢, where N =
(-g")™'/? and N? =g,4/g,, are the lapse and shift
functions, respectively. A suitable spatial orthonormal
frame adapted to ZAMOs is given by

1
e;=n, e; = = 05,
\/ grr
1 1
o5 = 0y = 05, a= 0, =0, (3.3)
0 Gon 0 0 @ \/— ¢ ¢
with dual

z
sin’0dtdg + X dr? 4+ =d#* +

PHYSICAL REVIEW D 92, 104003 (2015)

1
E= _§(IP(I +§Suﬂvﬁ§m

1
J = 1P =587V gl (2.15)

where V&, = giop and Vyn, = gy(q - Note that E and J
as defined above are conserved to all multipole orders in
spite of the higher multipolar structure of the body, which is
entirely encoded in P [49].

The conserved quantities (2.15) for a purely dipolar
particle in a Kerr spacetime have been computed, e.g., in
Refs. [50,51]. The expressions given there are general
enough to account for all higher-order spin corrections but
those coming from the spin-induced multipole moments
(i.e., are exact when the quadrupole and higher multipole
moments vanish). This means in practice that our results
should reduce to those of Refs. [50,51] for Cyp = 0.

III. MOTION IN A KERR SPACETIME

The Kerr metric in standard Boyer-Lindquist coordinates
(t,r,0,¢) reads

2 2\2 _ A 2ai 29
('t a7)” = AaTsind . o pag, (3.1)
z
|
o' = Ndt, @ = \/g,.dr,
o = \/Goedd,  @® = [G55(dp + N?dr).  (3.4)
The ZAMOs are subject to the acceleration a(n) = V.

They are locally nonrotating, in the sense that their vorticity
vector w(n)* vanishes due to their surface-orthogonal
character, but they have a nonzero trace-free expansion
tensor (n) 5 = P(n)! ,P(n)’ 4V ,n,; the latter, in turn, can
be completely described by an expansion vector
05(n)* = 0(n)*4e ’, such that

0(n) = e5 ® 05(n) + 05(n) ® ey, (3.5)

where @ represents the tensor product. The nonzero
ZAMO kinematical quantities (i.e., acceleration and
expansion) all belong to the r-6 2-plane of the tangent
space [52-55], with

a(n)7eA +a(n ) ey = 0x(InN)e; + 0y(InN)ey,
n)le

- 2N{ (0:N?e; + O5N?e;). (3.6)
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It is also useful to introduce the curvature vectors associated
with the diagonal metric coefficients,

k(x',n) = k(x',n)es + k(x', n)%;

= —[0;(In\/g;;) ez + 05(In \/g;;) e5]. (3.7)
We shall use the notation x(¢,n)" = ki) for the Lie
relative curvature [53,54], largely adopted in the literature,
and limit our analysis to the equatorial plane (0 = z/2) of
the Kerr solution, where

N rA 1/2
P+ dr+2da2M ’
2aM
N = a (3.8)

_r3 + d%r+2a*M°

and A = N? 9p¢- The ZAMO kinematical quantities as well
as the nonvanishing frame components of the Riemann
tensor are listed in Appendix C.

Let us now consider a test body rotating in the equatorial
plane around the central source. Its 4-velocity U may be

written in terms of the velocity v(U,n) = 1/7e7+1/$e$

relative to the ZAMOs, with associated Lorentz factor
y(U,n), as

r(U.n)n+v(U,n),
(

U=
y(U,n) = (1= lw(U,n)|?)"72, (3.9)

The parametric equations of the orbit are solutions of the
evolution equations U = dx%/dr, i.e.,

“_y W
dc N’ dc /g,
d_ v <y$_vg¢¢N¢> (3.10)
&t = i N

where the abbreviated notation y(U,n) =y and 17 =
v(U, n)a has been used. For equatorial orbits, a convenient
parametrization can be r itself instead of the proper time 7.

A case of particular importance is that of uniform,
circular equatorial motion. The unit tangent vector, U,
may then be parametrized either by the (constant) angular
velocity with respect to infinity ¢ or equivalently by the
(constant) linear velocity v with respect to the ZAMOs, i.e.,

y=(1-v)7""2
(3.11)

U =T[0, +(0,] = ylez + vegl,

with

PHYSICAL REVIEW D 92, 104003 (2015)

D= [V~ gpol + NP2 = 1

é’:_N¢+

. (3.12)
e

The parametric equations of the orbit reduce to

t=1ty+1IT7, r=rg, 0= ¢ = o + Qr,

(3.13)

T
2 El

where QQ = I'{ is the proper time orbital angular velocity.

For timelike circular geodesics on the equatorial plane,
the expressions of the angular and linear velocities do
depend on whether the orbits are corotating (+) or counter-
rotating (—). They read

Ck ’”ZCi a?
) - 1 G 2 )
e Vi A +r2:F alk

Cr==%

(3.14)

respectively, with {x = \/M/r’ denoting the Keplerian
angular velocity for a nonspinning, Schwarzschild black
hole. The Lorentz factor of the corresponding 4-velocity
U, is found to be

Cx ( M (3.15)

-1/2
r,=-—-— 1——j:2aCK> .
IC4] r

In the static case, we can actually use the Schwarzschild
values ¢, - +{x and v, — Fvg, with

/M /(r—2M). It is convenient [see Eq. (4.21)] to intro-
duce a spacelike unit vector U, that is orthogonal to U
within the Killing 2-plane, by defining

Vg =

Uy =T:[0, + 10y = £rilveer +¢g), (3.16)
in terms of the parameters
— r? a’
Fizri|l/i|:|Qi|\/—z<1+p:anCK),
- N 1 g 1-2M/r+a
l.=-N"+ — oK > /2 K (3.17)
VIppV+ M 1+4a*/r"F2alg

where Q, =T".{, and where the £ signs correlate with
those of U, . Note that £, = Ei / Zi is the ratio between
the energy E.. and the azimuthal angular momentum L,
per unit mass of the particle. Those two quantities are
expressed as
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E.=N <1+20M > 2. | (1 M >
= U = — —_— a s
+ T+ r\/K + Cx , K

- a2
Ly =y10s\/Gpy = Qur? (1 +p¢2a51<>- (3.18)

A. Orbit of the extended body

In order to describe the motion of the extended body
according to the MPD model, we need both the timelike
unit vector U tangent to the center world line and the
unit timelike vector u aligned with the 4-momentum. In
the following, we shall assume that the world line of the
extended body is confined onto the equatorial plane, so that
the 4-velocity U is given by Eq. (3.9), with

v(U,n)=w=1Ve;+1/ej=v(cosae;+sinaey), (3.19)
where v and a € [0,5] are the signed magnitude of the
spatial velocity and its polar angle, measured clockwise
from the positive ¢ direction in the r-¢p tangent plane,
respectively, while 7=7D(U,n) is the associated unit
vector; hence, v has positive or negative values for co-
or counter-rotating azimuthal motion (¢ = z/2) and out-
ward or inward radial motion (o = 0), with respect to the
ZAMOs, respectively.

A similar decomposition holds for the (body)
4-momentum P = mu, in the case of equatorial orbits,

u=yn+uvd)  ra=00-w) (320)
with
D(u,n) =0, = cosa, e + sina,eg, (3.21)

and a, € [0,5]. An orthonormal frame adapted to u = e
can then be built by introducing the spatial triad:

ey =Dy =sina,e; — cosa ey,

(3.22)

€ = Sgn(yu)%t(yun +7)u)v €3 = —eép.

The dual frame of {e,} will be referred to as {w®}, with

PHYSICAL REVIEW D 92, 104003 (2015)

of the spin vector into the local rest space of u defines the
spin vector S(u) (hereafter simply denoted by S, for short).
In the frame (3.22), the spin S decomposes as

S=S'e, + S%e, + Se;. (3.23)

B. Setting the body’s spin and quadrupole
in the aligned case
In the following, we shall consider the special case

where the spin vector is aligned with the spacetime rotation
axis, 1.e.,

S = se;. (3.24)

This entails that the spin and quadrupole terms entering the
right-hand sides of Egs. (2.1) and (2.2) decompose, with
respect to the frame adapted to u, as

— 10 1 2
F(spin) - F(spin)u + F(spin)e1 + F(spin)ez’
F(quad) = F(()quad)u + nguad)el + F%quad)e% (3.25)
and
D(spin) = _wo/\g(spin) (Lt),
D(quad) = _O)OAE(quad)(u)’ (326)
with
8(spin)(u) = ‘c/‘(spin)la)1 + g(spin)zwz»
g(quad)(u) = E(quad)lw1 + 8(quad)20)2, (327)

respectively. The explicit expressions for the above compo-
nents are listed in Appendix D.

IV. SOLVING THE MPD EQUATIONS FOR
NONPRECESSING EQUATORIAL ORBITS

A. Complete set of evolution equations

Under the assumptions of equatorial motion and aligned
spins discussed in the previous section, the whole set of

@ = —u", u” being the covariant dual of u. The projection =~ MPD equations (2.1)—(2.3) reduces to
|
dm o 0
ar ~ Fospin) T Flauaay:
da, Y N > . 1
&= [vcos(a, + @) —v,]05(n)" + Py (sina,a(n)” + v, sina ki) — p— (F{spin) + F lquad))»
dv, 4 7 . 7 1 2 2
&g [cos a,a(n)" +vsin(a, + a)05(n)"] + s (Flapiny T Flquaa)):
ds
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together with the compatibility conditions,

N
0= e3 X (g(spin) (u) +g(quad) (”)) +E(F(spin) + F(quad))’
(4.2)

which come from the spin evolution equations and yield
two algebraic relations for v and a. The last equation (4.1)
implies that the signed spin magnitude s is a constant of
motion. Finally, Eqs. (4.1) must be coupled with the
decomposition (3.9) and (3.19) of U = dx*/dr to provide
the remaining unknowns ¢, r and ¢ [see also Egs. (3.10)].
Equations (4.1) and (3.10) are written in a form that is
suitable for the numerical integration. Additional (nonin-
dependent) relations are obtained from the conservation
(2.15) of the total energy and angular momentum,

E=Ny,[m+s(v,sina,a(n) +05(n)")|=N?J,
J =7 ur/Gppmu, sina, —s(kie) + v, sinauﬁa(n)?)]. (4.3)

These can be used as a consistency check. Examples
of numerically integrated orbits are discussed in
Refs. [42,43].

We are interested here in studying the general features of
equatorial motion to second order in spin, taking advantage
of the simplified form of the MPD equations discussed in
Sec. II B. We shall also derive analytic solutions for the
orbits to that order by computing the corrections, produced
by a nonzero spin, to a reference circular geodesic motion.
|

_E+NY

Yu = N {1 —M’s\[eg(n)’—i—

Y.V, Smmao, =

J
Mo\/9pe

Those identities can be used next at the lowest order in the
previous equations so as to express m, v and @ in terms of £
and J. In particular, the solution for the body mass is found
to be

1 . M 3 -
m = mo{l —ECQF |:1 +W(J—GE)2:|S2}

= my + $°m,. (4.8)
Its behavior as a function of the radial coordinate is shown
in Fig. 1 for selected values of the parameters. It is
interesting to evaluate the difference between the limiting
values at the horizon and at infinity, |m(4+o00) —m(r,)| =
$%m,(r,), since this represents the largest mass variation
during the evolution.

Na(n)"J } o ( m,
- M5 5
(E+N?J). /944 moM

—~ + VIspk(Li A
{1 + M3 [%(n)’ +(E+N?J) "’4’(“')] — M2 <mTAZ42 + B+ Em) } (4.7)
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B. Solution to the order O(S?)

Let us introduce the dimensionless spin parameter
s
moM ’

T= (4.4)
where m denotes the “bare” mass of the body. Hereafter,
we shall systematically neglect terms that are of orders
higher than the second in §. Hence, all quantities must be
understood as being evaluated up to the order O(5?). Our
set of equations can then be simplified by means of
Egs. (2.13) and (2.14), which yield

1
m=my =7 ComoM?*3*y%[(2E;+ + Egp)vs cos 2a,,

=+ (2 =+ U%)Eag + 4I/u sin auH?g],
and

(4.5)

1
v=u, +§<1 — Co)M*5*{v,[(2E+ + Epp) cos2a, + 3Ez)
+2H5(1+v%)sina, },

a=a,—(1-Cp) Mzﬁz@[(zEWLE@@)yu sina, — H),
u
(4.6)
respectively. Here, E;7, E55 are components of the electric
part of the Riemann tensor, while /.5 is a component of its
magnetic part (see Appendix C). Equations (4.6) show that
the value of the polarizability for black holes, namely
Co =1, is a very special case leading to a great simpli-
fication (see below).
On the other hand, solving Egs. (4.3) algebraically for v,
and a, leads to

+E?¢+Ea§) }

NJ

[

It can be verified that the solution (4.6) for U is
equivalently obtained from the compatibility conditions
(4.2). Furthermore, the truncated equation (4.1) for the
mass reads

dm 0
E = F(quad

O, (4.9)

with

1 .
F?quad) = EmoMzszCQyuuu cosa, {yﬁyu [V, (b cos2a, + c3)

1
—|—2(a1—b4)sinau]+§(261—cz)}, (410)
where the lowest-order piece of the solution (4.7)

may be used, which implies notably that F(()spin) = O(5?).
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The quantities a;, b; and c;, all functions of r, are listed in
Appendix D. Once parametrized with the radial coordinate
r instead of the proper time 7z by means of Eqgs. (3.10),
formula (4.9) takes the very simple form

dm, 3 M? 5
2 2y Cop o |1+ —s (= aE)?|.
Mot0 =3 erzrz( ak)

4.11
dr 2 5 ( )

whose solution coincides with that of Eq. (4.8).

C. Circular motion

1. Solution to the order O(5?)

In this subsection, we restrict ourselves to circular
orbits, as described by the parametrizations (3.11)—
(3.13). For circular motion in the equatorial plane, we
must set @ = /2, so that Egs. (4.6) become

uwt (1= Co)M*$* [—vy (Esp — Egp) + Hap(1 4+ 12)].
, (4.12)

U=

<

a, =

NS

to second order in 5. Thus, F ?qua 4 = 0 from its expression

(4.10), and Eq. (4.9) tells us that the mass of the body is a
constant of motion to that order. However, it differs from
the bare mass m by virtue of the general definition (4.5),
which yields

1 .
m=my— ECQmOMzszyi [Ezp— ViEs+2vs Hoyp
1 M3

r2Fda/Mr+3a® -
=m 1——CQ S
2751232 _3Mr £ 2avM

], (4.13)

VIpN?
E:mONyi<1— g;’\j’
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once evaluated at «, = x/2, with v, replaced by v to the
lowest order.

Next, solving algebraically the second equation (4.1) for
v, we find

vV, =U4 +§I/u(1) +§21/u(2), (414)

where v denote the geodesic linear velocities (3.14), while
Vy(1y and v,y are the spin-induced corrections

M

Vu(1) = i—%K [—vs(Es — Egp) + (1 +v3)Hzpl,
M? 1 k(Lie) 1
Vu(2) - :F}’iCK F(quad) +Vu(1) l/u(l) =+ 2@1{ +Z
MH
+ (1 -Cp)MC iiﬂ’}, 4.15
( Q) K 2711&51( ( )

of first and second orders, respectively, with [see also
Eq. (E9S)]

~ 1
F(lquad) :ZCQ{yzi[bl _b2+yj:(b4 _bS)]

—b1+%(b2+b3)}. (4.16)

Substituting the above solutions for v, and «, into
Eq. (4.3), we obtain

Vﬁ:) + moy £ [Y3 V(1) y/Tpg + MN (via(n)” + 05(n)") + M\ /GyeN? (v205(n)" + k(i) IS

VIgsN? 3 1 .
+ {mzN}’i (1 - %%) + moy3, [\/94;45 + <iMCKVu(1) +v,0 + Eﬁ”ﬁ”ﬁg) + ENl/ﬁ(l)} }SZ,

J = Moy +Vi+/Gpp + mo)’i\/gqsqs[}’i’/u(n - M(”i‘ga(”)? + k(Lie))rg\

+ [mz}’il/i\/g(/”p + moY /4o (iMCKVu(l) + ) +

The behavior of the energy E versus the angular momen-
tum J in the case of corotating orbits is shown in Fig. 2 for
selected values of the parameters.

Finally, the 4-velocity U is given by Eq. (3.11), with
normalization factor

3
I'= F:t{l + v S+ [Vﬂ/z + (5}’1 - 1)”%]§2}7

(4.18)

3 .
Py )|

(4.17)
[
and angular velocity
(=¢ {1—1— s+ 1,52) ], 4.19
S \/9(7¢( 15+ 1,5°) (4.19)
where
vy = DM(1)7 Uy = l/u(z) + 2(1 - CQ)MZ:KI/I. (420)
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1 -

0.99 1

0.98 1

0.97

m 0.96 1

0.95 1

0.94

0.93 1

0.92 \ \

FIG. 1. The behavior of the mass m of the body (in units
of mg) as a function of the radial coordinate (in units
of M) is shown for the following choice of parameters:
a/M =05, Co=1,5=025 E/my=1 and J/(moM) = 4.
The mass shift in this case equates |m(+oo0)—m(r,)|~
0.055m. The value of the dimensionless spin parameter §
has been exaggerated in order to enhance the effect.

(a)

FIG. 2 (color online).

PHYSICAL REVIEW D 92, 104003 (2015)

The relation between the timelike unit tangent vector U to
the body center world line and the unit timelike vector u
aligned with the 4-momentum, thus, reads

U—M:ff\z]/i(l —CQ)Mgkl/]Ui, (421)
the unit vector U, being already defined in Eq. (3.16).
Hence, in general, U and P are not aligned unless Cy = 1,
as discussed below.

2. Weak-field limit

Let us study now the weak-field limit of the above
analysis. For convenience, we introduce the dimensionless
quantities ug = M/ry and @ = a/M. We may consider
only the case of corotating orbits, the counter-rotating
case simply following from the replacement @ — —a.
Every quantity is expanded up to a certain power of u, as
follows,

X ~ XO +21\Xa\ +TS‘\X'§ +a\2X'a\a + 2&?}(&3 +TS‘\2X’SV§, (422)
where terms of orders higher than the second in the back-
ground rotation parameter, as well as terms like @5 and @°3,
are neglected.

The weak-field expansion of the conserved energy and
angular momentum (4.17) are then found to be

1.2
111
E 1.0
0.91
038 :
2 3 4 5
J
(b)

The behavior of the energy E versus the angular momentum J in the case of corotating circular orbits

is shown in panel (a), for the fixed black-hole dimensionless spin parameter a/M = 0.5 and different values of §; in panel (b), for the
fixed body spin 5 = 0.25 and different values of a/M; C, = 1 in both cases. Dashed curves in (b) correspond to the geodesic motion

E=0).
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E_ 13,27 +675
R R 4
mg 2707870 T 16 &

I 5p
TS uy* (8 + 36wy + 13512)(2a +3)
1 1 1
+ ZuS(Z + 15uy)a> + Zug(z + 23uo)a§+§ug[2CQ — (6 —17Co)ug|5*> + O(u3),

I (1 s P s 135, B350 15309 N (5 63, 405 L)
DY ry - e uy | —3u ~u
moM 10 R T 128 "0 T 256 0 o{ 1 +30+ 54+

27 81 4185 189 405
+<1—2u0——u%——u3 4> + 3/2(1—|—5 Uy +—ug+—— 3>a2

8 8 128 8 4
3 30 9 159 1305 N
+§ Q/ <1+§u0+?u3+7u8>as
3 1/, 23 1/ 79 1 .

whereas the normalization factor (4.18) and the angular velocity (4.19) become

3 27 135 2835 3
F:1+_MO+ 2 3 4 5/2

3 <%t 1%t og 1610 (8 + 36uy + 135u3)(2a +73)

1 3 3
+ Zug(Z +27uy)a® + Zu8(2 + 19uy)as+= g ug[2Co + 5(2 + Cp)uy|s* + O(u3),
o3 (A 3 9/220 3 201 3 an 7 o 5
M =uy” - a—i—z uy +uy"a —|—2 (1 +2u0)as—|—zu0 Co + E_ZCQ 52+ O0(uy), (4.24)

respectively. In order to derive gauge-invariant expressions, we express £ and J in terms of the gauge-invariant
dimensionless variable y = (M()?/3, related to u, by

2 5 5 1
This yields
E 1 3 27 675 27
N Do, =l 3 /2 Ay 4202 /2 <!
g 2T e T g <+y+2y> +y+8y
1 65 5
+2y (1+18 >A2+y3<1+6y>as+ y [CQ— (1——CQ> }s + O(H").

J 327, 135, 2835 , 15309 81 , 495 .\ _
=y“/2<1+2y+ N e A T T AR y< +7y+y2—y3>a

moM 8 16 128 7 256 4 8
+ (1 —gy—%yz ?;f —1147885y )s +y3/2(1 296y+% 2 +4%9y3>az
+y3/2<2+;1y+245y2+i1y )m
+y? {CQ —4<1 —%Cg)y —g (1 —%Cg>y2 —% (1 —%CQ)Y3]§2 +0(). (4.26)
I
3. Comparison with Ref. [45] we set Cp = 1. Since we have then v = v, + O(5%) from

Eq. (4.12) [see also Eq. (4.21)], this entails P « U + O(§3).

Before investigating the general equatorial motion, let us In order to write our expressjons for the energy and angular

show how the above analysis allows us to reproduce the momentum in the same form as in Ref. [45], we eliminate the

results of Ref. [45]. As already stated, our quadrupole tensor ~ dependence on the radial coordinate in favor of the angular
reduces to the one adopted there to describe black holes if  velocity by inverting perturbatively Eq. (4.19):
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M M?
r:rc—l——<— Mrczta>§+F{Ac—2a(a:F Mrc) - (1-Cyp) [AC+4a(a:F Mrc>]}’§2, (4.27)
re re
where r2/? = VM (C Fa) and A, = A(r = r..). Substituting next into Eq. (4.17) leads to
my  r* —2MF + aVM mOM2 Mr.Fa R
_ S
r R - 3M\/_i2a\/_]1/2 r/t R = 3M 7+ 2avM)'?
WloM3 1 { 3/2
+ —4M . /r. £ 3aVM
2r (! 3M\/’i2a\/_]1/2 vre
11a? 3 re +3M)a® + 2M32 fr.(v/Mr.F3a
— (1= C) |r2?* + M\/r;F9aVM + ( 332 Vel i )} }?2
2\/_ 2 re* = 3M/r; £ 2avV/M
; imox/l\_l r2F2a\/Mr, + a* moM r2(r. —4M) + Ma* + a/Mr.(3r, — M) _
- S
o/t R = 3M R £ 2avM) P R [r* = 3M /7, + 2av/M]"
moM>/? 1 { s )
3Ma* +2a/Mr.(3r. —2M) 4+ rz(2r, — TM
2e [ 2 3M /7, + 20/ M) ( ) )
11vVMa?
— (1= Cp) | (2r, +3M)(r2 = Mr, + 3M?)Fdar/Mr.(3r, + 2M) + 10r,a® + ZL\/_‘I
rC
3 —6M32 /r.(3M? + 4a® 2(ro +9M) + 4M?*(5r, + 3M
EN Vel + 372 YFala*(r. +9M) + (57, + )]] }ﬁ (4.28)
2 re* = 3M /7. £ 2avVM

This exactly reproduces the results of Ref. [45] when
specialized to the case Cp =1 [see their counterparts
displayed in Eqgs. (39a) and (39b) with, in addition,
M=1= m()].

D. General equatorial motion

1. Effective potential

In order to discuss the general features of equatorial
motion, it is most useful to introduce appropriate
effective potentials [56,57]. The latter naturally arise when
factoring the expression of (dr/dr)? as a polynomial

|

[

in the energy E of the test object. This factorisation takes
the form

dr\2  y* cos’a
dt) g

= AP(E)(E = V() (E- V() + OF), (429)

where the solutions for v and « in terms of the conserved
energy and angular momentum are given by Egs. (4.6)—
(4.7). More precisely, we find

1 " ~ 2
mgNZg,, MoYpg
M2’\2 4 4 N
PE)=14+4——=52—=Cp)(E4+N?J {E?;-i-ZEM E+N?J)4+2——H3J |, 4.30
(E) N 5(2—-Co)( )| ( 20)( ) N (4.30)
and
Vi = Vo +3vi7 +3viY, (4.31)
with
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> Mygpy +2J° ]

\/ M9gg + I

(£) _ ¢ N 2 2
Vo ==N0J+——\/mdg,, + J*
Vg
MN ~
yo = 2 [(a(n)’ + k(iey)J % 05(n)
Vg
2
(£) M°N { 7 7
Vi =25 ——£2[05(n)"(a(n)" + k(i) — CoHzplJ
2\/9p0 ’

+ W[%(Lm)(k(m) +3a(n)") = (4= Co)Ez — (4 + CQ>E’9‘?§]}

- M*mN | [G4g

2/ miggy + I

{[k(Lie)(k(Lie) =+ 3a(n)?) - (3 - CQ)E?? - 3E§§]

LT kLiea(n)T — (Er + EM)]} (4.32)
m3ggy + 2 ) TR '
|
IfE anfi J are kept ﬁxeq as’s goes to zero,'the leading order 1+ 3“#3;3\2 (2= Cp)(E+ N?J)
approximation of P(E) is obtained by setting exactly =0 myr

in Eq. (4.30), which shows that P(E) is necessarily positive
in the domain of validity of the small spin expansion. The
solutions E' = V) are generalizations of the radial effective
potentials for a test particle in a Kerr spacetime to the case of
an extended body with spin-induced quadrupole moment.
Their behavior as a function of the radial distance is shown in
Fig. 3 for selected values of the parameters. The upper/lower
branch corresponds to the +/— sign in Eq. (4.32).

On the other hand, since the equation (dr/dz)? =0 is
quartic in E, in order to give a complete account of effective
potentials we should also consider the solutions to the
equation P(E) = 0 or, equivalently,

FIG. 3 (color online). The behavior of the effective potential
for radial motion is shown for the following choice of
parameters: a/M = 0.5, Co =1, §=0.25, and for different
values of the body dimensionless angular momentum,
J/(mgM) = [1,2.5,4,6]. The corresponding geodesic case
(5§ = 0) is also shown for comparison (dashed curves).

0

N2
X [a(E+N‘/’J) - 2X(r2 +a*)J| =0. (4.33)

If Cy < 2, no real solutions for the energy exist. If Cyp = 2,
then P(E) = 1, irrespective of E and J. If Cy > 2 (so
excluding the black hole case Cy = 1), the above equation
admits two real solutions E = W), perturbatively in 7,
only if E scales as 1/3, with

W _@[i;(L)S/ZL%@@
® 72 75 3(Cp-2) \M moM '

(4.34)

Note that the solutions W) diverge in both limits @ — 0
and §— 0 for fixed values of the radial distance.
Furthermore, for fixed values of the dimensionless spin
parameters, they indefinitely grow for large r, exhibiting a
monotonic behavior W) ~ +(r/M)%?, so that there
cannot exist circular orbits associated with them. In the
following, we shall actually exclude the configurations for
which E = O(1/5) and ignore both potentials W ).

2. Circular orbits and ISCO

Circular orbits correspond to the extremal points of V',

and solving for J the resulting equation, V’( H= 0, provides

the associated angular momentum. Now, as pointed out by
Le Tiec et al. [58], the shift of the ISCO frequency due to the
peturbation induced to the spacetime background metric by
the particle itself is an important strong-field benchmark.
Gravitational self-force theory has provided very accurate
analytic predictions for it in the case of a spinless body in
motion along a circular geodesic on a Schwarzschild back-
ground, at the first order in the symmetric mass ratio of the
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two objects. In the present situation, because of its spinning
and quadrupolar structure, the body deviates from geodesic
motion in the way described by the MPD model. As a result,
the last stable circular orbit undergoes a shift in the
frequency, made of terms proportional to the spin as well
as the quadrupole. Measuring this effect can therefore
provide relevant information on the structure of the body.
Conversely, having information about the spin and quad-
rupolar structure of the body allows one to make predictions
on the frequency of circular motion and its deviation from
the corresponding geodesic value.

Stability requires that V', < 0. For a spinless object the
latter condition boils down to

r* —6Mr —3a® + 8avVMr > 0. (4.35)

The equality can be analytically solved for the radius r,,; of
the marginally stable orbit (or ISCO) [59]:

ke — M3+ Z,7V/(3-2,)(3+ Z, +22,)]. (4.36)
) 2V6 25, 1TV B o 0@
M 3 9 324 486 ’

M 72 27927 54 81\ 48

Of course, both the first- and second-order corrections
to the ISCO can also be straightforwardly computed
in the strong-field regime. However, the correspond-
ing expressions are quite long, so we prefer not to
explicitly write them down. For instance, in the coro-

8_
isco |

5-
T—— | a=05

F

3-
] a=0.9

N

2-
03 -02 -01 0 01 02 03

A

S

(a)

FIG. 4 (color online).
values of the black-hole dimensionless spin, a/M =

- 29 1 6 (23 1 (451
) _Z 4l if( +CQ) +—<—
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where the upper or lower sign refers to co- or counter-
rotating orbits, respectively, with

(1 -a) + (1+2)7,

=./3a> +Z3.

The latter quantities are even functions of @ satisfying
Z,>7Z,Zy<3and, fora=0, Z, =3 = Z,. For small
values of @, the Kerr ISCO radius may be expanded as

rRerr 4[ 7 g2 13V6 13\[A2

M = 0F 3 g s

(4.37)

241
1 944

/\4 + O(AS)
(4.38)

We recover the value rK¢™ = 6M in the Schwarzschild
case (a = 0).
For a spinning particle, the ISCO is modified as follows,

Isco = rms +75i STms(1) +/§2rms(2)v (439)
where
6 (4559
- 4CQ>A2 + %;6 <— 37CQ>a3 +0@". (4.40)

|
tating case, for @ =0.5, we find rk"/M ~4.233,
rms(l)/Mz —1.472 and rms(2>/MzO.l94 (CQ =1), or
rms(2>/M%2.674 (Cy = 6). The resulting behavior of
risco as a function of the spin parameter § is shown in
Fig. 4.

8_
1sco |
\ e
—
5_
\ =05

3_

_ a=09
e
2_

03 -02 -01 0 01 02 03
A
S
(b)

The radius of the ISCO as a function of the spin parameter is shown in the case of corotating orbits for different
[0,0.5,0.9], and for (a) Cy = 1, as well as (b) Cy = 6.
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The ISCO frequency of a spinning test object is then
computed to be

1 /11_ 3\ 59
MZ:ISCO::*:6_3/2{IZE76<FQ+ >+1T.8
1 97 -
+§as—|—9<64 CQ>s2}, (4.41)
|
Eisco _ 2V2_ V3 ~ 2\/_
my 3 :F108( a+s) -5~
2
JISCO_izf—i( 2a-5)F2V3
my 3

The behavior of the ISCO frequency as a function of the
spin parameter § is shown in Fig. 5 for two typical values of
Cg, i.e., Cy =1 (black hole) and C, = 6 (neutron star).
The corresponding curve is in general a parabola, which is
concave up or down depending on whether the sign of the
coefficient of 52 is positive or negative. For instance, for the
chosen values of the rotation parameter @ = [0,0.5,0.9],
the change of concavity (from up to down) occurs at
Cp ~ [1.516,1.487,1.455], respectively. Finally, Fig. 6
shows the behavior of the fractional correction to the
ISCO frequency as a function of the spin parameter.
Furthermore, restricting § to a given range of values yields
the uncertainty associated with the ISCO position, angular
velocity and shift. As an example, we list the three latter
quantities below in Table I for selected values of the

PHYSICAL REVIEW D 92, 104003 (2015)

leading to a fractional correction with respect to the spinless

case,
Cisco V6 5 97 2
5ISCOE?_ :l:—s+—a + ——CQ s,
LS 8 48 9 \64
(4.42)
whereas the energy and angular momentum at the
ISCO read
1 . 1 [15 o
{216 547" 216 < § CQ)S }
11 1 7
— @+ ——as+—(1-= 32, 4.4
{27 TR ( 9CQ>S] (4.43)

[
rotational parameter @ = [0,0.1,0.3,0.5,0.7,0.9], spin
parameter § = [—0.1,0,0.1] and polarizability parameter
Cp = [1,6], in the corotating case.

3. Quasicircular orbits

Let us finally construct the quadratic-in-spin solution to
the MPD equations corresponding to a quasicircular orbit,
in the perturbative sense. The initial conditions are chosen
so that the world line of the extended body has the same
starting point as the reference circular geodesic at radius
r = ro for vanishing spin. We also require that the two
world lines are initially tangent.

The orbit can be parametrized in a Keplerian-like form as
follows [60,61]

M. 0.25 A
0.25 - Coco -
ISCO // / _
a=09 a=09
0.20 1
0.20 1
0.15 1 0.157
a=0.5 a=0.5
// /—
a=0 a=0
/ .
I J—
03 -02 -001 0 01 02 03 03 -02 -01 0 01 02 03
A A
S S
(a) (b)

FIG. 5 (color online).

for different values of the black-hole spin, a/M = [0,0.5,0.9],

The behavior of the ISCO frequency as a function of the spin parameter is shown in the case of corotating orbits

and for (a) Cyp =1, as well as (b) Cy = 6.
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0.15 0.15
1SCO 4=05 1SCO
0.10 0.10
a=0
0.05 1 a=09 0.05 1
-03  -02 -0 0.1 02 03 -03 -02 -0l 01 , 02 03
s S
-0.05 -0.05 1
a=09
-0.10 7 -0.10]
a=05
-0.15 -0.15
(@) (b)

FIG. 6 (color online).

The behavior of the fractional correction to the ISCO frequency as a function of the spin parameter is shown

in the case of corotating orbits for different values of the black-hole dimensionless spin, a/M = [0,0.5,0.9], and for

(@ Cyp =1, as well as (b) Cyp = 6.

2
Fﬂ(t— ty) =¢,—e,;sint,,

r=a,(l—e.,cos?,),

p
0="=
2

’

2w

g(rﬁ — ¢) = 2arctan ( ﬂtan%), (4.44)

_e(/)

where a, is some “semimajor axis,” ¢,, e, and e, are three
different “‘eccentricities,” which would coincide in the

Newtonian theory, while P and ® denote the periods of ¢
and ¢ motions, respectively (with an abuse of notation for P,
not to be confused with the body’s 4-momentum). The
quantities ¢;, ¢, and ¢, are functions of the proper time
parameter = on the orbit. They are conveniently expressed in
terms of the dimensionless variable £ = Q. 7, where

6M 3a’ 172
Qep) = Q4| |1 =————5*+8alk
ro I 0
denotes the well-known epicyclic frequency governing the
radial perturbations of circular geodesics. The quantities 7,

(4.45)

TABLE I The numerical values for the modified ISCO position, angular velocity and shift are listed for selected values of 5 and @ in
the corotating case, for Cy = 1 (black hole), as well as C, = 6 (neutron star).

risco/ M Misco J1sco
a $=-0.1 $=0 $=0.1 T=-0.1 $=0 $=0.1 $=-0.1 $=0 $=0.1
0 6.1643 6 5.8377 0.0660 0.0680 0.0702 —0.0300 0 0.0312
0.1 5.8313 5.6693 5.5094 0.0712 0.0735 0.0759 —0.0311 0 0.0323
0.3 5.1351 4.9786 4.8248 0.0847 0.0877 0.0907 —0.0335 0 0.0348
0.5 4.3824 4.2330 4.0876 0.1046 0.1086 0.1127 —0.0365 0 0.0376
0.7 3.5259 3.3931 3.3002 0.1384 0.1439 0.1475 -0.0379 0 0.0250
0.9 24018 2.3209 2.2427 0.2194 0.2254 0.2317 —-0.0267 0 0.0277

Cyp=6

risco/ M Misco S1sco
a T=-0.1 $=0 $=0.1 T=-0.1 $=0 $=0.1 $=-0.1 $=0 $=0.1
0 6.1893 6 5.8627 0.0656 0.0680 0.0698 —0.0356 0 0.0256
0.1 5.8565 5.6693 5.5346 0.0708 0.0735 0.0755 —0.0370 0 0.0264
0.3 5.1604 4.9786 4.8501 0.0841 0.0877 0.0901 —0.0402 0 0.0281
0.5 4.4065 4.2330 4.1122 0.1038 0.1086 0.1119 —0.0438 0 0.0301
0.7 3.5438 3.3931 3.2815 0.1375 0.1439 0.1486 —0.0446 0 0.0330
0.9 2.4094 2.3209 2.2504 0.2184 0.2254 0.2306 —0.0313 0 0.0230
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), ¢4 and ¢ play the role of eccentric anomalies. Note that,
for geodesics, the above quantities reduce to a, = ry,
e,=e,=ey,=0, P=2al"y, ®=27Q, and 7, =7¢, =
¢ = ¢. For nonvanishing spin parameter ¥, the semimajor
axis and the eccentricities for the orbit of the extended body
turn out to be

a, =ry —TS‘\R’; —TS‘\ZC]? (446)
and
Qe N Qe
e =— F(ip) 5 [T?—i— S(D1§+ I'Eip) T%)},

= ﬂ’s\[ZiTﬁ +’S\<E13 +

+

(ep) 72 42
T | |, 4.47
a )} (4.47)

respectively. As for the periods of # and ¢ motions, they may
be written as

F r D T~
P=2r : |:1:F27/:tyi gK V:(‘: >§+ i52:| B
(ep) Qep) [y
Q E -
d=2r—= {IZFZyiui bk 2=l el ﬂ . (4.48)
(ep) Z.::t Q:t

There remains to display the three eccentric anomaly
parameters, 7, £, and ¢, as functions of -

2

C,=¢+ lf— [D25Qep) Sin 27 + D3z cos £},
+

£, =0+——
$24(ep)

2
f(ﬁ = f—f—Q [Q(ep) (EZ‘

+ Ex¢ cos f] .

2C2§Q e sin? — C:ﬁ\f s
(ep)
Qipﬁ T%) sin 2¢

(4.49)

3 27

—2E=-2(E-1) = u0<1 1

—2u(5)/2<1—|——

8 64

+ECQ> M0:|TS'\2 + O(M(S)),

3

2
+ u} [CQ + 6<1

L3 27 135

16 °+128

J . L2, , 2835
—=u Uy +—uy+—u
M- 270 g0 T e 0T 08
_|_
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The various coefficients entering the above formulas are
listed in Appendix E. Notice that the parametrization (4.44)
of the orbit is different from the quasi-Keplerian one, used in
Refs. [60,61], due to the presence of different parameters
representing the 7, r and ¢ motions instead of a single
eccentric anomaly. The two forms agree to first order in spin
only, as shown in Ref. [42].

At this stage, we can derive explicit expressions for the
conserved energy and angular momentum (2.15),

~ E = = =
E=—=FE, +5E; + 5 E;s,
my
~ ] - SRR
J=—= Lj: + SJ@* +5 J's\fv‘v (450)
mg
with
~ M ~ ~ M
EEZMQjE(—:FaCk)a E—-( )s=F K,
o Iy
(4.51)

and

r 2 r
Jssz—\/gqs(ﬂiV(?) |:(1_CQ)MQ(ep)+ Vé)

V+V+
m ~
+_2L:i:,
my
, my 1
{oJ —2N71(V5>)2+m—2a, (4.52)

where Z?i and Zi are the energy and the azimuthal angular
momentum per unit (bare) mass for a circular geodesic, as
given by Egs. (3.18), the parameter m, representing the spin
correction (4.8) to the mass of the body [see also Eq. (4.13)].

In the weak-field limit the previous expressions become

2

675 9 135
__MO——M%— 3>+2 5/2(1—}——140—{—?“(2))21\

27 15 5
IZ0) +§M%)§— M8<1 +7u0>21\2 + 2M8<1 +§M0>a§
5

5 63 405 -
ug)—3u0<1+5u0+8 +¥ 3>a

8 4

1 3., 27, 675 189 , 405
(1—§uo+§u3+ 4> + 3/2<1+5 Uy + ——uf +——u 3) —3ul*a%

1 1 3
—21uy? [1 +35C0 t 15 (71 += CQ>u0 +=

15 3 .
= <1 11+ ECQ> u%} 52 4+ O(u),

(4.53)
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for the corotating case. We list below the orbital elements (4.46)—(4.48) expressed in terms of the gauge invariant quantities

E and 7, related by

~ ~ ~ 243, ., 5373
J= (—2E)-1/2{1 +2(—2E) +—=(-2E)* +

8 128 1024

9 81

8

Toog (F2E) = 2(-2E)*? [1 +7 (2E) +— (—22)2} a

N 3~ 09, ., 81, 1, - 69
+ (=2E)'2|1 =2 (=2E) = = (=2E)> = — (=2E)* |5+ = (=2E)* |1 + —(-2E) |@®
2 4 8 2 8
0 45 0 . 1.~ 7 ] ~
+ (=2E)? |1 +§(—2E) as+§(—2E) Co—-3(15-2Cg (=2E) |5 + O[(-2E)*] ¢. (4.54)
so that we may write them with the help of a single parameter, e.g., the energy parameter (—2E) = X. We find
a 3. 63 1215 27135 51 5751
L=Xx1-X-—-Xx>- X3 — X))+ X214+ X +=-X*)(2a+7F
M ( 4" 716 64 256 )+ g Xty X))
63 79
—x<1 t X 183X2>a2 —X(l +ZX+213X2>22’§
Lxlc 364+°C 3(s6-Lc, \x2 |5 1 o
— EX 0~ + Z 0 X - - 5 0 X5 + (X ),
63 97 1 25
e = —6X5/2{ <1 +§X)§— x'/2 (1 + ZX)&‘?—EXW [CQ + (1 + ZCQ>X}§2 + (’)(XZ)},
41 33 1 7
e, = 3X3/2{ (1 + §X>’s‘— x'/2 <1 + 7x>a§—le/2 [CQ - <10 -3 CQ>X}§2 + (’)(Xz)},
3/2 41 S 1/2 31 ~ 1 1/2 7 2 2
ey = 6X° I+gX §—xV I+5X as—EX/ Co—(4-5Co |X|3 + O(X?) ¢. (4.55)
At last, the periods of ¢ and ¢ motions are given by
1P 15_ 855 41175 51
— = XTI+ X+ X —— X - 12X 1+ =X |a - 3X32(1 + 6X + 39X%)§
M2 { LR T TR TiyY, ( T3 )“ (1+6X+ 39X
32 2 99 3 2 59 ~2 4
P 63 405 93 57
— = 143X+ X2+ =X —ax3? 1+ X )a-6X2 (1 + =X |5
27 4 4 8 8
3 73 39 1
+ §X2 <1 + 7)()21‘2 + 6X? (1 + 7X)ﬁ?+3x2 {CQ +3 (13 + 11CQ)X}§2 +0O(X7?). (4.56)

V. CONCLUDING REMARKS

We have investigated finite-size effects on the motion of
extended test bodies, in the equatorial plane of a Kerr
spacetime, within the framework of the Mathisson-
Papapetrou-Dixon model up to the quadrupolar order. In
general, the quadrupole tensor shares the same symmetries
as the Riemann tensor and is completely specified by two
symmetric, trace-free spatial tensors, i.e., the mass quadru-
pole (electric) and the current quadrupole (magnetic) tensors,
whose role has been investigated in previous works [42,43].
Here we have considered the rotational deformation induced
by a quadrupole tensor of the electric-type only, taken to be
proportional to the trace-free part of the square of the spin
tensor, with a constant proportionality parameter which may

be regarded as the polarizability of the object. This allows us
to treat on an equal footing the cases of black holes and
neutron stars, thus generalizing previous works.

The general features of equatorial motion have been
discussed through the analysis of the associated radial
effective potentials. We have obtained their generalization
from the well-known case of a co- or counter-rotating test
monopole particle in a Kerr spacetime to that of an
extended test body with spin-induced quadrupole moment.
We have also evaluated the correction to the ISCO due to
spin and the corresponding frequency, which is an impor-
tant observable in gravitational-wave astronomy. The
presence of spin corrections introduce an uncertainty on
the values of the corresponding quantities for structureless
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particles. On the other hand, those features can be used to
determine whether the small object is endowed with a spin,
by performing an adequate parameter estimation in the
context of gravitational-wave detection.

The dynamics of the system have been studied not only
qualitatively, but also quantitatively. In fact, neglecting
terms in the MPD equations that are of third order in spin or
higher allowed us to solve the problem in a fully analytic
way. Initial conditions have been chosen so that the tangent
vector to the orbit of the extended body be initially tangent
to the 4-velocity of a timelike spatially circular geodesic,
taken as the reference trajectory. We have obtained the
“perturbative” solution to second order in spin in the
following two cases: (i) when the trajectory of the extended
body remains circular with spin-dependent frequency
and (ii) when it deviates from circular motion because
of the combined effects of both the spin-curvature and
quadrupole-curvature couplings (i.e., when the orbit is
“quasicircular”). The tangent vector to the orbit and the
unit timelike vector aligned with the 4-momentum are, in
general, distinct. However, there exists a special value of
the polarizability constant, which corresponds to the black
hole case, such that they are aligned not only initially, but
all along the (circular) trajectory of the extended body. This
is no longer true for neutron stars, an interesting fact which
seems to have never been pointed out before. For quasi-
circular orbits, we have explicitly written down the solution
in a Keplerian-like form, by introducing the temporal,
radial and azimuthal eccentricities of the orbit, as well as
the associated periods and frequencies. We have also
computed the spin-induced shift of the conserved energy
and angular momentum, in a gauge-invariant way. All
orbital elements have been expanded in the weak-field and
slow-motion limit, in a more suitable form to be compared
with the existing post-Newtonian literature.
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APPENDIX A: 1+ 3 DECOMPOSITION OF THE
QUADRUPOLE TENSOR

Let us consider an orthonormal frame adapted to an
observer family characterized by the 4-velocity u (with
normalization wu-u=—1), say ey=u and {e,},
a =1,2,3, a triad of three unit spatial vectors orthogonal
to u. We shall introduce the compact notation X3 u® =
X,p... for tensor contraction. In addition, we shall denote by

*X/)ﬂ.“ = %naﬁ/mxaﬂ.“ and Xf.;w = %X...yﬁﬂyﬁ;w the left and
right dual of a tensor, respectively. The standard 1+ 3
decomposition of the Riemann tensor in terms of its electric
(spatial and symmetric) part E(u), its magnetic (spatial and
trace-free) part H(u), and its mixed (spatial and symmetric)
part F(u), defined by

PHYSICAL REVIEW D 92, 104003 (2015)
H(u)a/j:—R F(u)a/j:*R*

aupu’

(A1)

E(u)a/j = R(lu/)’w

*
aufu’

respectively, leads to the identification of the 20 original

independent components: 6in E(u), 8 in H(u) and 6 in F (u).
Similarly, since the algebraic symmetries of the quadru-

pole J 4,5 are the same as for R 5,5, one can decompose the

former quantity in terms of the associated tensors

Q(u)aﬁ = Jau/)’ua

W(“)a/}' = _‘];uﬂu’ M(”)a[)’ ="J5

aufu’

(A2)

In so doing, we identify its electric (spatial and symmetric)
part Q(u), with 6 independent components, its magnetic
(spatial and trace-free) part WW(u), with 8 independent
components, and its mixed (spatial and symmetric) part
M(u), with 6 independent components. However, J enters
the MPD dynamics only in certain combinations, through
specific contractions with the Riemann tensor or its deriva-
tive. Hence, the number of effective components needed is
reduced by half, as shown in detail in Refs. [41,42]. The
proof requires the replacement of the mixed part M (u«) by a
new tensor X'(u) (with the same symmetries), according to

M(u) = Qu) + X(u), (A3)
as well as the decomposition of both X(u) and W(u) in
terms of their STF and pure-trace parts,

() = ()™ 4% [T (w)]P(u),

W) = W)™ + 3 [TV ()] P(w), (Ad)

where [P(u)]”; = 8% + u“uy denotes the projector to the
hyperplane orthogonal to u. Inserting the resulting expres-
sion for J into the equations of motion then cancels the
contribution of Q(u), which yields the following “effective”
representation of the quadrupole tensor (valid only in the
context of the MPD model):

TP, 5 =n(u)Pn(u),s* [X()]a" +2ul* DV ()5 n(u)° 5
+ 20, W) ST 5 n(1)° g5 (AS)
with7(u),5, = u"1,4p, defining the space 3-volume form (see
Sec. II). Summarizing, in basis components, we can write
SO0 = [X(u)STF],,
= [W(”)STF]ad’?(“)dbc = [W(“)STF]*(")ahu
() () o [X ()5, = [FUO[X (u) ST W)ab .

Joabc
Jabcd rs T
(A6)
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For convenience, we actually use the following notation:

Xu)STF = X(u),  Wu)STF = W(u). (A7)

APPENDIX B: 1+ 3 DECOMPOSITION OF THE
MPD EQUATIONS

It is useful to perform a 1 + 3 splitting with respect to U
of the MPD equations (2.1)—(2.2). A key observation is that
the force term on the right-hand side of the first equa-
tion (2.1) is not spatial for the comoving observer with 4-
velocity U, since F(g) - U =0 whereas F(guq) - U # 0.
Recalling that the operator P(U)“; = 6% + U*Up repre-
sents a projector perpendicularly to U, we see that

Dp* 1 D
dr Ff(lspin) + [P(U)F (quag " + 6 Uk Jebre &Ruﬂﬁ

de 1 D -
EF(U)?“)[)+U”F_6UMR(1/}}/6&J /j}/é, (Bl)
where the force
F(U)I(l[()[) = F’?gp]n) + [P(U)F(quad)]ﬂ
= [P(U)(F (spin) + F(quaa))} (B2)

is orthogonal to U and the mass correction m; has been de-
fined in Eq. (2.13). In a second stage, we get from Eq. (B1),

DP”—U”de:

1
—_— —=F(U" . ——-U*R
dr dr ()

D
(o) g apys a'] 7. (B3)

or, equivalently,

DP* dm; 1 D

U — A _Ja/iyﬁ’
T dr 6wy
DP*
PO) || = F 0 (B

which follows from projecting Eq. (B3) along U and
perpendicularly to U.

APPENDIX C: ZAMO RELEVANT QUANTITIES

We list below the nonvanishing components of the
electric and magnetic parts of the Riemann tensor, as well
as the relevant kinematical quantities as measured by
ZAMOs and evaluated in the equatorial plane.

The spin force is given by Eq. (3.25) with

1
F (spin
2
F(spin

— [cos a, (1 4+ vy, cos(a, — a)) — 2wy, cosa)|H.p},

PHYSICAL REVIEW D 92, 104003 (2015)

The radial components of the acceleration and expansion
vectors are given by

M (r* +d?®)?* —4a’Mr
P2VA P+ adtr+2aPM
aM(3r* + a?)
2 (r} + d*r +2a’M)’

a(n)”

)

05(n) = - (1)

respectively. The expressions for the radial components of
the curvature vector are

. Mr-a? N VA
P = 0.n) = -
k(r,n) 2a k(0,n) 2
(r* = a*?M)VA
kie) = — (C2)

r2(r? + a’r+2a’M)’

Finally, the nontrivial components of the electric and
magnetic parts of the Riemann tensor with respect to
ZAMOs read

M(2r* + 5r?a® — 2a*Mr + 3a*)

Eor— — ,
o (3 + a*r +2a’M)
M
Epp = —E35 — B EG5 =73
3Ma(r* + a*)VA
Hyg=— (C3)

(P + a’r+2a’M)’

In the limit of the vanishing rotation parameter (a — 0),
the previous quantities reduce to

~ M - N
a(n) :W, 9@(”) =0, k(Lie) =T
2M
Esr=—"r, H.=0, c4
rr r3 70 ( )
with N = /T = 2M]r.

APPENDIX D: FRAME COMPONENTS OF BOTH
SPIN AND QUADRUPOLE TERMS

We list below the explicit expressions for the compo-
nents of both spin and quadrupole terms with respect to the
frame adapted to u.

)= 577 {vy cos 2a,Ex; + [vcos(a, — a) + v,co8?a,)Ey; + sina, [1 + vy, cos(a, — a)|Hsp},

)= —sgn(v,)syri{v,[sin 2a, — v, sin(a, + a)|Es; + [vsin(a, — a) + v, cos a,(sina, — vy, sina)|Ey;

(D1)
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the remaining component F” ) following from the condition F ) - U =0, i.e.,

(spin
Yu(1 = vy, cos(a, — a))F(()Spm) = Féspin)y sin(a, — a) + sgn(yu)F%Spin)yu(—uu +vceos(a, —a)). (D2)
On the other hand, the spin quantity Dy, takes the form of Eq. (3.26), with
g(spin)(u) = m}/[l/ Sin(au - a)wl + Sgn(yu)yu(y cos(au - (X) - Vu)a)z]' (D3)

Concerning the quadrupole contributions, one gets for the components of the force (3.25):

12 2
F%qUad) = —Z%CQ{yﬁyu[bluu sin3a, + 2(b4 cos 2a, + bs)] — [(bl —2by)y% — by + 3 (by + b3)] sin au},
152 .
F%quad) = —sgn(v,) i Coruq biyvivicos3a, + 2[(a; — by)ya — ai]y, sin 2q,
2
+ |:(bl +2¢3)ri — by — 5(01 + 02)} COS%}’ (D4)
with

by = —(Egg + 2E52)k(Lie) + 2Hp05(n)" — %5'71‘3@@,

by = —2(Epp + 2Ew;)k(Lic) — 2H;505(n)’,

by = Hopk(Liey — 3E5505(n)" + 0:H,

bs = Hypk(ie) = (Egp + 2E27)05(n)" = OpHyp, (D5)
0

as well as ¢; = ¢3 + 2a,, ¢y = c3— b, and ¢3 = [7b, + 4a, + 6(b; — 2b3)]/5, whereas Flquay may be obtained by
requiring that the coordinate component F'(q,q), = 0 vanishes, which implies

N¢
VYo [F!

N (quad)

0= yM(F?quad) + sgn(yu)qu%quad)) + cosa, — ¥, sin au(qu(()quad) + sgn(uu)F%quad))]. (D6)

Finally, the torque tensor D’(‘gua 4y’ whose structure is displayed in Eqs. (3.26)—(3.27), is such that

2
s )
E(quad); = - Corucosa,[v, sina,(2E; + Ezp) — Hapl,

2
s .
& (quady, = sgn(v,,) — Coralv, cos2a,Ex; + v,(1 + cos’a, ) Epp + sina, (1 + v2)H,y). (D7)

1. The Schwarzschild limit

We list below the corresponding expressions of both spin and quadrupole terms in the limit of vanishing Kerr spin
parameter.
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The spin force (3.25) becomes Finally, for the torque term as shown in Eq. (3.26), we have
M . 3M
F (spin) = r37}’us{3}’ul/u sina, (vcosa — v, cosa, )u € quat) = - 52 CQYuVu sin 2, [0’
1 _ 2
"‘5[’/“(1 —3cos2a,) + 2vcos(a, — a)le sgn (v )y tan o, @”). (D11)
1
- 5 Sgn(”u)yu[(z + 1/3)1/ Sin(au - a)
+ 3v, (v, sin(a, + a) —sin2a, e, } (D8) APPENDIX E: QUASICIRCULAR ORBITS:
COEFFICIENTS
whereas the spin quantity D,y is still given by Eq. (3.26) We list below the various coefficients entering the
with components (D3). quasicircular orbit solution (4.44):
The quadrupole force (3.25) reduces to
VA
Fiqu) = Flguaa@1 + Flguag [-sgn()vu + €], (D9) Re=1+7 a. )Vé)’
0
— : 2
where. Yul—sgn(v,)v,u + e,] represents a unitary and T — 2 vive Ck Vf (E1)
spacelike vector orthogonal to n and N Q% 0
3MN s> 1 .
F(lquad) ==, Corisina, {1 - Euﬁ(l + 5cos 2au)] ,  with
3MN s* M\/— 2
F? . =-sgn(v,) —Cor? o Ayrlt -
(quad) 2M m 5 ’”09 N N2\ Frolk | (E2)

1
X COs a, {1 + =

2142,(3 —5cos 2(1”)} (D10)

and

\/_ ; -
Cis= PSR {Vi(BlsQ(ep) - Bx) + yi(Vé ))2<’<(”’ n)" + k(Lic))}’
T03%(cp)
\/K Y+ 7 (r)
Cor =15y {vaBis = 0 el + ki) 7
2r0Qep) 2Q(ep) e
VA
Css Y+l Q—Bﬁ»
T034(ep)
V(")
Dy = F2r40% ? ) (B15Q(ep) — 2B35) + WQ%) {yi’/:th ¢k - Q%ep))
ep

. 2v48 r
+ MQ(ep)}/iV,(s\) |:] szz K ((31/2i - 4)k(Lie) + 6in_,’K)] + 2yilji(V§\ ))2}’
(ep)
O T SN ¢ Y ()0} e B L= T E A 18
2NQ§ o) : 4NQ%CP) s 4MQp) Q(ep)
Dy = F2y507% NQ[% )Bﬁv Dys = =Qep) (D15 + 2Dy5) — D3s,
ep

7 T+ (M2 7 V< ("2

E;=0Dy——x=——0V5") Eyy=(. Dy +——"-—(5"),
Vi \/GppS(ep) Wi \/940 % ep)

E3; = (. Dy, Ep={.Dg+ S (Vér))27 (E3)

2V4\/9
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where
Bs; 1 =1 =2 Vy) {}’i 471 (r)
Bz = —2B; — - Flouad) £ Cxk€ilquaa)) + —— | == £ MCx + ——— (vakLioF3¢k) VY2,
1 2 Q(ep) 7j:V:I:Q(ep) ( (quad) K¢<(q ad)) vy v K 3MQ%ep)( +”(Lie) K)( )
2 2
, ri (r) 20 >
By = (Vé)y{i(yik(Lie):F:;é’K)Vi + (k(Liey F2r2v+Lk)
S, D
Y+ k(Lle) 73: 2 }
- — = |V 87E"" + 2u 87H?A - 87E/;’; s
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