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A B S T R A C T 

The space missions designed to visit small bodies of the Solar system boosted the study of the dynamics around non-spherical 
bodies. In this vein, we study the dynamics around a class of objects classified by us as non-spherical symmetric bodies, including 

contact binaries, triaxial ellipsoids, and spherical bodies with a mass anomaly, among others. In this work, we address the results 
for a body with a mass anomaly. We apply the pendulum model to obtain the width of the spin–orbit resonances raised by 

non-asymmetric gravitational terms of the central object. The Poincar ́e surface of section technique is adopted to confront our 
analytical results and to study the system’s dynamics by varying the parameters of the central object. We verify the existence of 
two distinct regions around an object with a mass anomaly: a chaotic inner region that extends beyond the corotation radius and a 
stable outer region. In the latter, we identify structures remarkably similar to those of the classical restrict and planar three-body 

problem in the Poincar ́e surface of sections, including asymmetric periodic orbits associated with 1:1 + p resonances. We apply 

our results to a Chariklo with a mass anomaly, obtaining that Chariklo rings are probably related to first kind periodic orbits and 

not with 1:3 spin–orbit resonance, as proposed in the literature. We believe that our work presents the first tools for studying 

mass anomaly systems. 

Key words: celestial mechanics – Kuiper belt objects: individual: (10199) Chariklo – minor planets, asteroids: general – planets 
and satellites: dynamical evolution and stability – planets and satellites: rings. 
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 I N T RO D U C T I O N  

n the last three decades, the acquisition of data on the shape of
mall heliocentric bodies, by ground- and space-based observations
Hudson & Ostro 1995 ; Hanu ̌s, Marchis & Ďurech 2013 ; Hanu ̌s
t al. 2017 ) and by space-mission explorations – such as OSIRIS-
Ex and Hayabusa spacecraft (Yoshikawa et al. 2015 ; Lauretta et al.
017 ) – fostered the study of the dynamics around these bodies. This
lass of objects, which involves asteroids, trans-Neptunian objects,
entaurs, and comets, characteristically has diameters of less than
000 km (Jorda et al. 2016 ). Due to their small sizes, these bodies
o not have enough mass to reach hydrostatic equilibrium, showing
rregular and asymmetric shapes. 

The development of space missions was a strong moti v ation
or the search of equilibrium regions around irregular bodies, as
ccomplished, e.g. by Scheeres, Williams & Miller ( 2000 ), which
btained stable orbits around the asteroid 433 Eros for the spacecraft
EAR-Shoemaker (Prockter et al. 2002 ). Some other works with

uch purpose are Yu & Baoyin ( 2012 ), Shang, Wu & Cui ( 2015 ),
ang, Li & Gong ( 2016 ), Winter et al. ( 2020 ), and Moura et al.

 2020 ). The disco v ery of satellites and rings around this class of
bjects was also justifications for the interest in the stability of
 E-mail: gusta v o.o.madeira@unesp.br (GM); giuliatti.winter@unesp.br 
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rregular bodies systems (Chapman et al. 1995 ; Merline et al. 2002 ;
raga-Ribas et al. 2014 ; Ortiz et al. 2017 ). 
When investigating the motion around irregular bodies, it is

ssential to consider the gravitational field generated by their odd
hape. One method used for this is to approximate the irregular
hape to a symmetric one – such as a MacLaurin spheroid or a triaxial
llipsoid – which allows studying the system theoretically or through
ow-cost simulations. Another course of action is to decompose the
rregular body into a set of regular polyhedra (Polyhedron Shape

odel; Werner 1994 ) or mass points (Mascon Model, Geissler et al.
996 ). Despite the high level of accuracy, this methodology has a
igher computational cost. 
In the current and subsequent works, we study the dynamics

round a class of objects classified by us as non-spherical sym-
etric bodies (NSSBs): contact binaries, triaxial ellipsoids with

niform density, and spherical bodies with a mass anomaly. The
otion around NSSBs has already been studied in some articles,

uch as Lages, Shepelyansky & Shevchenko ( 2017 ) that analysed
he stability around contact binaries through a generalized Kepler
ap technique (Meiss 1992 ; Shevchenko 2011 ), obtaining chaotic

ravitational zones around the central body, similar to those found
or symmetrical elongated bodies (Mysen, Olsen & Aksnes 2006 ;

ysen & Aksnes 2007 ). Their results are appliable to the asteroids
43 Ida and 25143 Itokawa (Lages et al. 2017 ). 
Lages, Shevchenko & Rollin ( 2018 ) also use the Kepler map

echnique to study the chaotic region around cometary nuclei of
© 2021 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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Figure 1. Schematic diagram of the trajectory of a particle around a spherical 
object with a mass anomaly at its equator. The trajectory is fixed in the rotating 
frame with the central body’s angular velocity ω. x 0 is the initial position of 
the particle, and the red arrow indicates the initial velocity. 
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umb-bell shape, obtaining that such region is responsible for 
ngulfing most of the Hill sphere of Comet 1P/Halley. Amarante 
 Winter ( 2020 ) studied the dynamics around 486958 Arrokoth, 

n object similar to a contact binary, using a Polyhedron Shape 
odel and found an unstable zone in the equatorial region of the

steroid. Rollin, Shevchenko & Lages ( 2021 ) obtain that the particles
n the equatorial plane of 486958 Arrokoth are lost due to the
haotic diffusion of the orbits, which results in collisions or particle 
jection. Interestingly, Rollin et al. ( 2021 ) also obtain theoretical 
umb-bell-shaped objects with certain combinations of mass and 
pin period that host not a complete chaotic zone, but a chaotic
ing. 

The dynamics around triaxial ellipsoids were previously studied by 
cheeres ( 1994 ) and Vantieghem ( 2014 ), and in particular by W inter ,
orderes-Motta & Ribeiro ( 2019 ), who analysed the motion around 
36108 Haumea, an ellipsoidal-shape object. This dwarf planet is 
articularly interesting due to its complex system that includes a 
air of satellites, Hi’iaka and Namaka, and a ring (Ragozzine & 

rown 2009 ; Ortiz et al. 2017 ). The non-asymmetric terms of the
ravitational field of the NSSBs create strong resonances between 
he orbital period of the ring particles and the spin of the central
ody. Ortiz et al. ( 2017 ) propose that the Haumea ring would be
ssociated with the 1:3 resonance. Ho we ver , W inter et al. ( 2019 )
sing the Poincar ́e surface of sections showed that this resonance is
oubled, generating a large chaotic region in the resonance separatrix. 
onsequently, the ring is not associated with the 1:3 resonance but 
robably with first kind periodic orbits. 
10199 Chariklo is another irregular body with a complex system 

nvolving a pair of narrow rings and possibly small satellites (Braga-
ibas et al. 2014 ; B ́erard et al. 2017 ). The shape of Chariklo is

till not well kno wn. Observ ational data suggest triaxial and Jacobi
llipsoid shapes for the object (Lei v a et al. 2017 ). Sicardy ( 2020 )
iscusses the possibility of Chariklo to be a sphere with topographical
eatures of a few kilometres, i.e. an object with a mass anomaly.
ssuming a spherical Chariklo with a mass anomaly, Sicardy et al. 

 2019 , 2020 ) show that particles inside the corotation radius migrate
n to the body, and the outer material is pushed beyond the 1:2
esonance. 

Here, we apply some well-known techniques to study the dynamics 
round a spherical body with a mass anomaly. Relations for the width
nd location of the spin–orbit resonances, also known as sectoral 
esonances, are presented. The dependence of resonances on the 
entral body parameters is analysed. The Poincar ́e surface of section 
echnique is also applied to the system for analysing the stability 
f the particles. We advance the reader the existence of a chaotic
egion near the object with a mass anomaly. This re gion e xtension is
easured, and an adjusted equation is obtained as a function of the

ystem parameters. 
In Section 2, we present the disturbing function of our case of

nterest. In Section 3, we follow the prescription of the pendulum 

odel developed by Winter & Murray ( 1997a ) and Murray &
ermott ( 1999 ) for the restricted planar three-body problem (RP3BP)

o obtain an analytical recipe for the location and width of the spin–
rbit resonances. Section 4 presents the the Poincar ́e surface of
ection technique (H ́enon 1965a , b , 1966a , b , 1969 ; Jefferys 1971 ). In
ection 5, we identify, through numerical simulations, stable regions 
nd give an overview of the system. In Section 6, we use the Poincar ́e
urface of section technique to confront our analytical model and 
tudy the spin–orbit resonances in details. We apply our results to 
hariklo in Section 7, exploring the dynamics around the object, in 
articular in the region of the rings. We address our final comments
n Section 8. 
 DY NA M I C A L  SYSTEM  

n this work, we analyse the dynamics of particles orbiting a
ypothetical spherical object of mass M and radius R , with a mass
nomaly m a at its equator (Fig. 1 ). We assume the object with a
niform mass distribution, where the masses M and m a have the same
ulk density ( ρ = 1 g cm 

−3 ). The object is also assumed to rotate
ith constant angular velocity ω ( ω = 2 π / T , where T is the rotation
eriod) without wobbling motion. For simplicity, we will express our 
hysical quantities in the following units: GM = 1, while R = 1 is
he distance between the system centre and the mass anomaly. We
lso define as a unit the Keplerian frequency of the mass anomaly,
caled by the density ρ of the object: 

 k = 

√ 

GM 

R 

3 
= 

√ 

4 πGρ

3 
= 1 . (1) 

wo dimensionless parameters will define our dynamic system: the 
ormalized mass anomaly μ = m a / M and the rotating rate λ = ω / ω k .
Equations of motion in a frame Oxy rotating with the same period

s the central body’s spin are given by (Scheeres et al. 1996 ) 

¨ − 2 λẏ = λ2 x + U x (2) 

nd 

¨ + 2 λẋ = λ2 y + U y , (3) 

here U x and U y stand for the partial deri v ati ves of the gravitational
otential. 
The potential acting on a particle with position vector � r = x ̂  x + y ̂  y 

 r = | � r | ) in the rotating frame is obtained by adding the gravitational
otential of the spherical portion of the object – at the centre of the
ystem – with the gravitational potential of the mass anomaly, located 
t � R = ˆ x (Sicardy et al. 2019 ): 

( r) = −1 

r 
− μ

| � r − ˆ x | + λ2 μ( � r · ˆ x ) . (4) 

ote that the potential given in equation (4) differs from that acting
n a particle in the RP3BP (Murray & Dermott 1999 ) by the rotating
arameter λ2 in the indirect term. While the secondary mass in 
P3BP surrounds the central body with Keplerian velocity ω k , here

he mass anomaly rotates with angular velocity λω k . We introduced
he rotating parameter to correct this difference. 

Similar to the dynamics of a particle in the RP3BP with a disturbing
nternal body, we obtain the expansion of the potential U for the
owest order terms in eccentricity ( e ) as 

 = −1 

r 
−

∞ ∑ 

j= 0 

∞ ∑ 

m =−∞ 

μe j 
[
αF j b 

( m −j ) 
1 / 2 ( α) + 

λ2 

α
f j δ| m | , 1 

]
cos φ, (5) 
MNRAS 510, 1450–1469 (2022) 
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Table 1. The linear operators f j and F j for j ≤ 5. The deri v ati ve operator D is given by D = d/d α. 

j f j F j 

1 − 1 
2 

1 
2 [( −1 + 2 m ) + αD ] 

2 − 3 
8 

1 
8 [(2 − 7 m + 4 m 

2 ) + ( −2 + 4 m ) αD + α2 D ] 

3 − 1 
3 

1 
48 [( −6 + 29 m − 30 m 

2 + 8 m 

3 ) + (6 − 21 m + 12 m 

2 ) αD + ( −3 + 6 m ) α2 D + α3 D 

3 ] 

4 − 125 
384 

1 
384 [(24 − 146 m + 211 m 

2 − 104 m 

3 + 16 m 

4 ) + ( −24 + 116 m − 120 m 

2 + 32 m 

3 ) αD + (12 − 42 m + 24 m 

2 ) α2 D + 

+ ( −4 + 8 m ) α3 D 

3 + α4 D 

4 ] 

5 − 27 
80 

1 
3840 [( −120 + 874 m − 1595 m 

2 + 1110 m 

3 − 320 m 

4 + 32 m 

5 ) + (120 − 730 m + 1055 m 

2 − 520 m 

3 + 80 m 

4 ) αD + 

( −60 − 290 m − 300 m 

2 + 80 m 

3 ) α2 D + (20 − 70 m + 40 m 

2 ) α3 D 

3 + (5 + 10 m ) α4 D 

4 + α5 D 

5 ] 
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here α = 1/ a < 1 ( a = semimajor axis of the particle), b ( m ) 
1 / 2 is the

aplace coefficient, f j and F j are linear operators (Table 1 ; Murray
 Dermott 1999 ; Ellis & Murray 2000 ), δ| m | ,1 is the Kronecker

elta, and φ is a characteristic angle of the system relating the
otation of the central object with the longitudes of the particle.
he characteristic angle associated with the sectoral resonances is
resented in Section 3. 
In conserv ati ve systems, such as those analysed in this work, the

acobi constant C J is a conserved quantity used to obtain the Poincar ́e
urface of sections. It is expressed here in the units R 

2 ω 

2 
k and is given

y (Scheeres et al. 1996 ) 

 J = λ2 ( x 2 + y 2 ) + 2 U ( x , y ) − ẋ 2 − ẏ 2 . (6) 

 S E C TO R A L  R E S O NA N C E S  

t the planar limit, a pair of fundamental frequencies describe the
otion of a particle: the synodic and radial epicyclic frequencies. The
rst, n − ω ( n = angular frequency of the particle), corresponds to the
requency of the particle’s return to a fixed position on the rotating
rame. The second, κ = n − �̇ , is the frequency of the particle’s
eturn to its pericentre, being �̇ the deri v ati ve of the particle’s
ongitude of pericentre. If these frequencies are commensurable, the
article is in a sectoral resonance – spin–orbit resonance – with the
entral body. Once in resonance, the orbital evolution of the particle
ill be modelled by the energy balance provided by the resonant

onfiguration. Sectoral resonances with real non-spherical bodies
ere studied in Borderes-Motta & Winter ( 2018 ) and Winter et al.

 2019 ) for the asteroid 4179 Toutatis and the dwarf planet Haumea,
espectively. 

A particle at the centre of an m :( m − j ) resonance satisfies the
esonance condition (Sicardy et al. 2019 ) 

ω − ( m − j ) n − j �̇ = 0 , (7) 

here m and j are integers responsible for giving the commensu-
ability of the frequencies. For j = 0, the particle is in corotation
esonance, while for j = m , we have the apsidal resonances. Both
ases are out of the scope of this work (for details, see Sicardy et al.
019 ) and here we will focus on resonances with j ≥ 1, where the
umerical value of j gives the order of the resonance. 
When a particle is in an m :( m − j ) resonance, the characteristic

ngle φ – also called resonant angle – librates with an amplitude
ower than 360 ◦. The angle is given by 

= mωt − ( m − j ) λp − j�, (8) 

here λp is the mean longitude of the particle. For simplicity, we
gnore variations in the mean longitude of epoch. 
NRAS 510, 1450–1469 (2022) 
.1 Resonance location 

he angular and radial epicyclic frequencies are given by (Chan-
rasekhar 1942 ) 

 

2 = 

1 

r 

d U 0 

d r 
(9) 

nd 

2 = 

1 

r 3 

d( r 4 n 2 ) 

d r 
, (10) 

here U 0 is the axisymmetric part of the gravitational potential
 j = m = 0). 

From equation (5), we obtain 

 0 = −1 

r 
− μ

2 r 
b 

(0) 
1 / 2 ( α) . (11) 

Expanding the Laplace coefficient up to second order in α, 

1 

2 
b 

(0) 
1 / 2 ( α) = 1 + 

1 

4 
α2 , (12) 

e obtain the axisymmetric part of the gravitational potential for the
pherical body with a mass anomaly: 

 0 = −1 

r 

(
1 + μ + 

μ

4 
α2 

)
. (13) 

Keeping the lowest order terms in μ in equations (9) and (10), we
btain 

 

2 = 

1 

r 3 

(
1 + μ + 

3 μ

4 
α2 

)
(14) 

nd 

2 = 

1 

r 3 

(
1 + μ − 3 μ

4 
α2 

)
. (15) 

The location of the resonances can be obtained by numerical
ethods, such as the Newton–Raphson method (see Press et al.

988 ; Renner & Sicardy 2006 ), by applying equations (14) and (15)
n the resonance condition (equation 7). Table 2 shows the location
f the resonances in the ranges −4 ≤ m ≤ 4 and j ≤ 5 (up to fifth-
rder resonances). The central body is a Chariklo-type body with
= 10 −3 and λ = 0.471 ( M = 6.3 × 10 18 kg and T = 7.004 h;

ei v a et al. 2017 ), defined as our reference object. We assume μ =
0 −3 as a reference value because it is small enough for the centre of
he system to be approximately the physical centre of the spherical
ortion and large enough for the effects of the mass anomaly to be
bserved. 
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Table 2. The location of the m :( m − j ) resonances in the ranges −4 ≤ m ≤ 4 and j ≤ 5. We assumed a central body with 
parameters based on the centaur Chariklo, with λ = 0.471 and μ = 10 −3 (reference object). The resonances marked 
‘inside’ occur within the physical radius of the central body and, therefore, do not exist in the considered system. The 
resonances marked as ‘apsidal’ are out of the scope of this work. 

j m → −4 −3 −2 −1 1 2 3 4 

1 Resonance 5:6 4:5 3:4 2:3 1:2 1:0 2:1 3:2 
a / R 1.909 1.993 2.156 2.612 Apsidal Inside 1.256 1.358 

2 Resonance 5:7 4:6 3:5 2:4 1:3 1: −1 2:0 3:1 
a / R 2.156 2.313 2.612 3.423 Inside Apsidal Inside Inside 

3 Resonance 5:8 4:7 3:6 2:5 1:4 1: −2 2: −1 3:0 
a / R 2.389 2.612 3.031 4.146 Inside Inside Apsidal Inside 

4 Resonance 4:8 3:7 2:6 1:5 1: −3 2: −2 3: −1 4:0 
a / R 2.612 2.895 3.423 4.811 Inside Inside Inside Apsidal 

5 Resonance 4:9 3:8 2:7 1:6 1: −4 2: −3 3: −2 4: −1 
a / R 2.825 3.164 3.793 5.433 Inside Inside Inside Inside 
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.2 Resonance width 

n this subsection, we follow the classical approach of the pendulum 

odel, presented in Winter & Murray ( 1997a ) and Murray & Dermott
 1999 ), to obtain the resonance width for our case of interest. A
article is in an m :( m − j ) sectoral resonance when its resonant angle

librates, which means that the particle oscillates in the rotating 
rame around the central position of the resonance (equation 7). We 
an e v aluate the maximum amplitude of a resonant particle through
he temporal variations of φ: 

˙ = mω − ( m − j ) n − j �̇ (16) 

nd 

¨ = −( m − j ) ̇n − j �̈ . (17) 

onsidering only the lowest order terms in eccentricity ( e ), we obtain
sing the Lagrange’s equations (Murray & Dermott 1999 ) 

˙ = −3 nC r ( m − j ) e j sin φ (18) 

nd 

˙  = je j−2 C r cos φ, (19) 

here 

 r = μ
n 

α

[
αF j b 

( m −j ) 
1 / 2 + 

λ2 

α
f j δ| m | , 1 

]
. (20) 

From equation (19), we obtain that the second deri v ati ve of � is 

¨  = j ( j − 2) e j−3 ė C r cos φ − je j−2 C r sin φφ̇, (21) 

here the time variation of eccentricity ( ̇e ) obtained through La-
range’s equations is ė = −je j−1 C r sin φ. 
It can be shown that 

¨  = j 2 e 2( j−2) C 

2 
r sin jφ − je j−2 C r ( mω − ( m − j ) n ) sin φ. (22) 

herefore, 

¨ = −j 3 e 2( j−2) C 

2 
r sin 2 φ + 3 nC r ( m − j ) 2 e j sin φ

+ j 2 e j−2 C r ( mω − ( m − j ) n ) sin φ. (23) 

By inspection, we can e v aluate the contribution of each term of
quation (23). The C r function is proportional to μ, a value lower
han one. In fact, for high values of mass anomaly ( μ � 10 −2 ), we
annot assume the centre of mass of the system as the physical centre
f the spherical object, and equation (5) is no longer applied – this
ange of μ defines another NSSB, the contact binary. Since μ < < 1,
he term that depends on C r will dominate those dependent on C 

2 
r , in

rinciple. For first-order resonances ( j = 1), the first and third terms
n equation (23) are proportional to 1/ e 2 and 1/ e , respectively – e is a
mall value – and dominate o v er the second term, proportional to e . 

.2.1 Second and higher order resonances 

or second and higher order resonances, the eccentricity exponents 
n equation (23) are positive, and we can approximate the equation
o 

¨ + ω 

2 
0 sin φ = 0 , (24) 

here ω 

2 
0 = 3 n | C r | ( m − j ) 2 e j . To obtain this result, we have as-

umed m ω − ( m − j ) n ≈ 0 since the particle is in resonance. 
From equation (24), we can see that a resonant particle is

onfined in a pendulum motion around an equilibrium position of 
he resonance. The number of equilibrium positions of an m :( m − j )
ectoral resonance is j . Analogous to the simple pendulum problem,
he particle reduced energy in the rotating frame is 

 = 

φ̇2 

2 
+ 2 ω 

2 
0 sin 2 

φ

2 
. (25) 

The maximum possible energy of the pendulum ( ̇φ = 0 deg and
= 90 deg) defines the separatrix between libration and circulation 

f the resonant angle. That is, the separatrix corresponds to the
oundary between bounded and unbounded motions. The energy 
f such trajectory is E = 2 ω 

2 
0 , and the temporal variation of the

esonant angle is φ̇ = ±2 ω 0 cos ( φ/ 2). 
Relating φ and n : 

 n = 

ṅ 

φ̇
d φ = ±

√ 

3 n | C r | e j sin 
φ

2 
d φ, (26) 

e obtain, by integration, the range of angular frequency in which a
article is in an m :( m − j ) sectoral resonance: 

 = n 0 ±
√ 

12 n | C r | e j cos 
φ

2 
, (27) 

here n 0 is the central angular frequency of the resonance. 
Therefore, a particle is in a second or higher order resonance if its

emimajor axis meets the relation: 

 = a 0 ±
(

16 

3 

| C r | 
n 

e j 
)1 / 2 

a 0 , (28) 

here a 0 is the central semimajor axis of the resonance (Section 3.1).
MNRAS 510, 1450–1469 (2022) 
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Figure 2. Poincar ́e surface of section for C J = 2 . 032 R 

2 ω 

2 
k around an object 

with μ = 10 −3 and λ = 0.471. The black islands are quasi-periodic orbits 
associated with the periodic orbit of first kind. Blue islands are associated 
with the 1:3 resonance and the green ones with the 2:7 resonance. The red 
points are chaotic orbits that cross the phase plane irregularly. 
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.2.2 First-or der r esonances 

or m :( m − 1) resonances, none of the terms in equation (23) can
e disregarded, requiring a different solution than the one obtained.
s ansatz , we assume a solution similar to equation (27), n = n 0 +
 cos ( φ/2), where k is an as-yet-unknown constant. By integrating
quation (23), we obtain the kinetic energy of the system 

1 

2 
φ̇2 = 

∫ 
φ̈d φ = 

C 

2 
r 

e 2 

(
2 cos 2 

φ

2 
+ cos 2 φ

)
+ 

− 6 nC r ( m − 1) 2 e cos 2 
φ

2 
+ 

4 

3 

C r 

e 
( m − 1) k cos 3 

φ

2 
, (29) 

here the constant arising from the integration was determined
onsidering φ = 0 and 180 deg. 

Applying n = n 0 + k cos ( φ/2) to equation (16) and assuming
hat the particle is exactly at the centre of the resonance ( φ = 0 and
80 deg), we find that m ω − ( m − 1) n 0 = −C r / e . From equation (16),
e get 

1 

2 
φ̇2 = 

1 

2 

C 

2 
r 

e 2 
(1 + cos φ) 2 + 

1 

2 
( m − 1) 2 k 2 cos 2 

φ

2 

+ 

C r 

e 
(1 + cos φ)( m − 1) k cos 

φ

2 
. (30) 

aking equations (29) and (30) as equal and assuming φ = 0 deg: 

 m − 1) 2 k 2 + 

4 

3 

C r 

e 
( m − 1) k + 12 nC r ( m − 1) 2 e = 0 . (31) 

Therefore, the boundaries of the angular frequency and semimajor
xis in which a particle is in a first-order resonance are, respectively, 

 = n 0 ±
√ 

12 | C r | ne 

(
1 + 

1 

27( m − 1) 2 e 3 
| C r | 
n 

)1 / 2 

− | C r | 
3( m − 1) e 

(32) 

nd 

 = a 0 ±
(

16 

3 

| C r | 
n 

e j 
)1 / 2 (

1 + 

1 

27( m − 1) 2 e 3 
| C r | 
n 

)1 / 2 

a 0 

+ 

2 

9( m − 1) e 

| C r | 
n 

a 0 . (33) 

 P O I N C A R  ́E  SURFAC ES  O F  SECTION  

he Poincar ́e surface of section technique is usually applied in studies
f the RP3BP (H ́enon 1965a , b , 1966a , b , 1969 ; Jefferys 1971 ; Winter
 Murray 1994a , b ), to analyse the dynamics of the third body,

roviding information such as the location and size of stable and
haotic regions, including the mean motion resonance regions. In
P3BP, the problem is considered in a rotating system where the
rimary and secondary bodies are fixed, and only the third body
escribes a free motion. Some works have also adopted the Poincar ́e
urface of section to study dynamical systems composed of two
odies, with a non-spherical central object. Scheeres et al. ( 1996 )
pplied this technique to find periodic orbits around the asteroid
769 Castalia. This technique was also applied by Borderes-Motta
 Winter ( 2018 ) and Winter et al. ( 2019 ) to study the region around
outatis and Haumea, respectively. 
This work also applies the Poincar ́e surface of section to a

wo-body problem composed of a massive central body and a
assless particle. Instead of the orbital motion between the pri-
ary and secondary bodies, the rotation of the central body

ives the motion of the rotating frame. The Poincar ́e surface of
NRAS 510, 1450–1469 (2022) 
ection applied to the two-body problem with a mass anomaly
rovides information about stability and resonances. Ho we ver, in
his case, there are spin–orbit resonances instead of mean motion
esonances. 

The Poincar ́e surface of sections are maps generated in the phase
pace through the intersection points of the particle orbits with a fixed
ection in the system. These maps are generated for fixed values of
he Jacobi constant (equation 6). In Fig. 2 , we see an example of this
ap for a system composed of a massive central body with a mass

nomaly. The Poincar ́e surface of section was defined in the plane y
 0 around our reference object and for the fixed value of the Jacobi

onstant C J = 2 . 032 R 

2 ω 

2 
k . We distributed the initial conditions on

he x -axis. 
In Fig. 2 , the different sets of closed curves, called stability islands,

elimit the stable regions of the system. Each stability island is
ormed by a single quasi-periodic orbit that is named because it
oes not have a defined orbital period. At the centre of the stability
slands, we have periodic orbits. The latter crosses the Poincar ́e
urface of section always at the same points and can be classified
nto two kinds (Poincar ́e 1895 ): those not associated with resonances
re the first kind, and those associated with resonance are the second
ind. 
The point in the centre of all black closed curves is a first kind

eriodic orbit. In contrast, the points in the centres of the blue and
reen islands are the second kind orbits associated with the 1:3
nd 2:7 resonances, respectively (Fig. 2 ). A single stability island
dentifies periodic orbits of first kind, while one or more stability
slands can identify the orbits of second one. The number of islands
or the second kind orbits is related to the order of the resonance
Winter & Murray 1997b ). F or e xample, the pair of blue islands in
ig. 2 is formed by quasi-periodic orbits that librate around the
eriodic orbit associated with the 1:3 resonance, a second-order
esonance. In the same vein, each particle in the 2:7 resonance –
 fifth-order resonance – generates five islands on the surface of
ection. 

art/stab3552_f2.eps


Dynamics around a body with mass anomaly 1455 

Figure 3. Boundary curves between the chaotic (on the left) and stable (on 
the right) regions. The solid black line corresponds to the reference object, 
while the coloured solid and dashed lines are the cases in which we varied 
the parameters λ and μ, respectively. 
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Figure 4. (a) Trajectory in the rotating frame and (b) temporal evolution 
of the eccentricity. The innermost particle (red line) is at 1.74 R and the 
outermost one (blue line) at 3.48 R , and both are initially in circular orbits. 
The parameters of the central body are λ = 0.471 and μ = 5 × 10 −3 . 
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A set of first and second kind orbits belonging to the same
esonance usually appears in a continuous Jacobi constant range 
nd defines a family of orbits. The families present evolution in 
tructure and position in the Poincar ́e surface of section during the
ariation of the Jacobi constant. In addition to the stability region 
elimited by the islands, there are also unstable regions filled with 
cattered red points in the figure, created by chaotic orbits. These 
haotic regions are seen around the stability islands associated with 
he periodic orbits of 1:3 and 2:7 resonances. They are associated 
ith the resonance separatrix and do not enter the stable regions, 

s we can see in Fig. 2 . A stable region bounded by quasi-periodic
rbits (black curves) separates the two chaotic regions. 
In the following sections, we use the Poincar ́e surface of section to

xplore the stability around bodies with a mass anomaly by varying 
he central body parameters. 

 SYSTEM  OV ERVIEW  

e studied the dynamics around our object by simulating a set of
articles with pericentre distance q and eccentricity in the ranges 1 <
 / R ≤ q f and 0 ≤ e ≤ 0.5, respectively ( � e = 0.05 and � q / R = 0.01).
 f is a gi ven v alue of q for which all particles survive. The particles
ere simulated for 10 000 orbits. We assumed the parameters λ and 
in the ranges 0.01 ≤ λ ≤ 1 and 10 −6 ≤ μ ≤ 5 × 10 −3 , respectively. 

xcept for the near-Earth asteroids, we have that the vast majority 
f small heliocentric bodies have ω > ω k (Warner, Harris & Pravec
009 ), justifying the fact that we do not focus on cases with λ > 1. 
We verified in all numerical simulations the existence of a chaotic 

egion just outside the central body in which particles collide or
re ejected from the system. Beyond the chaotic region, there is a
table region, and the boundaries between them are shown in Fig. 3 .
articles with semimajor axis and eccentricity in the region bounded 
y the curve (on the left-hand side of the figure) will be lost, while
hose outside the boundary will survive for at least 10 000 orbits. The
olid black line corresponds to our reference object, while the solid
oloured and dashed lines provide the boundary curves for systems 
here we vary λ and μ, respectively. 
The successive close encounters of the particle with the mass 

nomaly are responsible for exchanges of energy and angular 
omentum, resulting in the variation of the particles’ orbital ele- 
ents. Particles with sufficiently small semimajor axis show orbital 

volution with chaotic diffusive character (for details, see Rollin 
t al. 2021 ). In general, eccentricities in the chaotic region tend to
ncrease, resulting in occasional collisions or until the orbit becomes 
yperbolic. 

Fig. 4 shows the trajectory in the rotating frame (a) and eccentricity
b) of a pair of particles initially in circular orbits around a central
ody with parameters λ = 0.471 and μ = 5 × 10 −3 . The semimajor
xes of the innermost (red line) and outermost (blue line) particles
re 1.74 R and 3.48 R , respectively. We observe that the eccen-
ricity shows a secular increase for the innermost particle, reaching 
alues up to 0.15. The particle collides with the central body after
bout 3 . 5 ω 

−1 
k or ∼12 spin periods. The eccentricity shows periodic

ariations for the outermost particle, and the particle remains stable 
round the central body. 

The boundary curves are robust against the final simulation period 
nd are preserved when we extend the simulations to 100 000 orbits.
ages et al. ( 2017 ) analyse through the Lyapunov exponent the
tability of particles around a contact binary, obtaining a chaotic 
egion coherent with ours. Our boundary curve is also coherent with
he region where the particles are lost in the numerical simulations
or a Chariklo with a mass anomaly performed by Sicardy et al.
 2019 ). 

The boundary between chaotic and stable regions has only a slight
ependence on the relative mass anomaly. Although the increase of μ
enerates only a small swell of the chaotic region, it produces larger
ncrements in eccentricity and the particles are lost more quickly. The
xtension of the chaotic region is mainly affected by the parameter
. Decreasing in 10 times the rotating rate, we obtain that the chaotic
egion is more than doubled, a result also obtained by Lages et al.
 2017 ). 

In order to crudely e v aluate the extension of the chaotic region, we
alculate for a set of systems the semimajor axis at which a particle
n circular orbit will survive for up to 10 000 orbits – the threshold
MNRAS 510, 1450–1469 (2022) 
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Figure 5. Threshold semimajor axis obtained in selected numerical simula- 
tions (markers) and through equation (34) (solid lines). The x -axis gives the 
normalized mass anomalies, and the different colours and markers give the 
rotating rates. 
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emimajor axis ( a t ). The curve fitted from the numerical results is
iven by 

a t 

R 

= 

[
1 . 298 − 0 . 007 M + 0 . 006 M 

2 + 0 . 674 λ−0 . 75 
]
, (34) 

here M = − log μ. Physically, we can interpret the threshold
emimajor axis as the minimum semimajor axis, beyond which rings
nd satellites can exist around a body with a mass anomaly. 

Fig. 5 shows the threshold semimajor axis obtained in the numer-
cal simulations. The x -axis gives the normalized mass anomaly of
ach simulation, and different colours and markers show the different
otating rates. The solid lines correspond to the curv es giv en by
quation (34) (the colour of the lines matches the colour of the
arkers for the same λ). 
Fig. 6 shows the position and width of the sectoral resonances,

btained theoretically (Section 3), where each panel corresponds to
 different normalized mass anomaly, while the rotating rate is fixed
s λ = 0.471. The vertical black line in each panel corresponds to
he corotation radius a c of the system ( a c = λ−2/3 ), and the coloured
ines give the boundaries of the resonances. The white region on the
eft provides the initial conditions of particles with pericentre within
he central body, and the white area on the right is the stable region.
he grey area places the chaotic region. 
Since the sectoral resonances are spin–orbit resonances, we have

hat μ has a minor effect on their locations, as seen in the figure.
o we ver, the resonance width will depend on μ, as an increase in the
ass anomaly will enhance the gravitational perturbation felt by the

articles, allowing larger regions to be connected to the resonance
quilibrium points. As we increase the numerical value of m , the
esonances approach the corotation radius. The first-order resonances
ith | m | > 4 o v erlap for the case with μ = 10 −4 (Fig. 6 a). For μ =
0 −3 (Fig. 6 b), we see that additional first-order resonances, such as
:5 and 3:4, o v erlap for high eccentricities, while for μ = 5 × 10 −3 

Fig. 6 c) the o v erlap is intensified, co v ering the 2:3 resonance. 
The o v erlap of first-order resonances is generally responsible for

liminating stable regions associated with the resonance (Wisdom
980 ; Winter & Murray 1997a , b ). Thus, they should contribute to
he chaotic behaviour verified in the systems. It is not by chance
hat the region surrounding the corotation radius is al w ays chaotic.
o we v er, while the o v erlap helps to carv e the chaotic re gion around

he central object, it is not the primary source of chaoticity for the
ystem. Such a fact can be seen in 7 a, where the chaotic region
o v ers a re gion where there is no o v erlap of first-order resonances.
s already mentioned, encounters with the mass anomaly produce

haotic diffusion of the orbits, clearing an entire region that extends
eyond the corotation radius. In our numerical simulations, we did
ot find stable particles in internal resonances. 
Analogously to Fig. 6 , we present in Fig. 7 the resonances and

haotic and stable regions around an object with a mass anomaly,
NRAS 510, 1450–1469 (2022) 
ow keeping μ constant and varying λ. As we can see in the figure, the
arameter affects both the location and the width of the resonances
equations 7 and 20). When λ is increased by one order, resonances
o v e more than four times closer to the body, while chaotic regions

pproach it by only a factor of 2. So, by changing λ, we change
hich resonances will be in the stable region. 
In the case shown in Fig. 7 (c), the rotation frequency is equal to

he Keplerian one, which places the corotation radius on the surface
f the spherical portion of the body . Consequently , the internal
esonances and some external ones reside within the central body,
ith only a few resonances in the stable region. Assuming objects
ith even faster rotation, we get a narrower chaotic region with fewer

esonances outside the object, corresponding to unattractive cases.
n the hypothetical case where the spin frequency tends to infinity,
t would be not sectoral resonances or chaotic region since it falls in
he case of a non-rotating spherical object with a ridge at its equator.

In Section 6, we analyse the evolution of the stable region and the
xternal resonances using the Poincar ́e surfaces of section. 

 STABLE  R E G I O N  

n Section 5, we have shown the existence of two distinct regions
round a spherical body with a mass anomaly: a chaotic region
here particles collide or are ejected, and a stable region, which
ill be our focus in this section. First, we compare the resonance
idths obtained by numerical simulations with those predicted by

he analytical model described in Section 3. We then analyse the
otion of test particles in the vicinity of external resonances. 
We put our analytical model to the test using the following
ethodology: (i) for a given resonance, we theoretically calculate its

entral position (Section 3.1) and the Jacobi constant (equation 6),
nitially assuming a circular orbit; (ii) we generate the Poincar ́e
urface of section of a broad region around the central position; (iii)
y visual inspection, we obtain the position of the stable fixed point
f the resonance – which corresponds to the real central position of
he resonance – and the limits of the widest island surrounding the
oint – the width of the resonance; and (iv) then, we successively
ncrease the eccentricity by 10 −2 and repeat the previous steps until
he islands disappear or until we reach e = 0.5. 

Fig. 8 shows the resonance widths obtained theoretically and
hrough the Poincar ́e surfaces of sections, for our reference object and
n object with λ = 0.157 and μ = 10 −3 . We found that numerical data
gree reasonably well with the analytical model, indicating that the
endulum model with necessary adaptations applies to our system.
n general, we obtain that the lar gest diver gences occur for larger
ccentricities ( e � 0.2). It is expected, since we assumed first-order
pproximations in eccentricity in the development of the pendulum
odel. 
We verify that the innermost resonances present the largest

isplacements in the central position for the reference case. These
ame displacements are verified for the case with λ = 0.157 (Fig. 8 b)
n which resonances are at least twice as far from the central body.
s a rule, we obtain that displacements depend on the distance a t / a c 

rom the resonance to the corotation radius. The central positions
e obtained differ by less than 5 per cent from those theoretically
btained, demonstrating the robustness of the analytical method. 
After the validity of the analytical model is attested, we turn our

ttention to the resonance dynamics. Fig. 9 (a) shows the Poincar ́e
urface of section of the region around the 2:5 resonance for the
eference object and C J = 1 . 964 R 

2 ω 

2 
k . In the figure, we can identify

our types of motion in the stable region: periodic motion of first kind,
uasi-periodic motion associated with the latter, resonant and chaotic

art/stab3552_f5.eps
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Figure 6. Semimajor axis ( a / R ) versus eccentricity ( e ) for systems, with λ = 0.471 and (a) μ = 10 −4 , (b) μ = 10 −3 , and (c) μ = 5 × 10 −3 . Particles with 
initial a / R and initial e in the left white region have pericentre within the central body and collide. Particles in the grey area collide with the central body or are 
ejected, and those in the right white one remain in the system for more than 10 000 orbits. The dashed black lines correspond to the corotation radius, and the 
coloured lines provide the theoretical boundaries of the resonances. Coloured lines not referenced on the label and close to the corotation radius correspond to 
first-order resonances with | m | > 4. 
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otion – which is not stable despite being within the region defined 
y us as stable. The single black dot at x 0 / R = 3 corresponds to the
rbit classified as periodic of first kind. Periodic orbits in a Poincar ́e
urface of section divide the x -axis positions into pericentric positions 
at smaller x – and apocentric positions – at larger x . Seeing the right
art of the figure, we have particles with higher initial eccentricity, 
orming black closed curves surrounding the periodic orbit. They 
re quasi-periodic orbits and define regions where particles remain 
ndefinitely in stable motion without other effects. 

The orange islands correspond to orbits associated with the 2:5 
esonance, where every single dot in the centre of an island is a
table fixed point of the resonance. All three orange dots in the figure
orrespond to a single periodic orbit of second kind. Due to energy
xchanges between the central body and resonant particles, the latter 
an remain stable even in the presence of other effects, depending on
he system conditions (Madeira & Giuliatti W inter , 2020 ). 

The red dots show the chaotic zone between the resonant and
uasi-periodic orbits. Appendix A shows the Poincar ́e surfaces of 
ection of the resonances found around the reference object. As one
an see, the chaotic zones at the resonances separatrices are al w ays
arro w, sho wing that the region we named the ‘stable region’ has
n fact a few very small strips of confined chaotic motion. Moving
MNRAS 510, 1450–1469 (2022) 
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Figure 7. Semimajor axis ( a / R ) versus eccentricity ( e ) of systems with μ = 10 −3 and rotating rate λ given in the caption of each panel. Particles with initial 
conditions in the white region on the left have pericentre within the central body and collide, while those in the grey area show chaotic behaviour. The white 
region on the right is the stable region. The dashed black line provides the corotation radius, and the coloured lines give the theoretical boundaries of the 
resonances. Coloured lines not referenced on the label and close to the corotation radius correspond to first-order resonances with | m | > 4. 
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o the right in Fig. 9 (a), there is another region with quasi-periodic

rbits that extends up to x 0 / R = 3.57. After this limit, we have the
haotic region, where the red dot at x 0 / R = 3.65 corresponds to a
article that collides with the central body. 
In Fig. 9 (b), we present the evolution of the 2:5 resonance, showing

he largest stable orbit of the resonance, an intermediate one, and
he central orbit, for dif ferent v alues of the Jacobi constant. Since
he 2:5 resonance is a third-order resonance ( j = 3), each initial
ondition produces three distinct islands in the Poincar ́e surfaces of
ection. Except for the case with C J = 1 . 959 R 

2 ω 

2 
k , we see that the

hree islands shrink and get closer as the value of C J increases. The
acobi constant and the eccentricity are inversely proportional, so the
NRAS 510, 1450–1469 (2022) 
atter decreases from right to left in the figure. The resonance width
ecreases with the eccentricity, and the resonant orbits tend towards
he periodic orbit of the first kind, explaining why the islands shrink
ntil they disappear. 
To understand why the largest red island is smaller than the largest

lue island (Fig. 9 b), we present in Fig. 10 (a) the Poincar ́e surfaces
f section for C J = 1 . 959 R 

2 ω 

2 
k , and in Fig. 10 (b), the theoretical

nd numerical boundaries of the 2:5 resonance. The red dashed line
laces the case with C J = 1 . 959 R 

2 ω 

2 
k and the grey area is the chaotic

e gion. F or this value of Jacobi constant, the resonance is at the edge
etween the stable and chaotic regions. As a result, the particles most
ounded to the resonance – closer to the stable fixed point – remain
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Figure 8. The width of the external sectoral resonances in the stable region for (a) an object with λ = 0.471 and μ = 10 −3 and (b) for an object with λ = 0.157 
and μ = 10 −3 . The solid and dashed lines give the widths predicted by the analytical model, and the coloured filled regions delimit the obtained numerically 
widths. The grey region corresponds to the chaotic region near the central body. 
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table (in orange), while particles closer to the resonance boundaries 
nitially follow the pattern expected for resonant particles. Ho we ver, 
hey are showing the stickiness phenomenon behaviour mimicking 
he resonant beha viour, b ut they are lost from the system at some
oint. 
The eccentricity of one of these less bounded particles is shown 

n Fig. 10 (c) by the solid red line, while the eccentricity of the
entral resonant orbit is the solid orange line. Both particles show 

 periodic variation in eccentricity. However, the eccentricity of the 
ess bounded particle also shows an increase, reaching e ∼ 0.145. 

Fig. 9 (c) shows, in the rotating frame, the periodic orbit of the
econd kind seen in Fig. 9 (a), where the colour coding gives the
elocity. Since the particle is at the stable fixed point of the resonance,
he orbit is closed. Also, the orbit is retrograde ( v < 0) because the
esonance is beyond the corotation radius. As the central body is
ymmetric, there will al w ays be at least one axis that divides the
rbit into two symmetric parts. For example, for the orbit shown in
ig. 9 (c), this axis corresponds to y = 0. 
Sicardy ( 2020 ) discusses some additional symmetries expected for 

he trajectory of a particle in an m :( m − j ) sectoral resonance. The
rbit is invariant by a rotation of 360/ | m | deg, and it has a total of
 m | ( j − 1) self-crossing. For the 2:5 case ( j = 3 and m = −2), we
ee that the orbit is invariant by a rotation of 180 deg and has four
elf-crossings. 

A peculiarity of our system is the positions of the particle 
ericentre and apocentre. In RP3BP, in which the disturbing body is
t x 0 / R = 1 and the particle is initially at x 0 / R < 1, the gravitational
ffect felt by the particle is weaker (stronger) when it is on the x -
xis at x / R > 0 ( x / R < 0). Consequently, the particle starts at the
ericentre, the apocentre being in the opposite direction. In our case,
e have the opposite scenario. The orbit position where a particle

eels the strongest gravitational effect is on the x -axis at x / R > 0 –
here the modulus of gravitational force is the sum of the forces of

he two portions of the central body. Thus, a particle initially on the
 -axis ( x / R > 0) starts at its apocentre (minimum velocity), as we
an see from the dot labelled ‘1’ in Fig. 9 . 

Fig. 11 shows, from top to bottom, the Poincar ́e surface of section
or C J = 2 . 087 R 

2 ω 

2 
k , the whole evolution of the islands of the 1:4

esonance, and the trajectory of a particle at a stable fixed point of
he resonance. As shown in Fig. 11 (a), the o v erview of the resonance
eighbourhood is similar to the 2:5 resonance, with a narrow, 
haotic region at the resonance boundaries, surrounded by a region 
ith periodic/quasi-periodic orbits. A crucial dif ference, ho we ver, is
btained in the resonance islands. While the 2:5 resonance has three
table fixed points, we obtained in Fig. 11 (a) six stable points for the
:4 resonance. 
To understand the dynamics of the resonance, we colour green 

Fig. 11 a) the trajectory of a particle near one of these points. The
article is responsible for forming three islands around three of the
table fixed points (in green in the figure). This fact leads us to
onclude that the resonance is the 1:4 (of third-order) and not the
:8 (of sixth-order) as we would obtain in the ellipsoidal problem
MNRAS 510, 1450–1469 (2022) 
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Figure 9. (a) Poincar ́e surface of section for C J = 1 . 964 R 

2 ω 

2 
k , with λ = 

0.471 and μ = 10 −3 . We assume initial conditions with 3.15 ≤ x 0 / R ≤ 3.84. 
The black curves are the periodic and quasi-periodic orbits of first kind, 
and the orange curves are orbits associated with the 2:5 resonance. Red dots 
correspond to chaotic orbits. (b) Evolution of the 2:5 resonance islands, where 
the colours of the dots correspond to values of C J given on the figure’s label. 
(c) Central orbit of the 2:5 resonance for C J = 1 . 964 R 

2 ω 

2 
k in the rotating 

frame. The temporal evolution of the orbit is given by numbers and dots 
equally spaced in time, while the colour coding gives the velocity in the 
rotating frame. 

Figure 10. (a) Poincar ́e surface of section for C J = 1 . 959 R 

2 ω 

2 
k where the 

periodic/quasi-periodic orbits of first kind are in black, the 2:5 resonance 
islands are in orange, and the particles in the chaotic region are in red. (b) The- 
oretical boundaries of the 2:5 resonance are shown by the solid orange lines. In 
contrast, the filled orange and grey regions are regions numerically obtained 
for the 2:5 resonance and the chaotic re gion, respectiv ely. The red dashed 
line gives the initial conditions of the simulation with C J = 1 . 959 R 

2 ω 

2 
k . (c) 

Eccentricity of a pair of particles: the one that remains in the system is orange, 
and the unstable one is red. 
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which we will address in a following publication. The islands
roduced by the particle have the particularity of being asymmetric
n relation to the x -axis – we say that the particle is in asymmetric
ibration (Beaug ́e 1994 ; Winter & Murray 1997b ). 

In Fig. 11 (b), we highlight the Poincar ́e surface of section islands
f some particles by plotting them in black, intending to show
he asymmetric libration. Each island produced by a particle in
symmetric libration has a mirror image obtained from the motion of

art/stab3552_f9.eps
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Figure 11. (a) Poincar ́e surface of section for C J = 2 . 087 R 

2 ω 

2 
k , with λ = 0.471 and μ = 10 −3 . We assumed initial conditions with 3.70 ≤ x 0 / R ≤ 5.97 and 

separated the distinct types of orbits by colour: the periodic/quasi-periodic orbits of first kind are in black, the 1:4 resonance orbits are in purple and green, and 
chaotic ones in red. (b) Resonance islands for dif ferent v alues of C J . The label on the panel gives the colour of the largest island for each value of C J . (c) Central 
orbit in the rotating frame of one of the families associated with the 1:4 resonance (in green in the top panel) for C J = 2 . 087 R 

2 ω 

2 
k . The numbers and colours 

on the panel provide time evolution and velocity in the rotating frame, respectively. 

a
b
p

s  

i  

o  

m  

a
‘

 

M  

&  

c
o  

e  

r  

t
o

a  

b  

o  

t  

(
 

e  

a  

(  

r  

i  

b  

g  

w
u
i

 

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/510/1/1450/6455319 by KIM
 H

ohenheim
 user on 20 April 2022
 different particle in asymmetric libration. Closer to the resonance 
oundaries, we also get ‘horseshoe fashion’ orbits encompassing 
airs of fixed points of two different trajectories. 
When we refer to asymmetric resonance or libration, we refer to the 

ymmetry of the trajectory in the Poincar ́e surface of section and not
n the xy -plane. As already mentioned, the trajectory in the xy -plane
f the resonant particles has a symmetry axis due to the symmetric
ass distribution in the central body. For example, in Fig. 11 (c), the

xis of symmetry would correspond to the axis connecting the point 
6’ to the centre of the system. 

Several works such as Message ( 1970 ), Frangakis ( 1973a , b ),
essage & Taylor ( 1978 ), Bruno ( 1994 ), Beaug ́e ( 1994 ), and Winter
 Murray ( 1997b ) have studied asymmetric periodic orbits in the

ontext of RP3BP, showing that these orbits are characteristics 
f 1: 1 + p resonances and are obtained only for particles with
ccentricities abo v e a critical value. Similar to particles in m :( m − j )
esonance with m 
= −1, the ones with eccentricity lower than this
hreshold value present symmetric libration in the Poincar ́e surface 

f section. We obtained these same results for the case with mass T  
nomaly. In Fig. 11 (b), the critical eccentricity is reached somewhere
etween the Jacobi constants 2 . 122 R 

2 ω 

2 
k and 2 . 152 R 

2 ω 

2 
k . Carrying

ut a set of Poincar ́e surface of section in this interval, we obtain
hat the critical eccentricity for the 1:4 resonance is e ∼ 0.167
2 . 136 R 

2 ω 

2 
k ). 

Fig. 12 (a) shows one island of the 1:4 resonance for the critical
ccentricity (2 . 136 R 

2 ω 

2 
k , in green), for 2 . 133 R 

2 ω 

2 
k (in purple),

nd 2 . 139 R 

2 ω 

2 
k (in blue). For the highest value of Jacobi constant

smallest eccentricity), we see a single stable point in the figure
elated to a single family of resonant orbits. The critical eccentricity
s reached by decreasing the Jacobi constant, and the stable point
ifurcates into two points (the stars in the figure). Each of the points
ives rise to an independent family of resonant orbits. The x -axis,
hich previously allocated the single stable point, now allocates the 
nstable equilibrium point after the bifurcation, corresponding to the 
nflexion position of the ‘horseshoe fashion’ orbits. 

Fig. 12 (b) shows the trajectories of the stable points given by
tars in the top panel. The orbits are mirror versions of each other.
he same is obtained for eccentricities in Fig. 12 (c), in which the
MNRAS 510, 1450–1469 (2022) 
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Figure 12. (a) Poincar ́e surface of section of one island of the 1:4 resonance 
for C J = 2.133, 2.136, and 2 . 139 R 

2 ω 

2 
k (in purple, green, and blue, 

respectively). The black and red stars are the stable points obtained after 
bifurcation. (b) Trajectories and (c) eccentricities of the stable points given 
by stars in the top panel, where the colour of the solid lines coincides with 
the colour of the star for the same stable point. 
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Figure 13. (a) Poincar ́e surface of section for C J = 0 . 915 R 

2 ω 

2 
k , with λ = 

0.157 and μ = 10 −3 . The non-resonant orbits are in black. Particles in 1:2 
resonance and chaotic orbits are in orange and green and red, respectively. 
(b) Poincar ́e surface of section for some particles in 1:2 resonance, with C J = 

0.907, 0.912, 0.915, and 0 . 918 R 

2 ω 

2 
k . Different colours of the islands involved 

by the same ‘horseshoe fashion’ orbit correspond to different particles. (c) 
Trajectory of a stable fixed point shown in orange in the top panel, where the 
colour coding gives the velocity and the numbers and dots, the time evolution 
of the orbit. 
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ed curve is the mirror version of the black one with respect to time
 ≈ 4 . 2 ω 

−1 
k (pericentre passage time). As discussed in Bruno ( 1994 ),

he bifurcation of the stable points is related to the indirect term of
he disturbing function, which differs from zero only for 1: 1 + p
esonances (equation 5). 

We show another example of particles in asymmetric libration in
ig. 13 . From top to bottom, this figure shows the Poincar ́e surface
f section of the region of 1:2 resonance for a central body with λ =
.157 and μ = 10 −3 , the whole evolution of the resonance, and the
NRAS 510, 1450–1469 (2022) 
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Figure 14. Semimajor axis versus eccentricity for Chariklo system, where coloured lines place the sectoral resonances, and the grey area corresponds to the 
chaotic region. Coloured lines not referenced on the label, between 1.4 and 1.8, correspond to first-order resonances with | m | > 4. A vertical dashed line at a / R 

≈ 1.7 gives the corotation radius, while vertical dotted lines give the central location of the rings. 
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rajectory of a particle in a stable fixed point of the resonance. As in
he reference case, chaotic behaviour is seen only in a narrow region
n the separatrices, with a large regular region of periodic/quasi- 
eriodic orbits of first kind around the resonances. For the 1:2 
esonance, we have a low critical eccentricity ( e ∼ 10 −2 ), with
ymmetric libration only in the cases where the resonance islands 
re tiny. 

Trajectories of particles in 1:2 resonance are the only ones without 
elf-crossings in the rotating frame, as we can see in the bottom
anel. Such fact has implications for the temporal evolution of a ring
f particles, as self-crosses increase collisions between particles. 
n this context, a ring with particles into the 1:2 resonance or in
eriodic/quasi-periodic orbits of first kind – which do not show self- 
rossing either – should have a lower rate of collisions than a ring with
articles in other resonances, disregarding other external effects. The 
articles shown in Figs 11 (c) and 13 (c) do not start at the apocentre of
he orbit because they are not initially with ẋ = 0. A particle around
 body with mass anomaly will start at its apocentre only when that
ondition is met. 

 APPLICATION  TO  T H E  C H A R I K L O  SYSTEM  

ei v a et al. ( 2017 ), using stellar occultation data, investigated the
hape of Chariklo, obtaining four distinct shape models for the 
bject: a sphere, a MacLaurin spheroid, a triaxial ellipsoid, and a 
acobi ellipsoid. According to Sicardy et al. ( 2019 ), observational 
ata suggest the presence of topographic features of typical heights 
f 5 km in the spherical solution. This fact places Chariklo as a
ossible body with a mass anomaly. In this section, we briefly study
he dynamics around Chariklo, in particular in the region of the ring.
he rings have orbital radii of 391 and 405 km, with radial widths of
 and 3 km, respectively (B ́erard et al. 2017 ). 
We performed numerical simulations adopting the spherical 

hariklo given by Leiva et al. ( 2017 ), λ= 0.471, with a mass anomaly
f μ = 7 × 10 −6 = [5 km/(2 × 129 km)] 3 . Fig. 14 shows the width
f the resonances and the location of the chaotic region. The vertical
ashed line gives the corotation radius and the central location of the
ings by the vertical dotted lines. We obtained a threshold semimajor 
xis of a t / R = 2.5 in the numerical simulation. This result is in good
greement with our adjusted equation (equation 34) that returns a t / R
 2.6. The 1:2 resonance is the only first-order resonance beyond 

he chaotic region. The region beyond the chaotic one is essentially 
table, hosting the rings and possibly moons, depending on their 
ccentricity. 
Lei v a et al. ( 2017 ) propose that the inner ring is associated with
he 1:3 spin–orbit resonance. Therefore, we studied this resonance 
n detail, as it is close to both rings. Fig. 15 (a) shows the Poincar ́e
urface of section for the largest Jacobi constant obtained by us
or the 1:3 resonance ( C J = 2 . 038 R 

2 ω 

2 
k ). For this value of C J , the

esonance has not reached the critical eccentricity, and we obtain 
nly a single symmetric periodic orbit. A narrow, chaotic region 
urrounds the islands of resonance, but the whole set is surrounded by
 stable region associated with periodic/quasi-periodic orbits of first 
ind. 
Fig. 15 (b) shows the motion in the rotating frame of the periodic

rbits given in Fig. 15 (a), in which the colour of the orbits matches
hose given in the top panel, and the green regions correspond to
he location of the rings. For clarity, we only show the portions of
he orbits with y > 0. We show the radial variation of the orbits in
ig. 15 (c). 
The 1:3 resonance orbit has one self-crossing at y = 0 and a period

f almost 6 . 4 ω 

−1 
k . In contrast, the trajectory of the first kind follows

he Chariklo shape, with a period of almost 3 . 2 ω 

−1 
k . As one can see

n the figure, both orbits are initially in the inner ring – near its outer
dge. Ho we ver, only the first kind of periodic orbit remains within
he ring throughout the simulation, while the resonant orbit crosses 
he ring edges and reaches the outer ring. 

The difference in radial variation is due to the different nature of the 
rbits. Periodic orbits of first kind correspond to nearly circular orbits,
hile those of second kind are intrinsically eccentric, explaining why 

he latter has a significantly larger radial variation. Here, when we
efer to eccentricity, we are referring to osculating elements defined 
n the context of the classical two-body problem. We refer the reader
o the work of Ribeiro et al. ( 2021 ) for a detailed discussion regarding
he orbital elements in the context of NSSBs. 

The results discussed in the last paragraph lead us to question
hether the inner ring is associated with the 1:3 resonance. To verify

his, we present in Fig. 16 (a) diagram with the semimajor axis versus
ccentricity for a range of values corresponding to the rings (in
reen). We also show the orbital elements obtained for the periodic
rbits of first and second kinds (black and blue lines, respectively).
he region filled in blue shows the 1:3 resonance boundaries obtained 

n the Poincar ́e surface of sections. 
The largest possible eccentricity for a particle to remain within the

oundaries of the inner ring is e = 9 × 10 −3 , which is smaller than
he smallest eccentricity obtained for the resonant orbits ( e = 10 −2 ).
n addition, the resonant periodic orbits and the ring are displaced,
ndicating that the ring is not confined by such resonance. 
MNRAS 510, 1450–1469 (2022) 
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Figure 15. (a) Poincar ́e surface of section of the Chariklo system for C J = 

2 . 038 R 

2 ω 

2 
k . We sho w dif ferent orbits by dif ferent colours: the non-resonance 

orbits are black, the 1:3 resonant orbits are blue, and the chaotic ones are red. 
(b) Motion in the rotating frame for y > 0 and (c) radial variation of periodic 
orbits shown in panel (a). The orbits of the first and second kind are given 
by black and blue lines, respectively, and the green regions correspond to the 
positions of Chariklo rings. 
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Figure 16. Diagram of the semimajor axis versus eccentricity. The green 
regions show the range of values that corresponds to the location of the rings. 
The blue line shows the orbital elements obtained for the central orbit of the 
1:3 resonance, and the blue filled regions give the boundaries of the resonance. 
The black line gives the periodic orbits of first kind. 
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Meanwhile, periodic orbits of first kind co v er a broad region and

ncompass both rings. The entire region shown in Fig. 16 , which is
ot associated with the 1:3 resonance (blue region), is composed of
eriodic/quasi-periodic orbits of first kind, including the ring region.
herefore, we conclude that Chariklo rings are associated with first
ind orbits and not with the 1:3 resonance, as proposed by Lei v a
t al. ( 2017 ). Similar results were obtained by Winter et al. ( 2019 )
or the Haumea ring. 

 C O N C L U S I O N S  A N D  DISCUSSION  

n this paper, we have attempted to perform a general analysis of the
ynamics of particles around a spherical body with a mass anomaly.
or this, we used well-known techniques of the three-body problem
NRAS 510, 1450–1469 (2022) 
tudy, varying the parameters of the central object. We can summarize
ur o v erall results as follows: 

(i) The pendulum model with the necessary adaptations and the
oincar ́e surface of section pro v ed to apply to the mass anomaly
roblem. We verified a strong agreement between the results by
omparing both techniques. 

(ii) There is a chaotic region near the central object where particles
ollide or are ejected due to chaotic diffusion caused by successive
lose encounters with the mass anomaly. Mysen et al. ( 2006 ), Mysen
 Aksnes ( 2007 ), and Lages et al. ( 2017 ) also obtain chaotic regions

ear the central object for elongated bodies and contact binaries,
espectively. 

(iii) For the set of parameters analysed by us, the chaotic region
 xtends be yond the corotation radius. This fact indicates a lack
f stable internal sectoral and corotation resonances in the mass
nomaly system. 

(iv) Resonances location is mainly affected by the mass of the
pherical portion and the spin period. In contrast, the masses of the
pherical and anomalous portions of the body and spin period are
esponsible for determining the width of the resonances. 

(v) Beyond the chaotic region, there is a region where the motion
f the particles is dynamically stable. In such a region, there is
haotic behaviour only in a narrow region in the separatrices of the
esonances. 

(vi) The behaviour of the particles in the external sectoral reso-
ances is similar to those obtained for the mean motion resonances
n the RP3BP (Winter & Murray 1997a , b ). Similar to RP3BP, we
erify the existence of asymmetric periodic orbits associated with 1:
 + p resonances. 

Although objects with the shape assumed in this work are unknown
o far, the completely irregular shapes known for some asteroids lead
s to speculate that such a class of object might exist. We emphasize
hat bodies with mass anomaly are perfectly reasonable outputs from
 collision of a satellite that spirals towards the central body due to
idal dissipation or a collision between two objects at low velocity,
ith partial accretion (Leinhardt & Stewart 2011 ). 
Sicardy et al. ( 2019 ) discuss the possibility of Chariklo having

 spherical shape with topographic feature with μ ∼ 10 −5 , which
laces the Centaur as a first candidate to integrate the class of mass
nomaly objects. We studied the dynamics around a Chariklo with
ass anomaly and found that 1:3 resonant particles present radial

ariations too large for the radial extension of the inner ring. On the
ther hand, particles in periodic/quasi-periodic first kind orbits show
adial motions that match the extension of the two rings of Chariklo.
onsequently, the ring must be associated with these orbits and not
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ith orbits of second kind as proposed by Lei v a et al. ( 2017 ). With
he constant increase in data on small heliocentric bodies, we believe 
hat objects with shapes similar to bodies with mass anomalies may 
oon be detected. 

It is essential to point out that in this study, we limited ourselves
o analyse the dynamics of an isolated particle around a NSSB,
isregarding the effects associated with the ring particles, such as 
ollisions between them, local viscous, and self-gravity effects. 
e also disregard external effects that modulate the dynamics of 

mall particles, such as solar radiation pressure and Poynting–
obertson drag. Nevertheless, the location and width of resonances 
nd the chaotic region are general results and should remain almost 
nchanged in the presence of other effects. Therefore, our work 
resents some tools and first general results for studies on dynamics 
f mass anomaly systems. 
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PPENDIX  A :  P O I N C A R  ́E  SURFAC ES  O F  

ECTION  F O R  T H E  REFERENCE  O B J E C T  

n this appendix, we present the Poincar ́e surface of sections for all
esonances in the stable region of the reference case – λ = 0.471 and
= 10 −3 . All figures have three panels, following the pattern: 

a) The top panel shows the Poincar ́e surface of section of a broad
egion, with the value of C J given in the upper right corner of the
gure. Black closed curves are periodic/quasi-periodic orbits of first
ind. In red is the chaotic motion. Closed coloured curves correspond
o islands of the resonance given on the figure label. In the case of
: 1 + p resonances, we plot some islands with different colours to
how the asymmetric libration of the resonance. 
igure A1. (a) Poincar ́e surface of section for C J = 1.937 R 

2 ω 

2 in which the blac
urves are orbits associated with the 4:9 resonance. (b) Central orbit of the 4:9 res
f the orbit is given by numbers and dots equally spaced in time, while the colour c

igure A2. (a) Poincar ́e surface of section for C J = 1.948 R 

2 ω 

2 in which the pe
rbits are in green. (b) Resonance islands for dif ferent v alues of C J gi ven in the up
umbers and colours on the panel provide time evolution and the velocity in the ro

NRAS 510, 1450–1469 (2022) 
b) The middle panel shows the entire evolution of the resonance.
he label at the top gives the colour of the largest island for each
 J value. In the case of 1: 1 + p resonances, we plotted some

slands in black to highlight the asymmetric libration observed in
uch resonances. 

c) The bottom panel shows the trajectory of the central orbit of the
esonance in the rotating frame. The value of C J is the same as the top
anel. We show the temporal evolution of the orbit by numbers and
ots equally spaced in time, while colour coding gives the velocity
n the rotating frame. 
k curves are the periodic and quasi-periodic orbits of first kind and the blue 
onance for C J = 1.937 R 

2 ω 

2 2 in the rotating frame. The temporal evolution 
oding gives the velocity in the rotating frame. 

riodic/quasi-periodic orbits of first kind are in black and the 3:7 resonance 
per panel. (c) Central orbit of the 3:7 resonance for C J = 1.948 R 

2 ω 

2 . The 
tating frame, respectively. 
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Figure A3. (a) Poincar ́e surface of section for C J = 1.964 R 

2 ω 

2 . The black curves are periodic and quasi-periodic orbits of first kind, and the orange curves 
are orbits associated with the 2:5 resonance. Red dots correspond to chaotic orbits. (b) Evolution of the 2:5 resonance islands, where the colours of the dots 
correspond to the values of C J given on the label of the figure. (c) Central orbit of the 2:5 resonance for C J = 1.964 R 

2 ω 

2 in the rotating frame. The temporal 
evolution of the orbit is given by numbers and dots equally spaced in time, while the colour coding gives the velocity in the rotating frame. 

Figure A4. (a) Poincar ́e surface of section for C J = 1.986 R 

2 ω 

2 . Black curves are periodic and quasi-periodic orbits of first kind, and blue curves are orbits 
associated with the 3:8 resonance. Red dots correspond to chaotic orbits. (b) Evolution of the 3:8 resonance islands, where the colours of the dots correspond 
to values of C J given on the label of the figure. (c) Central orbit of the 3:8 resonance for C J = 1.986 R 

2 ω 

2 in the rotating frame. The temporal evolution of the 
orbit is given by numbers and dots equally spaced in time, while the colour coding gives the velocity in the rotating frame. 

Figure A5. (a) Poincar ́e surface of section for C J = 2.024 R 

2 ω 

2 . Periodic/quasi-periodic orbits of first kind are in black, the 1:3 resonance orbits are in blue 
and orange, and chaotic ones in red. (b) Resonance islands for different values of C J . The label on the panel gives the colour of the largest island for each value 
of C J . (c) Central orbit in the rotating frame of one of the families associated with the 1:3 resonance (in blue in the top panel) for C J = 2.024 R 

2 ω 

2 . The numbers 
and colours on the panel provide time evolution and the velocity in the rotating frame, respectively. 
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he pattern abo v e was not followed only for the 4:9 resonance, for
hich we do not show the middle panel. We got only one value of
 J in the stable region for this resonance. Figures are given from
he resonance closest to the central body to the farthest. Figs A1 –A9
orrespond to 4:9, 3:7, 2:5, 3:8, 1:3, 2:7, 1:4, 1:5, and 1:6 resonances,
espectively. 
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Figure A6. (a) Poincar ́e surface of section for C J = 2 . 073 R 

2 ω 

2 
k . Black curves are periodic and quasi-periodic orbits of first kind, and green curves are orbits 

associated with the 2:7 resonance. Red dots correspond to chaotic orbits. (b) Evolution of the 2:7 resonance islands, where the colours of the dots correspond to 
the values of C J given on the label of the figure. (c) Central orbit of the 2:7 resonance for C J = 2 . 073 R 

2 ω 

2 
k in the rotating frame. The temporal evolution of the 

orbit is given by numbers and dots equally spaced in time, while the colour coding gives the velocity in the rotating frame. 

Figure A7. (a) Poincar ́e surface of section for C J = 2 . 087 R 

2 ω 

2 
k . Periodic/quasi-periodic orbits of first kind are in black, the 1:4 resonance orbits are in purple 

and green, and chaotic ones in red. (b) Resonance islands for different values of C J . The label on the panel gives the colour of the largest island for each value of 
C J . (c) Central orbit in the rotating frame of one of the families associated with the 1:4 resonance (in green in the top panel) for C J = 2 . 087 R 

2 ω 

2 
k . The numbers 

and colours on the panel provide time evolution and velocity in the rotating frame, respectively. 

Figure A8. (a) Poincar ́e surface of section for C J = 2 . 147 R 

2 ω 

2 
k . The periodic/quasi-periodic orbits of first kind are in black, the 1:5 resonance orbits are in 

brown and green, and chaotic ones in red. (b) Resonance islands for different values of C J . The label on the panel gives the colour of the largest island for each 
value of C J . (c) Central orbit in the rotating frame of one of the families associated with the 1:5 resonance (in brown in the top panel) for C J = 2 . 147 R 

2 ω 

2 
k . The 

numbers and colours on the panel provide time evolution and the velocity in the rotating frame, respectively. 
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Figure A9. (a) Poincar ́e surface of section for C J = 2 . 204 R 

2 ω 

2 
k . The periodic/quasi-periodic orbits of first kind are in black, the 1:6 resonance orbits are in 

cyan and blue, and chaotic ones in red. (b) Resonance islands for different values of C J . The label on the panel gives the colour of the largest island for each 
value of C J . (c) Central orbit in the rotating frame of one of the families associated with the 1:6 resonance (in cyan in the top panel) for C J = 2 . 204 R 

2 ω 

2 
k . The 

numbers and colours on the panel provide time evolution and the velocity in the rotating frame, respectively. 
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