Molecules with ALMA at Planet-forming Scales (MAPS). XIV. Revealing Disk Substructures in Multiwavelength Continuum Emission - Archive ouverte HAL Access content directly
Journal Articles The Astrophysical Journal Supplement Series Year : 2021

Molecules with ALMA at Planet-forming Scales (MAPS). XIV. Revealing Disk Substructures in Multiwavelength Continuum Emission

, , , , , , , , , , , , , , (1) , , , , , , , (1) , (1) , , , , ,
1
Anibal Sierra
  • Function : Author
Laura M. Pérez
  • Function : Author
Ke Zhang
  • Function : Author
Charles J. Law
  • Function : Author
Viviana V. Guzmán
  • Function : Author
Chunhua Qi
Arthur D. Bosman
  • Function : Author
Karin I. Öberg
  • Function : Author
Sean M. Andrews
  • Function : Author
Feng Long
  • Function : Author
Richard Teague
Alice S. Booth
  • Function : Author
Catherine Walsh
  • Function : Author
David J. Wilner
  • Function : Author
Gianni Cataldi
  • Function : Author
Ian Czekala
  • Function : Author
Jaehan Bae
Jane Huang
  • Function : Author
Jennifer B. Bergner
  • Function : Author
John D. Ilee
  • Function : Author
Ryan A. Loomis
  • Function : Author
Takashi Tsukagoshi
Yao Liu
  • Function : Author
Yoshihide Yamato
  • Function : Author
Yuri Aikawa

Abstract

Constraining dust properties of planet-forming disks via high-angular-resolution observations is fundamental to understanding how solids are trapped in substructures and how dust growth may be favored or accelerated therein. We use ALMA dust continuum observations of the Molecules with ALMA at Planet-forming Scales (MAPS) disks and explore a large parameter space to constrain the radial distribution of solid mass and maximum grain size in each disk, including or excluding dust scattering. In the nonscattering model, the dust surface density and maximum grain size profiles decrease from the inner disks to the outer disks, with local maxima at the bright ring locations, as expected from dust trapping models. The inferred maximum grain sizes from the inner to outer disks decrease from 1 cm to 1 mm. For IM Lup, HD 163296, and MWC 480 in the scattering model, two solutions are compatible with their observed inner disk emission: one solution corresponding to a maximum grain size of a few millimeters (similar to the nonscattering model), and the other corresponding to a size of a few hundred micrometers. Based on the estimated Toomre parameter, only IM Lup-which shows a prominent spiral morphology in millimeter dust-is found to be gravitationally unstable. The estimated maximum Stokes number in all the disks lies between 0.01 and 0.3, and the estimated turbulence parameters in the rings of AS 209 and HD 163296 are close to the threshold where dust growth is limited by turbulent fragmentation. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.

Dates and versions

insu-03636625 , version 1 (11-04-2022)

Identifiers

Cite

Anibal Sierra, Laura M. Pérez, Ke Zhang, Charles J. Law, Viviana V. Guzmán, et al.. Molecules with ALMA at Planet-forming Scales (MAPS). XIV. Revealing Disk Substructures in Multiwavelength Continuum Emission. The Astrophysical Journal Supplement Series, 2021, 257, ⟨10.3847/1538-4365/ac1431⟩. ⟨insu-03636625⟩
15 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More