Skip to Main content Skip to Navigation
Journal articles

Fluxes of high- versus low-temperature water rock interactions in aerial volcanic areas: Example from the Kamchatka Peninsula, Russia

Abstract : Volcanic areas play a key role in the input of elements into the ocean and in the regulation of the geological carbon cycle. The aim of this study is to investigate the budget of silicate weathering in an active volcanic area. We compared the fluxes of the two major weathering regimes occurring at low temperature in soils and at high temperature in the active volcanic arc of Kamchatka, respectively. The volcanic activity, by inducing geothermal circulation and releasing gases to the surface, produces extreme conditions in which intense water-rock interactions occur and may have a strong impact on the weathering budgets. Our results show that the chemical composition of the Kamchatka river water is controlled by surface low-temperature weathering, atmospheric input and, in some limited cases, strongly imprinted by high-temperature water-rock reactions. We have determined the contribution of each source and calculated the rates of CO 2 consumption and chemical weathering resulting from low and high-temperature water/rock interactions. The weathering rates (between 7 and 13.7 t/km 2/yr for cations only) and atmospheric CO 2 consumption rates (∼0.33-0.46 × 10 6 mol/km 2/yr for Kamchatka River) due to rock weathering in soils (low-temperature) are entirely consistent with the previously published global weathering laws relating weathering rates of basalts with runoff and temperature. In the Kamchatka River, CO 2 consumption derived from hydrothermal activity represents about 11% of the total HCO 3 flux exported by the river. The high-temperature weathering process explains 25% of the total cationic weathering rate in the Kamchatka River. Although in the rivers non-affected by hydrothermal activity, the main weathering agent is carbonic acid (reflected in the abundance of HCO3- in rivers), in the region most impacted by hydrothermalism, the protons responsible for minerals dissolution are provided not only by carbonic acid, but also by sulphuric and hydrochloric acid. A clear increase of weathering rates in rivers impacted by sulphuric acid can be observed. In the Kamchatka River, 19% of cations are released by hydrothermal acids or the oxidative weathering of sulphur minerals. Our results emphasise the important impact of both low and high-temperature weathering of volcanic rocks on global weathering fluxes to the ocean. Our results also show that besides carbonic acid derived from atmospheric CO 2, hydrochloric acid and especially sulphuric acid are important weathering agents. Clearly, sulphuric acid, with hydrothermal activity, are key parameters that cause first-order increases of the chemical weathering rates in volcanic areas. In these areas, accurate determination of weathering budgets in volcanic area will require to better quantify sulphuric acid impact.
Document type :
Journal articles
Complete list of metadata

https://hal-insu.archives-ouvertes.fr/insu-03633442
Contributor : Nathalie POTHIER Connect in order to contact the contributor
Submitted on : Thursday, April 7, 2022 - 7:46:48 AM
Last modification on : Monday, July 4, 2022 - 8:48:59 AM

Identifiers

Citation

Céline Dessert, Jérôme Gaillardet, Bernard Dupre, Jacques Schott, Oleg S. Pokrovsky. Fluxes of high- versus low-temperature water rock interactions in aerial volcanic areas: Example from the Kamchatka Peninsula, Russia. GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73, pp.148-169. ⟨10.1016/j.gca.2008.09.012⟩. ⟨insu-03633442⟩

Share

Metrics

Record views

6