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Abstract –Quantifying the long-term stability of solar irradiance observations is crucial for determining
how the Sun varies in time and detecting decadal climate change signals. The stability of irradiance
observations is challenged by the degradation of instrumental sensitivity in space and by the post-launch
corrections needed to mitigate this degradation. We propose a new framework for detecting instrumental
trends based on the existing idea of comparing the solar irradiance at pairs of dates for which a proxy
quantity reaches the same level. Using a parametric model, we then reconstruct the trend and its confidence
interval at all times. While this method cannot formally prove the instrumental origin of the trends, the
observation of similar trends with different proxies provides strong evidence for a non-solar origin. We
illustrate the method with spectral irradiance observations from the Solar Radiation and Climate Experi-
ment (SORCE) mission, using various solar proxies such as sunspot number, MgII index, F10.7 index.
The results support the existence of non-solar trends that exceed the level of solar cycle variability. After
correcting the spectral irradiance for these trends, we find the difference between the levels observed at
solar maximum and at solar minimum to be in good agreement with irradiance models.

Keywords: Solar irradiance / Solar proxies

1 Introduction

One of the major challenges in solar irradiance studies is the
production of long records that are accurate and stable in time.
Climate modellers, for example, rely on the solar UV input into
the atmosphere to quantify ozone production in the tropical
stratosphere, which is one of the levers by which solar variabil-
ity affects climate (Gray et al., 2010). Without accurate expres-
sions of instrument errors, decadal climate change signals
cannot be confidently assessed (Ohring et al., 2005; Fox
et al., 2011; Wielicki et al., 2013; Kopp, 2014). Solar physicists
need to understand long-term solar variability to properly
constrain past solar variations (Coddington et al., 2016), while
satellite operators need an accurate UV flux to estimate satellite
drag (Vourlidas & Bruinsma, 2018). Of particular interest for all
these users is the spectrally-resolved solar irradiance, or solar
spectral irradiance (SSI), because different wavelengths impact
the Earth’s environment in distinct ways.

The need for radiometric accuracy and stability is chal-
lenged by the difficulty in making SSI observations from space,
where instruments suffer continuous degradation of instrumen-
tal sensitivity and have a limited lifetime (BenMoussa et al.,
2013). Different strategies have been developed to mitigate

these adverse effects (see Woods et al., 2018 and references
therein). A common strategy consists of duty cycling between
identical sensors that are not exposed to the Sun for the same
amount of time. Corrections can then be applied by assuming
the degradation to be proportional to accumulated exposure time
or to the fluence, and also to mission time (Kopp et al., 2005;
Harder et al., 2009; Mauceri et al., 2020). A second approach
consists in performing in-flight calibration to track instrument
degradation, either by using stable stars (e.g. Snow et al.,
2010), internal lamps (e.g. Meftah et al., 2016), independent
observations at a different wavelength (e.g. Wehrli et al.,
2013) or of an integral quantity, such as the total solar irradiance
(TSI) to help constrain the SSI (e.g. Mauceri et al., 2018).
Finally, sounding rockets with a copy of the instrument can
be used (e.g. Didkovsky et al., 2012).

In spite of these solutions, the routine production of accurate
SSI data remains a complex and demanding task. The conse-
quences of our incomplete understanding of instrument degra-
dation are well illustrated by the anomalous solar cycle
amplitude that has been reported for the Spectral Irradiance
Monitor (SIM) onboard SORCE (Harder et al., 2009) and the
debate it has fuelled (Lean & DeLand, 2012; Deland & Cebula,
2012; Ball et al., 2016b). In this context, any additional con-
strains on SSI observations is a precious ally. This is our prime
motivation for proposing a different approach for detecting and
quantifying undocumented trends.*Corresponding author: ddwit@cnrs-orleans.fr
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1.1 Stability versus solar variability

A simple metric for determining the significance of a trend
consists in comparing its magnitude to the level of solar
variability. The two most conspicuous time scales of interest
are the solar or Schwabe cycle (~11 years) and the modulation
due to solar rotation (~27 days). Figure 1 compares the rela-
tive amplitude of these two modulations, as estimated from
observations made by the Spectral Irradiance Monitor (SIM,
Harder et al., 2010) and by the SOLar-STellar Irradiance
Comparison Experiment (SOLSTICE, Snow et al., 2010). In
both cases, the modulation amplitudes increase at short wave-
lengths (Lean, 1991). While solar rotational effects are too fast
for instrumental trends to be a concern, solar cycle modulations
are harder to disentangle from trends. As a rule of thumb, the
proper detection and quantification of a decadal trend from
observations that span one solar cycle require the magnitude
of the trend to be comparable to or larger than that of the solar
cycle. Consider, for example, the 2% cycle amplitude at 200 nm
in Figure 1. Trends at that wavelength can be detected if
their magnitude typically exceeds 2% over an 11 year period,
or 0.2% per year if one assumes a linear trend. Unfortunately,
this value is also comparable to the stated instrument stability,
which illustrates how delicate the production of irradiance data
can be.

1.2 What trends?

So far, we have used the word trend in a loose sense and
indeed, there is no crisp definition for it. The primary origin
of instrumental trends is the gradual decrease of instrument
sensitivity over time. Trends, however, are not necessarily
monotonic since there may be phases of sensitivity increase
(e.g. Ball, et al., 2016b). Discontinuities can occur, for example,
following a solar proton event or after a sudden change in the
properties of the instrument.

A considerable amount of literature has been devoted to
detecting such trends. Trend detection is a major issue in the
homogenisation of climate records (Chandler & Scott, 2011).
Applications can also be found in the detection of ozone trends
(Staehelin et al., 2001; Laine et al., 2014; Ball et al., 2017),
ionospheric properties (Bremer, 2005; Laštovička, 2017), solar

UV radiation (Lean, 2010; Morrill et al., 2014; Woods et al.,
2018) and in TSI or total solar irradiance (Fröhlich, 2009; Kopp
et al., 2012).

While the solutions that have been proposed are context-
dependent, most of these studies have some features in
common:

1. In the absence of a rigorous definition, a trend denotes a
drift or prevailing tendency in the instrument response
occurring on time scales that are comparable to or larger
than the duration of the observations. In the case of SSI
observations, trends typically occur on time scales of
years.

2. The change in the instrument response does not have to be
monotonic or regular, yet regularity is frequently
assumed. The detection of abrupt changes, better known
as changepoint detection (Reeves et al., 2007), is a differ-
ent problem that goes beyond the scope of our study.

3. Trends are also affected by measurement uncertainties.
Leroy et al. (2008) provide estimates for the minimum
duration to detect a trend using a real observing system.

The majority of trend detection techniques are based on
multiple regression by modelling variations in the observable
interest with one or several solar proxies. The difference (or
residual error) between the model fit and the observations
should then capture the trend if there is any. Implicit to this
assumption is the good stability of the model inputs, i.e. the
absence of non-solar trends in the proxies. A more delicate
issue, which is rarely addressed in the literature, is whether
the proxy model is actually capable of revealing the trend.
For example, a linear model may fail to capture the nonlinear
relationship between proxy and irradiance or the presence of
hysteresis. For these reasons, it is important to find a model that
makes the least possible commitment to the connection between
proxies and irradiance. In what follows, we shall introduce a
non-parametric model that goes in that direction. While this
model cannot prove the existence of a trend in an unambiguous
way, it helps provide stronger evidence against or in favour of
one. Our objective is to reveal trends, and not to seek to model
the irradiance.

Fig. 1. Relative amplitude of the solar cycle variation and the solar rotational modulation, as estimated from SORCE/SIM and SORCE/
SOLSTICE measurements between May 2003 and April 2019. SOLSTICE observations are used below 300 nm, and SIM observations above.
To be less affected by non-physical trends, the amplitudes are estimated by Fourier analysis and not by taking the usual difference between
extrema.
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1.3 Trend detection in the SSI

There is a long history of trend correction in the SSI, and
even more so in the TSI. The usual strategy involves one or
several of the aforementioned methods, namely the use of
redundant sensors, in-flight calibration and multiple regression
with solar proxies. All these methods involve some modelling
and therefore come with assumptions. For example, Mauceri
et al. (2020) consider piecewise linear fits to compare instru-
ment channels that have different duty cycles. The main chal-
lenge is to include the uncertainty that stems from these
assumptions in the correction. While this is relatively natural
in a Bayesian setting (d’Agostini, 2003), it is much more diffi-
cult to find in the literature realistic uncertainty estimates asso-
ciated, for example, with regression models of solar proxies.
A model that matches the SSI remarkably well may have large
error bars because of a lack of uniqueness. In this context, what
is missing is a more transparent approach, in which the methods
are made publicly available, and the results come with meaning-
ful uncertainties, allowing others to replicate the outcome and
test its significance. The method we propose belongs to the
category of semi-parametric regressions since it relies on a
series of proxies to reconstruct the observations. The method
provides a systematic way to verify trends; it does not require
explicit modelling of the SSI, which is more challenging.
The concept was initially proposed by Morrill et al. (2014).
Woods et al. (2018) later used it to produce the Multiple
Same-Irradiance-Level (MuSIL) technique for detecting trends.
MuSIL has since been used by Meftah et al. (2020) to correct
irradiance observations from the SOLAR instrument. Here,
we formalize and expand the concept by bringing two
improvements.

In Section 2 we describe the methodology, followed by its
practical implementation in Section 3. Two applications are then
provided, one to the MgII index in Section 4 and one to SSI
observations from SORCE/SIM and SORCE/SOLSTICE in
Section 5. Conclusions follow in Section 6.

2 Methodology

Consider a time series of solar irradiance s(t) whose trend
we want to investigate. In the following so(t) denotes the
observed irradiance that is possibly affected by an unknown
trend, and st(t) the true but unknown irradiance. The ratio
between the two

f ðtÞ ¼ soðtÞ
stðtÞ ð1Þ

will henceforth be called correction and defines the relative
amount by which the observations have drifted away from
the true value. This correction is our main quantity of interest.
We assume that the true and observed irradiance are equal
when the instrument starts operating at time t0 so that f(t0) = 1.

To estimate the correction we make the four assumptions,
whose validity will be discussed later:

1. We have an independent and stable measurement of a ref-
erence quantity r(t) that can be considered a proxy for the
true irradiance st(t). That is, we assume the existence of a
deterministic link between the two that can be described

by a time-independent function st(t) = F(r(t)). This is
equivalent to saying that the two are in phase or antiphase.
The function F(r(t)) does not have to be linear.

2. The functional relationship F must be monotonic so that
each value of r(t) corresponds to a unique value of st(t)
and vice-versa. This monotonicity requirement can be
partly alleviated. However, the time-invariance of F
(and thus the requirement for both quantities to vary in
phase) is essential.

3. Both the reference and the irradiance need to be observed
for more than half a solar cycle to guarantee that some
levels of solar activity are observed at least twice and
are several months or years apart. Our trend detection can-
not be applied to a rising (or decaying) phase only of the
solar cycle.

4. The long-term stability of the reference proxy must be
better than the magnitude of the trend to be determined.
This assumption cannot be tested rigorously since we
have no ground truth for the proxies either. Even the sun-
spot number, whose drifts are constrained by its positiv-
ity, is known to be affected by long-term changes in its
amplitude (Clette et al., 2016). Such amplitude changes
may mimic a trend.

Assumptions 2. to 4. can be fulfilled by a proper choice of
the proxy and the time span. The monotonicity requirement is
satisfied by most proxies except when these are too indirectly
related to the irradiance. The brightness of sunspots in the
visible band, for example, is known to vary in a non-monotonic
way with sunspot area (e.g. Solanki et al., 2013). However,
when the relationship between proxy and irradiance becomes
that nonlinear, then the relevance of the proxy becomes
questionable.

The most delicate assumption is the first one, which requires
the reference and the irradiance to be in phase. Preminger &
Walton (2007) and Dudok de Wit et al. (2018) have shown that
this is not the case for time scales below approximately three
solar rotations. On longer time-scales most proxies can be
considered to be in phase. For that reason, in what follows,
we ignore time scales shorter than 81 days and apply a lowpass
filter to all quantities.

To illustrate how our method works, we consider in Figure 2
a reference r(t) and two dates t1 and t2 for which it reaches the
same value before and after the solar minimum, i.e. r(t1) = r(t2).
Since the reference and the observed irradiance are assumed to
be in-phase, we should also have so(t1) = so(t2). Figure 2 shows
that this is not the case, and the difference Dso (t1, t2) = so
(t2) � so (t1) may then be the signature of an underlying trend.

Morrill et al. (2014) and Woods et al. (2018) used that idea
to detect trends in the SSI during the latest solar minimum.
Their approach is relevant for estimating variations between
specific dates t1 and t2. To obtain a more global picture, how-
ever, multiple pairs of dates need to be compared, and so we
are left with a large ensemble of values for Dso (ti, tj). While
all these values formally constrain the trend, in the same way,
the shape of a function can be guessed from multiple estimates
of its derivative, they do not give us immediate access to the
magnitude of the trend and its uncertainty. Furthermore, the
trend can be guessed at specific dates only. To overcome these
limitations, we carry this approach one step further and intro-
duce a parametric expression of the trend. We estimate the
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model parameters that give us access to the trend and its
uncertainty at any time. If for, some reason, the trend is poorly
constrained at some given time, then this will be manifested by
a large uncertainty of the correction.

Let us consider a pair of dates (t1, t2) such that r(t1) = r(t2),
and therefore st (t1) = st(t2). From equation (1) we have

f ðt1Þ
f ðt2Þ ¼

soðt2Þ
soðt1Þ : ð2Þ

This ratio and the value of f(t) can be determined at specific
times only. To estimate f(t) at any time we need a parametric
model. For a simple linear trend the model would be

f ðtÞ ¼ 1þ a0
t � t0
T

; ð3Þ
where T is the total duration of the record. This model can be
made more flexible by adding more terms. Polynomial expan-
sions are popular but Fourier series are numerically better
behaved

f ðtÞ ¼ 1þ a0
t � t0
T

þ
XN

k¼1

ak sin
pkðt � t0Þ

T

� �
: ð4Þ

To ease notation, let us define a reduced time s = (t � t0)/T. In
this new time frame observations start at s = 0 and end at s = 1.
Our model then becomes

f ðsÞ ¼ 1þ a0sþ
XN

k¼1

ak sinðpksÞ : ð5Þ

The set of Fourier modes constitute an orthonormal basis on
[0, 1], which offers considerable numerical advantages over
polynomial expansions. The main free parameter is the number
of terms N in the Fourier series; N determines the level of
details that be described by the correction since the range of
time-scales goes from T/N to T. We shall see later that N is
primarily constrained by the amount of observations and by
the duration T.

The procedure now consists in identifying a large number of
pairs of dates {si, sj} for which the references are identical.
Next, we use equation (4) to define

soðsiÞ 1þ a0sj þ
XN

k¼1

ak sin pksj
� �

" #

¼ soðsjÞ 1þ a0si þ
XN

k¼1

ak sin pksið Þ
" #

ð6Þ

which can be cast as a linear system

a0 soðsiÞsj � soðsjÞsi
� � ð7Þ

þ
XN

k¼1

ak soðsiÞ sinðpksjÞ � soðsjÞ sinðpksiÞ
� � ¼ soðsjÞ � soðsiÞ :

ð8Þ

In matrix notation

..

.

soðsiÞsj � soðsjÞsi
..
.

..

.

lijð1Þ
..
.

..

.

lij 2ð Þ . . .
..
.

..

.

lijðNÞ
..
.

2
6664

3
7775

a0

..

.

aN

2
664

3
775

¼
..
.

soðsjÞ � soðsiÞ
..
.

2
664

3
775 ð9Þ

where lij(k) = so(si)sin(pksj) � so(sj)sin(pksi). The indices
(i, j) run over all pairs of observations such that r(si) = r(sj).
Under normal conditions, the number of dates M is consider-
ably larger than the number N + 1 of unknown parameters,
which allows us to solve the linear and overdetermined set
of equations in equation (7) in a total least-squares sense to
obtain {a0, a1, . . ., aN}. Inserting these in equation (4) gives
us the desired correction f(t). Because our model is parametric
the correction can be estimated at any time, even during
periods when no pairs of dates are available.

3 Practical implementation

We now provide some practical guidelines on implementing
the method.

3.1 Uncertainty of the distribution

The robustness of the correction is a crucial aspect of the
solution. There are two major contributions to the model uncer-
tainty: noise or errors in the observations (and in the corrections
applied by the instrument teams), which generates a natural
scatter in the model parameters. The other is the mismatch
between our model and the smoothed observations. Usually,
only the first one is mentioned in the literature. When the
data come with uncertainties, then the uncertainty on the out-
come may be estimated by error propagation. The second

time

amplitude

reference r(t)

signal so(t)

t1 t2

s

Fig. 2. Illustration of the method, showing the reference r(t) and the
observed solar irradiance so(t).
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contribution, which reflects the assumptions we make, is often
overlooked. Unfortunately, it can easily exceed the first
contribution.

We estimate both contributions to the model uncertainty by
doing block bootstrapping (Hastie et al., 2009). Bootstrapping is
a resampling method that consists of drawing a large number of
pairs of dates M times randomly from the total number of
M pairs available with replacement. For each draw, the correc-
tion is estimated; the dispersion of these corrections then pro-
vides an estimate of their uncertainty. In block bootstrapping,
we correct for the presence of serial correlation by considering
groups of consecutive dates rather than individual dates. In all
the cases we encountered, the dispersion was found to follow
a Gaussian distribution. For that reason, the uncertainty will
be quantified in what follows by the standard deviation.

3.2 Model order

The three main tuneable parameters of the method are the
cutoff frequency for removing solar transients, the number of
amplitude levels to determine pairs of dates, and the number
N of Fourier modes or model order. As already mentioned,
transients occurring on time scales shorter than approximately
3 months can be ignored, so we set the cutoff at 81 days.

The number of amplitude levels directly impacts the number
M of pairs of dates. Its choice is a compromise between a proper
statistical coverage of the variability and computational
expense. To a lesser degree, it also depends on the relative error
because inputs with large noise amplitudes require fewer levels.
We found 100–300 levels to give satisfactory results with SSI
data. Larger numbers do not bring any improvement and rather
lead to overfitting. In our implementation of the method, these
levels are regularly spaced between the extrema of so(t).

The only free parameter that requires careful tuning is the
model order N. Small values of N will cause important features
of the correction to go unnoticed. Conversely, large values will
lead to overfitting and generate unstable solutions. Eventually,
the model order is limited by the shortest time-scale, which can-
not be less than 81 days, i.e. N � T/81. A classical method for
selecting the best order is cross-validation (Hastie et al., 2009):
one part of the values is used to estimate the model, which is
then tested on the other part. The reconstruction error usually
drops with increasing N until it reaches a minimum before it
increases again because of overfitting. The Bayesian Informa-
tion Criterion (BIC) is often used in this context as it seeks a
compromise between minimum error and model complexity
(Ljung, 1997).

Another strategy relies on the condition number (Press et al.,
2002) of the regression matrix in equation (9), which quantifies
the degree of collinearity between the columns of the matrix.
Ideally, this number should be equal to one while values larger
than one are indicative of collinearity and, therefore, error
amplification. Examples will be provided in the next section.

After performing many tests, we obtained the best results by
using the BIC (i.e., cross-validation) under the condition that the
condition number remains below a predefined threshold. The
reason for this is that with excessively large numbersM of pairs
(for example, when the spacing of the amplitude levels is too
small), the randomly selected values will not be independent
anymore, which will lead to an underestimation of the recon-
struction error. Although this effect can be corrected, in the

following, we prefer to rely on the condition number because
of its simplicity.

3.3 The procedure in practice

The procedure for estimating the corrections can be now be
summarised as follows:

1. Remove short transients that may be caused, for example,
by flares, solar rotation, sunspot deficit (in the visible
range) or anomalous values. We consider a running med-
ian filter that is typically 27 days (one solar rotation) wide
and is centred on the day of interest. Median filters per-
form better than classical running averages in the presence
of sunspot darkenings in the visible band or flares in the
UV band.

2. Since different bands of the solar spectrum do not
evolve in phase, we lowpass filter them with an 81-day
cutoff.

3. Identify pairs of dates at which the reference r(t) has the
same value. We bin the filtered reference r(t) into Nlev
equispaced levels, with Nlev = 100–300. For each level,
we determine the times at which r crosses that particular
level. With n dates, we obtain 1

2 nðn� 1Þ sets {si, sj, so(sj),
so(si)}, which are stored. Occurrences that are less than
81 days apart are ignored.

4. Once the set is complete, we estimate the correction f(t)
by total least squares and its confidence intervals by block
bootstrapping (Hastie et al., 2009).

4 Application to the MgII index

Let us first illustrate our method with the MgII index, which
is the core-to-wing ratio of the MgII K line at 280 nm. This
index is widely used as a UV proxy for upper atmospheric mod-
elling and has been measured almost continuously and on a
daily basis since November 7, 1978. Here we consider two
composites that have been built by stitching together observa-
tions from different sets of instruments: the composite made
by the Laboratory for Atmospheric and Space Physics (hereafter
named LASP composite) and the one by the International
University of Bremen (Bremen composite). The two composites
rely on different sets of instruments (Snow et al., 2019). Both
agree until early 2011 and then start diverging. The exact reason
for this is not known, although stray light in the SORCE/
SOLSTICE instrument, which is the main contributor to the
LASP composite after 2003, might be one cause. For recent
years the Bremen composite relies instead on the MgII index
from METOP/GOME-2A (starting in 2007) and from
METOP/GOME-2B (starting in 2012). The time interval of
interest runs from November 7, 1978, until July 14, 2013, when
the LASP composite was discontinued.

In this first example, we compare two identical observables,
and so formally, our method is not needed because we can just
as well take the ratio of the two composites. However, this
example provides us with an opportunity to better understand
how the method works. Without loss of generality we take
the Bremen composite as the reference proxy r(t) and the LASP
composite as the observable so(t).
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Both composites are dimensionless quantities but are scaled
differently because of the way the core-to-wing ratio is
estimated. To ease their visualisation, we rescale the LASP
composite to the Bremen composite by means of an affine trans-
formation. Figure 3a displays the two composites (after per-
forming a lowpass filtering with an 81-day cutoff) and reveals
a small but significant discrepancy after approximately 2010.
We now decompose both records into 100 equispaced levels

and estimate the correction for orders N = 1 � 50. The lowest
order correction captures variations with a time-scale of
34 years, whereas with N = 50 the time-scale is 8 months only.

Figures 3b and 3c show respectively the Bayesian Informa-
tion Criterion (BIC) and the condition number. The best model
is the one that has the lowest BIC or, alternatively, the one for
which the BIC stops decreasing significantly. Here the
best order is N = 12. There is no equivalent criterion for the

Fig. 3. Illustration of the MgII index correction with: a) rescaled indices from LASP and Bremen, b) the BIC for model orders up to 50, c) the
condition number for the same orders, d) comparison of the correction (from a 12th order model) and the ratio of the two indices and e)
comparison of the index from Bremen with the corrected index from LASP, using the correction of d). All time series are lowpass filtered at 81
days.
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condition number since this depends on the desired numerical
accuracy. In our context, a reasonable limit is a condition num-
ber between 100 and 500. From these two criteria, we conclude
that the model should be at least of order 12. Adding more terms
does not improve the fit. Let us, therefore, keep N = 12.

The estimated correction f(t) is shown in Figure 3d with its
±1r confidence interval. The correction remains close to 1, as
expected. After 2009, the correction is larger than one, and
indeed the LASP composite has been found to overestimate
the true MgII index (Snow et al., 2014). This is an example
wherein confidence intervals are important as they enable us
to assess the significance of the trend. For example, we can
show that the small local increase in 2003–2005 (which is when
the LASP composite started using SORCE/SOLSTICE data) is
significantly different from one at a level of 5%.

For this particular example, we can estimate the correction
directly, simply by taking the ratio between both composites.
This would not be possible in the general case when the records
represent different physical quantities. Figure 3d shows that this
ratio is in excellent agreement with the estimated correction,
given the confidence interval of the latter. The ratio shows
small-scale variability that cannot be captured by our model
because it has not been designed for that. Note that the confi-
dence intervals tend to be narrower near solar maximum, where
the correction is better constrained by a large number of pairs of
dates with the same level of solar activity.

Once we have the reference, we can reconstruct the cor-
rected (“true”) composite from the observed one by using the
definition st(t) = so(t)/f(t). Without surprise, the corrected and
reference composites fully overlap in Figure 3e. Making such
a correction may be problematic for quantities that drop to zero
at minimum, such as the sunspot number. There are two work-
arounds. One is to add an artificial offset and keep this in mind
when using the correction. A better solution is to define the
correction to be additive rather than multiplicative, i.e.
st(t) = so(t) + f(t). This leads to a non-dimensionless estimator,
which differs from the one of equation (5). The concept,
however, remains unchanged.

5 Application to SORCE SSI observations

In this second and more realistic example, we consider six-
teen years of daily SSI observations made between May 2003
and April 2019 by the SORCE/SOLSTICE and SORCE/SIM
instruments. Their spectral ranges are respectively 115.5–
309.5 nm and 240.0–2412 nm. Here we restrict ourselves to
the UV and visible range up to 700 nm. Our time interval is
constrained by the launch of SORCE in 2003 and the time span
of one of the proxies. The SORCE/SOLSTICE (level 3, version
17) and SORCE/SIM (level 3, version 27) data are available at
http://lasp.colorado.edu/home/sorce/data/. Because of battery
degradation, after 2013, SORCE could be operated only during
the sunlit portion of the orbit. This led to larger thermal ampli-
tudes that affected the performance of its instruments. The
mission ended on 25 February 2020.

A few years after SORCE was launched, both SORCE/
SOLSTICE and SORCE/SIM teams reported a solar cycle
modulation that was unusually strong as compared to earlier
missions and SSI models. This discrepancy has given rise to

a continuing debate (Harder et al., 2009; Lean, 2010;
Lockwood, 2011; Deland & Cebula, 2012; Ermolli et al.,
2013; Morrill et al., 2014; Marchenko et al., 2016). Indeed, if
truly solar, such variations would significantly affect the radia-
tive forcing of climate (Haigh et al., 2010; Wen et al., 2013;
Shapiro et al., 2013; Bolduc et al., 2015; Ball et al., 2016a).
Although successive corrections have progressively reduced
these discrepancies, the existence of an undocumented instru-
mental trend remains unsettled.

The detection of such trends is challenged by the complex
degradation correction process of the instruments and the
absence of ground truth. Comparisons with independent obser-
vations were made Marchenko et al. (2016) using AURA/OMI
data after July 2004 in specific bands between 264 and 504 nm,
by Lockwood (2011) using UARS/SUSIM between 115 and
411 nm until August 2005, and by Mauceri et al. (2020) for
TSIS/SIM after 2018. These studies confirmed an unusual vari-
ability for observations made by SORCE but also suffered from
a limited overlap in time.

5.1 Solar proxy selection

In the absence of simultaneous SSI measurements with the
same spectral and temporal coverage, we resort to a set of solar
proxies that have been selected for their high stability and their
ability to mimic solar spectral variability. Let us stress that none
of these proxies, except for one, are direct SSI measurements. In
addition, they track different physical properties of the Sun.
Therefore, even though they are highly correlated with SSI,
we do not expect them to reproduce all of its features (Dudok
de Wit et al., 2009). In the following, our working hypothesis
will be:
if all these proxies reveal a similar trend in the correction factor,
then we have strong (but not definite) evidence for the presence
of an undocumented trend in the SSI observations.

The solar proxies we consider in this study are:

� The sunspot number (SSN, version 2.0) from the Royal
Observatory of Belgium (Clette et al., 2016). Although
it is only loosely connected to the SSI, the sunspot
number remains a popular proxy for solar activity. The
data are available at https://wwwbis.sidc.be/silso/datafiles.

� The daily sunspot area (DSA) on the solar disk after
(Mandal et al., 2020). This is a proxy for magnetic flux
emergence, which is a driver of SSI variability (Preminger
& Walton, 2007; Dudok de Wit et al., 2018). These data
are available up to 2019 at http://cdsarc.u-strasbg.fr/
viz-bin/cat/J/A+A/640/A78.

� The solar radio flux at 10.7 cm (or F10.7) from Penticton
Observatory (Tapping, 2013). This flux is widely used as
a proxy for Extreme UV (10–120 nm). The F10.7 index is
available at https://lasp.colorado.edu/lisird/data/penticton_
radio_flux/.

� The solar radio flux a 30.0 cm (or F30) from Nobeyama
Radio Observatory. The flux at that wavelength receives
a stronger contribution from thermal Bremsstrahlung and
has been shown to be a better proxy than F10.7 for the
Far-UV (120–200 nm) and Medium-UV (200–300 nm)
(Dudok de Wit and Bruinsma, 2017). The F30 index is
available at https://spaceweather.cls.fr/services/radioflux/.
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� The Mg index from Section 4. This is a proxy for the Far
and Medium UV. We consider the Bremen composite,
which is the only one that covers the full-time interval.
The proxy can be retrieved from https://www.iup.
unibremen.de/UVSAT/Datasets/mgii.

� The total solar irradiance (TSI), which is not a proxy but
the integral of the SSI, is measured by an independent
instrument. The TSI variability is dominated by contribu-
tions from the visible band (400–700 nm). Here we con-
sider an update of the composite by Dudok de Wit et al.
(2017), which is available from https://spot.colorado.edu/
koppg/TSI/. Although this composite is public, it is not
(yet) the official one. Note that the close connection
between TSI and SSI has already been used by several
authors to correct for instrumental effects in the SSI
(e.g. Mauceri et al., 2018).

While there exist other proxies, the ones we have selected stand
out by their high stability. Each of them captures a different
aspect of solar variability and thus should lead to a different cor-
rection. In their MuSIL method, Woods et al. (2018) combine
several of these proxies together into one single “super proxy”.
We recommend instead testing each individual proxy so that
each correction can be documented and evaluated in light of
its physical properties. With an open science approach in mind,
we want these corrections to remain fully traceable.

When determining the best order from the BIC and the
condition number, we find a broad minimum with 50% of the
values located between 5 and 13 for SORCE/SOLSTICE and
5 and 12 for SORCE/SIM. Differences mainly arise because
of the temporal evolution of the correction. Most of the correc-
tions for SORCE/SIM can be approximated by a linear slope so
that a low order model suffices. For SORCE/SOLSTICE the
corrections often have a more complex shape and therefore
require higher orders. To ease comparisons, in what follows,
the order of all corrections will be 9. With this, the shortest
accessible time-scale in the correction is 2 years.

5.2 Observed trends

Figure 4 illustrates the SSI from SORCE/SOLSTICE at a
specific wavelength of 142.5 nm by showing the original and
corrected spectral irradiance. Also shown are the corrections
from each of the seven above-mentioned proxies. Note the scat-
ter of the corrections, which is not surprising since each proxy
quantifies a different aspect of solar variability. This scatter is
also reflected by the uncertainty of the reconstructions, which
is not shown. These results already highlight the importance
of considering several proxies.

Figure 4 reveals a feature that is common to most other
wavelengths, with a tendency of the F10.7, F30 and MgII
indices to give comparable corrections while the daily sunspot
area (DSA) and the sunspot number (SSN) often lead to differ-
ent corrections. This is not surprising as the latter two are of a
different nature and always return to the same level at the solar
minimum.

Another noteworthy result is the presence of a common
initial decay for all proxies. Indeed, all corrections initially drop
below 1. Such a common correction strongly supports the exis-
tence of an undocumented drop in the spectral irradiance at

142.5 nm. Figure 5 illustrates a similar analysis for SORCE/
SIM at 244.56 nm. In contrast to the previous example, we have
a remarkable agreement between all proxies, which provides
strong evidence for an uncorrected drop of 5%.

Corrections at other wavelengths actually reveal a great
diversity of patterns. While most share an initial drop, only a
few are monotonic. In an attempt to classify these patterns,
we performed a k-means classification (Hastie et al., 2009)
and found that there are essentially four main patterns. The
ones found for SORCE/SOLSTICE are illustrated in Figure 6.
All of them show an initial drop, except for pattern no. 2.
The dominant pattern for each wavelength is shown in
Figure 6b.

Several details corroborate the instrumental nature of the
observed trend. For example, the discontinuity at 180 nm coin-
cides with the transition between two channels of the SORCE/
SOLSTICE instrument. Above 280 nm, the sensitivity of the
instrument gradually decreases, probably because of an overcor-
rection of the degradation. In addition, Figure 6b shows that the
patterns are not randomly distributed in wavelength but occur in
spectral bands. Note the diversity of patterns, a few of which
can be reduced to a simple exponential decay, and their marked
wavelength dependence.

Let us now compare the magnitude of the correction to the
solar cycle variability, see Figure 7. For each wavelength, we
consider the median of all corrections and also display the range
between the smallest and largest correction. We prefer the
median to the mean because we are looking for a central ten-
dency in the corrections, not their average. The downside of
the median is the occasional presence of discontinuities in its
slope. Such a discontinuity was visible in Figure 4 in 2019.
The two instruments exhibit different wavelength dependence
in the spectral range in which they overlap; this was to be
expected as they are independent.

The strongest corrections occur in the UV bands, with
values between �5% and +5% after 15 years. In the visible
band, they are considerably smaller and remain within ±0.5%.
Although each wavelength has a different correction, there is
a tendency for most corrections to drift during the first few years
of the mission and then to stabilize. When averaged over one
solar cycle, these corrections correspond to stability of approx-
imately 0.5% per year for SORCE/SOLSTICE and 0.05% per
year for SORCE/SIM. These numbers are in good agreement
with the stability specifications, which are 0.5% per year for
SORCE/SOLSTICE and 0.03% per year for SORCE/SIM.
Small as they may be, these corrections actually are consider-
able when we compare them to the solar cycle amplitude, see
Figure 7b. This figure shows that the largest corrections can
easily be several times larger than the solar cycle modulation.

There are two lessons to be learnt from these comparisons.
First, our corrections are consistent with other estimates and
with instrument specifications. The good agreement obtained
between corrections from different proxies (or, conversely, the
small dispersion in Fig. 7b) strongly supports the idea that the
degradation of instrumental sensitivity may not be fully
accounted for by the current calibration.

Secondly, while the corrections may seem small in absolute
terms they are actually comparable to or larger than the solar
cycle magnitude. Therefore, great care should be taken in inter-
preting variations reported by SORCE/SOLSTICE and
SORCE/SIM. This is particularly true for variations observed
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between 2003 and 2009 when the correction was largest and
partly mimicked the shape of the decaying solar cycle.

To illustrate the impact of these corrections, we compare in
Figure 8 three different versions of the SSI: 1) the original data
from SORCE/SOLSTICE or SORCE/SIM, 2) the original data
with our correction, and 3) the original data with the MuSIL
correction (Woods et al., 2018). The latter two reconstructions
agree on the magnitude of the trend but still show significant
differences, especially for SORCE/SOLSTICE at 249.5 nm.

Notice, however, that they are not strictly comparable because
MuSIL relies on an earlier release of SORCE data. Also shown
on this plot is the confidence interval that results from bootstrap-
ping. The scatter between reconstructions that are based on dif-
ferent proxies provides another measure of the error, which is
comparable to the former. However, as stated before, this scatter
is misleading because, depending on the spectral band, not all
proxies are supposed to offer a proper representation of solar
variability.
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Fig. 4. Illustration of the SSI at 142.5 nm from SORCE/SOLSTICE and its correction, with a) the observed spectral irradiance before and after
applying the correction and b) the corrections estimated from each of the proxies, using 9th order models, and their median value. The latter has
been used for correcting the SSI in plot a). The uncertainties of the corrections (not shown) are comparable to or smaller than the dispersion.
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Fig. 5. Same plot as Figure 4, but for SORCE/SIM at 244.56 nm.
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Fig. 6. Illustration of the correction applied to SORCE/SOLSTICE using the MgII index and a 3rd order model, showing: a) the four main
patterns that can be identified in the corrections (with arbitrary amplitudes), and in b) the magnitude of the correction after 10 years. The colour
of the correction corresponds to the dominant pattern, using the same colour code as in plot a).

Fig. 7. Median correction estimated from SORCE/SOLSTICE and SORCE/SIM in dimensionless units (a) and after normalisation by the solar
cycle amplitude (b). The shaded area represents the range between smallest and largest correction. We use a 9th order model with all six proxies
and the correction shown is the value averaged over the full time interval.
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If we apply our correction to the MuSIL dataset and com-
pare it to the reconstruction from original data, we find a good
agreement (not shown), given their uncertainty. This important
result means that our method is robust with respect to degrada-
tion corrections applied by the instrument teams as long as these
can be approximated by our low order model.

As a final sanity check, let us compare the reconstruction at
249.5 nm from two independent measurements from SORCE/
SOLSTICE and SORCE/SIM, see Figure 8a. While the original
records show substantially different trends (not shown), their
reconstructions agree remarkably well apart for an offset. The
main discrepancy between the two reconstructions is a weak
yearly residual modulation in SORCE/SIM data, which is diffi-
cult to correct because it would require a high-order model. This
example further illustrates the capacity of our method to recover
a realistic solar cycle variability regardless of the trend that
affects the original data. In some sense, this is not surprising
because our method attempts to recover the same variability
as in proxies.

5.3 Impact on radiative output

Let us finally consider how the reconstruction impacts the
solar radiative output by considering the peak-to-peak variation
of the SSI during the solar cycle 23. SORCE was launched two
years after solar maximum, so as a substitute for the latter, we

consider the first 365 days of the mission, starting on May
15, 2003. For solar minimum, we consider the year 2008.
Finally, we compute the difference between the two periods
and integrate over specific spectral bands. Any imbalance
between different spectral bands may significantly impact strato-
spheric ozone levels since UV radiation below 242 nm produces
ozone by photolysis, while below 320 nm it leads to a catalytic
loss.

A similar approach had been used by Haigh et al. (2010)
and Ermolli et al. (2013), who revealed an unusually large cycle
modulation of the SSI from SORCE, with a negative variation
(i.e. anticorrelation) in the visible range between 400 and
700 nm. Our results are based on more recent releases of
SORCE data, which therefore are not strictly comparable to ear-
lier plots. What matters, however, is how much the corrected
SSI affects the conclusions made by Haigh et al. (2010) and
Ermolli et al. (2013).

Figure 9 summarizes the solar cycle variability after and
before trend correction, together with results obtained from
two widely used SSI models: the Naval Research Laboratory’s
SSI model, NRLSSI2 (Coddington et al., 2016) (version 02r01)
and the Spectral And Total Irradiance REconstruction for the
Satellite era, SATIRE-S (Yeo et al., 2014). Note a much closer
agreement, both in sign and in amplitude, between the corrected
SSI and the two SSI models. Although this again does not prove
that the trend correction is correct, it provides additional

Fig. 8. Comparison of different SSI reconstructions. Plot (a) compares our reconstruction from SORCE/SOLSTICE and SORCE/SIM at the
wavelength nearest to 249.5 nm. For easier comparison, the record from SORCE/SIM has been shifted downwards by 0.01 mW/nm/m2. Plots
(b–f) compare reconstructions based on our method and on MuSIL only. In each plot we use a 9th order model and consider the median
correction of all six proxies. The reconstruction, according to MuSIL (available from https://lasp.colorado.edu/lisird/), is based on an earlier
release of SORCE data and therefore is not strictly comparable to our reconstruction. Short dropouts observed at 500.1 nm are primarily due to
sunspot darkening. The shaded area around our reconstruction represents a ±2r confidence interval that has been estimated by bootstrapping.
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evidence in favour of it. The estimated error on our reconstruc-
tion (not shown on the plot) is comparable to the difference
between our corrected SORCE data and the two models. From
this, we conclude that there is no significant difference between
the solar cycle variability of the SSI derived the SORCE data –
after applying our correction – and the SATIRE-S and
NRLSSI2 models.

6 Conclusions

We provide a mathematical framework for extracting
undocumented trends from solar irradiance data by comparing
the observed variability with several solar proxies such as the
F10.7 index, the MgII index and the sunspot number. Compared
to previous approaches by Morrill et al. (2014) and Woods et al.
(2018), we provide a parametric expression of the correction,
which 1) allows the correction to be estimated at any time
and 2) provides confidence intervals, which are vital for testing
the significance of the results.

The main assumptions are the in-phase variation of the solar
irradiance with the proxies and the stability of the latter. The
shape of the trend is approximated by a Fourier series, and
we provide recipes for tuning the free parameters of the method.
An important restriction is the necessity to observe at least half a
solar cycle so that some levels of solar activity occur twice.

The application of the method to 16 years of solar spectral
irradiance observations from SORCE/SOLSTICE and SORCE/
SIM reveals significant trend corrections that can be as large as
several times the solar cycle amplitude. Comparisons with the
solar cycle variability of the NRLSSI2 and SATIRE-S models
reveals a good agreement after the correction, especially in
the Middle-UV band, which is important for modelling catalytic
loss of stratospheric ozone. Among the various proxies that
were used for this analysis, the MgII index (Bremen composite)
and the F10.7 and F30 radio indices generally lead to the small-
est uncertainty in the trend correction.

No comparison with solar proxies can unambiguously prove
the instrumental origin of the trends we observe in SSI data.
However, different sanity checks give us confidence in the
method. In particular, the reconstructions are resilient (given
their uncertainty) to degradation corrections applied by the

instrument teams. Likewise, reconstructions of the SSI observed
at the same wavelength by two different instruments also give
comparable results.

The main limitation of the method is the need to specify the
order of the model, which impacts the shape of the correction.
Higher-order models with more detailed trend evolutions can
be inferred when the spectral irradiance correlates well with
the proxies. Conversely, in the visible range, where relative
solar cycle variability is low, and the signal-to-noise ratio is
poor, the model is less well constrained by the observations.
In these cases, only a linear trend can be inferred, while in
the UV, we observed a variety of patterns that do not necessarily
decay monotonically. Gaussian processes (Rasmussen &
Williams, 2006) may provide an interesting alternative to our
parametric Fourier model, although they come with a much
higher computational cost.

Finally, our method provides confidence intervals that
reflect both the uncertainties in the data and the errors that result
from the modelling of the trend. The latter errors are often
neglected while the robustness of the model is vital for allowing
the reconstruction to be tested for significance. In an open
science approach, we make the Matlab routine and some
test data available at https://github.com/tddwit/solar_trend_
detection.

The observation of the same trend in SORCE data regard-
less of the type of proxy lends strong support to the presence
of undocumented instrumental effects. Let us stress again, how-
ever, that our method should be regarded as an independent and
complementary tool for detecting uncorrected variations. It is
then up to the instrumental team to decide whether to actually
correct these variations, based on the additional evidence from
the instrument. Our method performs best in the UV range
because there is a physical motivation for using proxies such
as the MgII index and also because the relative variability of
the SSI is large as compared to the intrinsic error of the method.
For that same reason, the correction of the SSI in the visible and
near-infrared ranges requires much greater care.
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