In situ recording of Mars soundscape - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Nature Année : 2022

In situ recording of Mars soundscape

S. Maurice (1) , B. Chide (2) , N. Murdoch (3) , R. Lorenz (4) , D. Mimoun (3) , R. C. Wiens (2, 5) , A. Stott (3) , X. Jacob (6) , T. Bertrand (7) , Franck Montmessin (8) , N. Lanza (2) , C. Alvarez-Llamas (9) , S. Angel (10) , M. Aung (11) , J. Balaram (11) , O. Beyssac (12) , A. Cousin (1) , G. Delory (13) , O. Forni (1) , T. Fouchet (7) , O. Gasnault (1) , H. Grip (11) , M. Hecht (14) , J. Hoffman (15) , J. Laserna (9) , Jérémie Lasue (1) , J. Maki (11) , J. Mcclean (14) , P.-Y. Meslin (1) , S. Le Mouélic (16) , A. Munguira (17) , C. E. Newman (18) , J. A. Rodríguez Manfredi (19) , J. Moros (9) , A. Ollila (2) , P. Pilleri (1) , S. Schröder (20) , M. de La Torre Juárez (11) , T. Tzanetos (11) , K. M. Stack (11) , K. Farley (11) , K. Williford (11, 21) , T. Acosta-Maeda (22) , R. B. Anderson (23) , D. M. Applin (24) , G. Arana (25) , M. Bassas-Portus (3) , R. Beal (2) , P. Beck (26) , K. Benzerara (12) , S. Bernard (12) , P. Bernardi (7) , T. Bosak (27, 26) , B. Bousquet (28) , A. Brown (29) , A. Cadu (3) , P. Caïs (30) , K. Castro (25) , E. Clavé (28) , S. Clegg (2) , E. Cloutis (24) , S. Connell (24) , A. Debus (31) , E. Dehouck (32) , D. Delapp (2) , C. Donny (31) , A. Dorresoundiram (7) , G. Dromart (32) , B. Dubois (33, 34) , C. Fabre (35) , A. Fau (1) , W. Fischer (36, 35) , R. Francis (11) , J. Frydenvang (37) , T. Gabriel (23) , E. Gibbons (38) , I. Gontijo (11) , J. R. Johnson (4) , H. Kalucha (36, 35) , E. Kelly (22) , Elise Wright Knutsen (8) , Gaetan Lacombe (8) , C. Legett (2) , R. Leveille (38) , E. Lewin (26) , G. Lopez-Reyes (39) , E. Lorigny (31) , J. M. Madariaga (25) , M. Madsen (40) , S. Madsen (11) , L. Mandon (7) , N. Mangold (16) , M. Mann (31) , J.-A. Manrique (1, 39) , J. Martinez-Frias (41) , L. E. Mayhew (42) , T. Mcconnochie (43) , S. M. Mclennan (44) , N. Melikechi (45) , F. Meunier (31) , G. Montagnac (32) , V. Mousset (31) , T. Nelson (2) , R. Newell (2) , Y. Parot (1) , C. Pilorget (46, 47) , P. Pinet (1) , G. Pont (31) , F. Poulet (46) , C. Quantin-Nataf (32) , B. Quertier (30) , W. Rapin (1) , A. Reyes-Newell (2) , S. Robinson (2) , L. Rochas (31) , C. Royer (7) , F. Rull (39) , V. Sautter (12) , S. Sharma (22) , V. Shridar (11) , A. Sournac (3) , M. Toplis (1) , I. Torre-Fdez (25) , N. Turenne (24) , A. Udry (48) , M. Veneranda (39) , D. Venhaus (2) , D. Vogt (20) , P. Willis (11)
1 IRAP - Institut de recherche en astrophysique et planétologie
2 LANL - Los Alamos National Laboratory
3 ISAE-SUPAERO - Institut Supérieur de l'Aéronautique et de l'Espace
4 APL - Johns Hopkins University Applied Physics Laboratory [Laurel, MD]
5 EAPS - Department of Earth, Atmospheric, and Planetary Sciences [West Lafayette]
6 IMFT - Institut de mécanique des fluides de Toulouse
7 LESIA - Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics
8 PLANETO - LATMOS
9 Universidad de Málaga [Málaga] = University of Málaga [Málaga]
10 Department of Chemistry and Biochemistry [Columbia, South Carolina]
11 JPL - Jet Propulsion Laboratory
12 IMPMC - Institut de minéralogie, de physique des matériaux et de cosmochimie
13 Heliospace Corporation
14 MIT Haystack Observatory
15 Department of Aeronautics and Astronautics [Cambridge]
16 LPG - Laboratoire de Planétologie et Géosciences [UMR_C 6112]
17 Escuela de Ingeniería de Bilbao
18 Aeolis Corporation
19 CAB - Centro de Astrobiologia [Madrid]
20 DLR Institute of Optical Sensor Systems
21 BMSIS - Blue Marble Space Institute of Science
22 UHM - University of Hawai‘i [Mānoa]
23 US Geological Survey [Flagstaff]
24 University of Winnipeg
25 UPV / EHU - University of the Basque Country = Euskal Herriko Unibertsitatea
26 IPAG - Institut de Planétologie et d'Astrophysique de Grenoble
27 EAPS - Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge]
28 CELIA - Centre d'Etudes Lasers Intenses et Applications
29 Plancius Research LLC
30 LAB - Laboratoire d'Astrophysique de Bordeaux [Pessac]
31 CNES - Centre National d'Études Spatiales [Toulouse]
32 LGL-TPE - Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement
33 OMP - Observatoire Midi-Pyrénées
34 Université de Lyon
35 GeoRessources
36 CALTECH - California Institute of Technology
37 UCPH - University of Copenhagen = Københavns Universitet
38 McGill University = Université McGill [Montréal, Canada]
39 UVa - Universidad de Valladolid [Valladolid]
40 ITU - IT University of Copenhagen
41 CSIC - Consejo Superior de Investigaciones Cientificas = Spanish National Research Council
42 Department of Geological Sciences [Boulder]
43 University of Maryland [College Park]
44 SBU - Stony Brook University [SUNY]
45 Department of Physics and Applied Physics [Lowell]
46 IAS - Institut d'astrophysique spatiale
47 IUF - Institut Universitaire de France
48 WGU Nevada - University of Nevada [Las Vegas]
B. Chide
  • Fonction : Auteur correspondant
  • PersonId : 1141488

Connectez-vous pour contacter l'auteur
X. Jacob
Franck Montmessin
N. Lanza
G. Delory
  • Fonction : Auteur
O. Forni
M. Hecht
J. Maki
A. Munguira
C. E. Newman
S. Schröder
M. de La Torre Juárez
A. Brown
C. Fabre
Elise Wright Knutsen
Gaetan Lacombe

Résumé

Before the Perseverance rover landing, the acoustic environment of Mars was unknown. Models predicted that: (1) atmospheric turbulence changes at centimetre scales or smaller at the point where molecular viscosity converts kinetic energy into heat1, (2) the speed of sound varies at the surface with frequency2,3 and (3) high-frequency waves are strongly attenuated with distance in CO2 (refs. 2,3,4). However, theoretical models were uncertain because of a lack of experimental data at low pressure and the difficulty to characterize turbulence or attenuation in a closed environment. Here, using Perseverance microphone recordings, we present the first characterization of the acoustic environment on Mars and pressure fluctuations in the audible range and beyond, from 20 Hz to 50 kHz. We find that atmospheric sounds extend measurements of pressure variations down to 1,000 times smaller scales than ever observed before, showing a dissipative regime extending over five orders of magnitude in energy. Using point sources of sound (Ingenuity rotorcraft, laser-induced sparks), we highlight two distinct values for the speed of sound that are about 10 m s−1 apart below and above 240 Hz, a unique characteristic of low-pressure CO2-dominated atmosphere. We also provide the acoustic attenuation with distance above 2 kHz, allowing us to explain the large contribution of the CO2 vibrational relaxation in the audible range. These results establish a ground truth for the modelling of acoustic processes, which is critical for studies in atmospheres such as those of Mars and Venus.
Fichier principal
Vignette du fichier
s41586-022-04679-0.pdf (6.44 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-03631328 , version 1 (21-04-2022)
insu-03631328 , version 2 (25-06-2022)

Licence

Paternité

Identifiants

Citer

S. Maurice, B. Chide, N. Murdoch, R. Lorenz, D. Mimoun, et al.. In situ recording of Mars soundscape. Nature, 2022, 605, pp.653-658. ⟨10.1038/s41586-022-04679-0⟩. ⟨insu-03631328v2⟩
349 Consultations
89 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More