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ABSTRACT
We study models of the γ-ray emission of Cyg X-3 observed by Fermi. We calculate the average
X-ray spectrum during the γ-ray active periods. Then, we calculate spectra from Compton
scattering of a photon beam into a given direction by isotropic relativistic electrons with a
power-law distribution, both based on the Klein–Nishina cross-section and in the Thomson
limit. Applying the results to scattering of stellar blackbody radiation in the inner jet of Cyg X-
3, we find that a low-energy break in the electron distribution at a Lorentz factor of ∼300–103

is required by the shape of the observed X-ray/γ-ray spectrum in order to avoid overproducing
the observed X-ray flux. The electrons giving rise to the observed γ-rays are efficiently cooled
by Compton scattering, and the power-law index of the acceleration process is �2.5–3. The
bulk Lorentz factor of the jet and the kinetic power before the dissipation region depend on
the fraction of the dissipation power supplied to the electrons; if it is �1/2, the Lorentz factor
is ∼2.5, and the kinetic power is ∼1038 erg s−1, which represents a firm lower limit on the
jet power, and is comparable to the bolometric luminosity of Cyg X-3. Most of the power
supplied to the electrons is radiated. The broad-band spectrum constrains the synchrotron
and self-Compton emission from the γ-ray emitting electrons, which requires the magnetic
field to be relatively weak, with the magnetic energy density � a few times 10−3 of that in
the electrons. The actual value of the magnetic field strength can be inferred from a future
simultaneous measurement of the infrared and γ-ray fluxes.

Key words: acceleration of particles – accretion, accretion discs – radiation mechanisms:
non-thermal – stars: individual: Cyg X-3 – X-rays: binaries – gamma-rays: theory.

1 IN T RO D U C T I O N

Cyg X-3 is a high-mass X-ray binary with a Wolf–Rayet (WR) com-
panion (van Kerkwijk et al. 1996), with an unusually short orbital
period of 4.8 h, located at a distance D � 7–9 kpc in the Galac-
tic plane (Dickey 1983; Predehl et al. 2000; Ling, Zhang & Tang
2009). Because of the lack of reliable mass functions and determi-
nation of the inclination, the nature of its compact object remains
uncertain (see Vilhu et al. 2009 for a recent discussion). However,
the presence of a black hole is favoured by considering the X-ray
and radio emission and the bolometric luminosity (Hjalmarsdotter
et al. 2008, 2009; Szostek & Zdziarski 2008; Szostek, Zdziarski
& McCollough 2008). Furthermore, Zdziarski, Misra & Gierliński

�E-mail: aaz@camk.edu.pl (AAZ); sikora@camk.edu.pl (MS)

(2010a) have shown that the differences in the form of the X-ray
spectra of Cyg X-3 from those of confirmed black hole binaries can
be accounted for by Compton scattering in the very strong stellar
wind from the companion. That model also accounts for the lack of
high frequencies (Axelsson, Larsson & Hjalmarsdotter 2009) in the
power spectra of Cyg X-3.

Cyg X-3 is a persistent X-ray source. Its X-ray spectra have been
classified into five states by Szostek et al. (2008), who have also
quantified their correlations with the radio states. Its γ-ray emission
has been discovered by the Fermi Large Area Telescope (LAT) and
AGILE in the soft spectral states (Fermi LAT Collaboration 2009,
hereafter FLC09; Tavani et al. 2009). Fig. 1 shows the average
power-law γ-ray emission measured by Fermi during the active
phases. The power law is relatively steep, with the photon index of
� � 2.70 ± 0.25. Fig. 1 also shows the average X-ray spectrum and
the 15-GHz flux during the periods of γ-ray emission. It also shows
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The gamma-ray emitting jet of Cyg X-3 2957

Figure 1. The average radio to γ-ray spectrum of Cyg X-3 during the 2008 and 2009 γ-ray active periods is shown in the black symbols. The error contour
and the black dashed line show the average power-law fit with � = 2.70 ± 0.25 to the Fermi/LAT data (FLC09). The black error bars show the simultaneous
X-ray spectrum from the RXTE/ASM and Swift/BAT. The black cross shows the average 15 GHz radio flux measured by the AMI and OVRO telescopes during
the same periods. The magenta and green error bars show two other soft-state X-ray spectra, from BeppoSAX and RXTE, respectively. The magenta dashed
line shows a 1.5–100 GHz, Fν ∝ ν−0.5, spectrum, similar to the spectra measured in that range during a 2001 radio outburst of Cyg X-3, and the two magenta
crosses show IR measurements in a radio-flaring state. See Section 2 for details.

two X-ray spectra and the IR fluxes in the soft state from earlier
observations (see Section 2).

We see that the γ-ray power-law spectrum has to have a low-
energy break somewhere between ∼1 and ∼100 MeV in order
not to produce more X-ray emission than observed. Furthermore,
Zdziarski et al. (in preparation) show that the hard X-rays up to
at least 100 keV during the intervals with γ-ray emission have the
orbital modulation pattern characteristic to wind absorption and
scattering. On the other hand, the GeV orbital modulation is shifted
in phase with respect to the X-rays by ∼π/2 (FLC09). This appears
to imply that the contribution of the spectral component observed
in the GeV range to the 100 keV flux is at most weak. The GeV
power-law emission and its orbital modulation appear to be due to
Compton up-scattering of the stellar emission from the companion
WR star by relativistic electrons in the jet of this source (FLC09;
Dubus, Cerutti & Henri 2010b, hereafter DCH10).

In this work, we first calculate the average X-ray and radio emis-
sion during the γ-ray active periods. Then, we study emission due
to Compton up-scattering of blackbody photons by power-law elec-
trons with a low-energy break. Finally, we apply our theoretical
results to the broad-band X-ray/γ-ray (Xγ ) spectra of Cyg X-3, and
obtain strong constraints on the electron distribution in the γ-ray
emitting region and on the parameters of the jet.

2 TH E R A D I O – X - R AY S P E C T R A

We use X-ray monitoring data from the Swift Burst Alert Telescope
(BAT; Barthelmy et al. 2005; Markwardt et al. 2005) in the form of
a 14–195 keV eight-channel light curve (Zdziarski et al., in prepa-
ration). The channels are between energies of 14, 20, 24, 35, 50,
75, 100, 150 and 195 keV. Furthermore, we use X-ray monitoring
data from the All-Sky Monitor (ASM; Bradt, Rothschild & Swank
1993; Levine et al. 1996) on board Rossi X-ray Timing Explorer
(RXTE). The ASM has three channels at energies of 1.5–3, 3–5 and

5–12 keV. In the radio range, we use the 15-GHz data from the AMI
Large Array and the Owens Valley Radio Observatory (OVRO),
data which were used in FLC09.

We then calculate the average fluxes in each of the X-ray channels
(converting the count rates to fluxes using the method of Zdziarski,
Pooley & Skinner 2011) and at 15 GHz during the two γ-ray ac-
tive periods for which the average γ-ray spectrum of FLC09 was
obtained, which are MJD 54750–54820 (in 2008) and MJD 54990–
55045 (in 2009). The resulting average X-ray spectrum and the
average radio flux simultaneous with the γ-ray spectrum are shown
in Fig. 1. The average 15-GHz flux equals 0.38 ± 0.04 Jy, with a
large rms of 0.43 Jy, reflecting a strong flux variability from a few
mJy to ∼2 Jy.

To illustrate the likely form of the radio spectrum during the γ-ray
active periods, we plot a radio power law between 1.5 and 100 GHz
with an energy index of 0.5 (characteristic to uncooled optically
thin synchrotron emission), which is in the middle of the ∼0.4–
0.6 index range measured in that frequency range during a 2001
radio outburst of Cyg X-3 by Miller-Jones et al. (2004). To show
the likely form of the broad-band soft-state radio-flaring spectrum
of Cyg X-3, we also show two infrared (IR) measurements, at 4.5
and 11.5 μm, taken in the flaring radio state on 1997 June 18, with
the quiescent-state fluxes (which are, most likely, due to the stellar
wind emission) subtracted (Ogley, Bell Burnell & Fender 2001).
The 15-GHz flux measured by the Ryle telescope at the time of the
IR measurement, MJD 506217.(39–42), was 0.64 Jy, i.e. about 1.5
of the average value during the γ-ray active periods, and the 8.3-
GHz flux from the Green Bank Interferometer was 0.59–0.72 Jy.
(Note that the MJD of the measurements given in Ogley et al. 2001
have errors.)

In Fig. 1, we also show one of the average soft-state X-ray spec-
tra from RXTE Proportional Counter Array (PCA) and the High
Energy X-Ray Transient Experiment (HEXTE) of Szostek et al.
(2008), namely their spectrum #4, and the soft spectrum from
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2958 A. A. Zdziarski et al.

BeppoSAX of Szostek & Zdziarski (2008), which is similar, but
of better quality, to the spectrum #5 of Szostek et al. (2008). We
see that our average ASM/BAT spectrum lies between these two
spectra, thus it is intermediate between the soft and ultrasoft states
of Szostek et al. (2008). As shown by Zdziarski et al. (2010a), there
is a close correspondence between the canonical X-ray states of
black hole binaries and the X-ray states of Cyg X-3. The soft and
ultrasoft states in black hole binaries are dominated by emission
of an optically thick accretion disc up to an energy of several keV,
and by a power-law-like tail, probably of coronal origin, at higher
energies. The same situation is then, most likely, present in those
states of Cyg X-3, with a modification due to the passing of that
emission through the very strong stellar wind of the donor WR star.
A contribution from the jet is also possible at hard X-rays, which
issue is studied in this work.

3 ANISOTROP IC COMPTO N SCATTERING

In this section, we consider Compton scattering of soft photons
by a cloud of relativistic electrons isotropic in the jet comoving
frame. Here, the photon energy, the electron Lorentz factor and the
scattering angle are given in this frame.

The problem of Compton scattering of a monodirectional photon
beam by a cloud of relativistic electrons with a Lorentz factor γ �
1 and an isotropic angular distribution into a given angle has been
solved by Aharonian & Atoyan (1981). Their equation (20), valid
from the Thomson to the Klein–Nishina regimes, gives the flux per
electron and per solid angle, which can be written as

ε dṅ(ε0, γ )

dε d�
= 3σTṅ0ε

16πε0γ 2

[
(1 − r)2 + r2 + w2

2(1 − w)

]
s−1, (1)

r ≡ ε

2ε0xγ 2(1 − w)
≤ 1, x ≡ 1 − cos ϑ, w ≡ ε

γ
, (2)

where ε0 and ε are the energy of the incoming and scattered photon,
respectively, in units of mec2, ϑ is the scattering angle, ṅ0 (cm−2 s−1)
is the number flux of incoming photons, me is the electron mass and
σ T is the Thomson cross-section. Furthermore,

ε0 	 ε ≤ 2xε0γ
2

1 + 2xε0γ
, (3)

where the former constraint expresses the applicability of the γ 2 �
1 condition, and the latter, equivalent to r ≤ 1, is kinematic.

The above rate can be then integrated over an electron distribu-
tion. We consider the case of a power-law distribution with cut-offs:

N (γ ) =
{

Kγ −p, γ1 ≤ γ ≤ γ2,

0, otherwise,
(4)

where the constant K specifies either the electron density or their
total number. Accounting for r ≤ 1, we have

ε dṅ(ε0)

dε d�
=

γ2∫
min{max[γ1, ε

2 (1+√
1+2/(ε0εx))],γ2}

ε dṅ(ε0, γ )

dε d�
N (γ ) dγ. (5)

For γ2 → ∞, this yields

ε
dṅ(ε0)

dε d�
= 3σTṅ0K

32πε2+pε3
0x

2

{
y1+p

[
2(εε0x)2

1 + p
+ (4 + p)y2

3 + p

+ y3

1 − y

]
+ [

(εε0x − 1)2 − 5 − p
]

By(3 + p, 0)

}
, (6)

y =
{

ε/γ1, ε0 ≥ ε
2γ1x(γ1−ε) and ε < γ1,

2/
(

1 +
√

1 + 2
εε0x

)
, otherwise,

(7)

where By is the incomplete beta function. In terms of ε, the first con-
dition in equation (7) reads ε ≤ 2xε0γ

2
1 /(1 + 2xε0γ1). Equation (6)

for the second case in equation (7) is equivalent to equation (33) of
Aharonian & Atoyan (1981). For integer or half-integer s, By(s, 0)
can be expressed relatively simply by elementary functions, and, in
general,

By(s, 0) =
∞∑

j=0

ys+j

s + j
, y < 1. (8)

For a finite γ2, the flux can be obtained by subtracting the rate with
γ2 substituted for γ1 in equation (7) from the rate of equation (6).
Then, the spectrum will be null for ε ≥ 2xε0γ

2
2 /(1+2xε0γ2). Fig. 2

shows an example of the spectrum for parameters roughly applicable
to Cyg X-3, and compares it to the Thomson-limit spectrum of
Appendix A. We see that for these parameters, the average slope of
the actual spectrum for a decade above the break (corresponding to
γ1) is substantially steeper than of that in the Thomson limit.

Equation (6) can be then integrated piecewise over a distribution
of irradiating photons, ṅ0(ε0),

ε dṅ

dε d�
=

∫ qε

ε/[2xγ 2
2 (1−ε/γ2)]

ṅ0(ε0)

ṅ0

ε dṅ(ε0)

dε d�
dε0, (9)

where q 	 1 is a constant assuring the ε0 	 ε condition, at which
equation (1) is valid. When K corresponds to electron density,
jε ≡ mec

2εdṅ/dεd� is the emissivity. When K corresponds to
the total number of electrons, it gives the total photon production
rate, and the dimension of equation (9) is s−1. In the latter case, the
differential luminosity and the observed flux (neglecting relativistic
corrections) are given by

dL

dε d�
= mec

2 ε dṅ

dε d�
,

dF

dε
= 1

D2

dL

dε d�
, (10)

respectively.

Figure 2. An example spectrum from a cloud of electrons irradiated by
a beam of monoenergetic photons with ε0 = 5 × 10−5, ṅ0 = 1, emitted
at ϑ = 90◦ with respect to the beam for p = 4, γ1 = 103, γ2 → ∞ and
the normalization corresponding to K = 1. The red solid and green dashed
curves correspond to the Klein–Nishina formula (6) and the Thomson limit
with a sharp Klein–Nishina cut-off, equations (A1)–(A4), respectively.
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The gamma-ray emitting jet of Cyg X-3 2959

The seed photons can be, in particular, from a blackbody emitter
(e.g. a star) with a radius, R∗, and temperature, T . When the dis-
tance of the electron cloud from the stellar centre, R, is �R∗, the
blackbody photons form an almost monodirectional beam, incident
on the electrons. Here, we taken into account that the electron cloud
may be located in a jet or counterjet moving with respect to the star,
for which the Doppler factor is

D∗ = 1

�j(1 − βj e∗ ·ej)
, (11)

where β j is the jet velocity, �j = 1/(1 − β2
j )1/2 is the jet Lorentz

factor and e∗ and ej are the unit vectors along the direction from
the star towards the electron cloud and along the jet, respectively,
see fig. 1 in DCH10. Then, the soft photon energy in the stellar (=
observer) frame is ε0D∗, and this energy has a blackbody distribu-
tion at kT/mec2. Since ṅ0(ε0) is a relativistic invariant (Blumenthal
& Gould 1970),

ṅ0(ε0) = 2π

c2h3

(
R∗
R

)2 (mec
2)3ε2

0D2
∗

exp(ε0mec2D∗/kT ) − 1
cm−2 s−1, (12)

where k and h are the Boltzmann and Planck constants, respectively.
Fig. 3 shows example spectra obtained using equation (9) for

blackbody irradiation, also comparing it to the corresponding
Thomson-limit spectra of Appendix A. Such a model can give
the low-energy break required by the broad-band Xγ-spectrum ob-
served from Cyg X-3, see Fig. 1. We see that the photon break
energy moves to lower energies as ϑ decreases, as implied by equa-
tion (7). The low-energy parts of the spectra are almost independent
of the angle. Similarly to the case of monoenergetic incident pho-
tons, Fig. 2, the Thomson-limit spectra above the break have the
slope significantly harder than the actual spectra, but the difference
between the two decreases with the decreasing scattering angle, ϑ .

Figure 3. The thick solid blue, green and red curves show example of
Klein–Nishina spectra in the cloud frame from a stationary (β j = 0) cloud
of electrons irradiated by a beam of blackbody photons with the emission
at an angle with respect to the beam given by cos ϑ = −0.8, 0 and 0.8,
respectively, for p = 4, γ1 = 103, γ2 → ∞, T = 105 K, K = 1 and R =
R∗. The corresponding dashed curves show the Thomson-limit spectra, see
Appendix A. The black dotted line shows the spectrum of equation (A9) for
cos ϑ = 0.8.

4 O BSERVED SPECTRA

Here, we calculate the spectra in the observer’s frame. We consider
a steady-state jet in which the observed emission comes from a
given spatial range in the observer’s frame. This is compatible with
the dynamical time-scale of the jet of the order of tens of seconds
(see Section 5.2), whereas the γ-ray emission was detected over
time-scales of days/weeks. Furthermore, the strong orbital modu-
lation in γ-rays (FLC09) requires the γ-ray emitting region to be
approximately stationary.

The jet and counterjet Doppler factors with respect to the observer
are

Dj = 1

�j(1 − βjeobs · ej)
, Dcj = 1

�j(1 + βjeobs · ej)
, (13)

respectively, where eobs is the unit vector towards the observer. We
use the result of Dubus, Cerutti & Henri (2010a),

x ≡ 1 − cos ϑ = DjD∗ (1 − eobs · e∗) , (14)

where eobs · e∗ is the cosine of the orbital-phase-dependent angle
between the direction from the star to the jet and from the jet to the
observer in the observer’s frame (which angle in the jet frame is the
scattering angle, ϑ). For the jet emission,

ε = E

Djmec2
,

dF

dE
= D2

j

D2�j

ε dṅ

dε d�
, (15)

where E is the observed dimensional photon energy, and the flux
transformation to the observed frame is for a steady-state jet (Sikora
et al. 1997). We note that the form of dF/dE above assumes that the
energy units in F and E are the same, whereas they are often assumed
to be different (e.g. erg and eV), which, however, can be easily
accounted for. For the counterjet, Dcj and the corresponding D∗, R
should be used, and the two observed fluxes should be added. Given
the observed spectrum, this transformation yields the normalization
of the emitting electron distribution corresponding to the actual
number of electrons in the considered jet region. On the other hand,
the transformation used in DCH10, with D3

j instead of D2
j /�j,

corresponds either to emission of a single moving blob or to the
observed number of electrons in the emitting part of the jet. Note
that in the latter case the observed number is different in the jet and
in the counterjet, which was not accounted for in the treatment used
by DCH10.

For a pure power-law emission from Thomson-limit scattering,
as in equation (A9), applying the above relations results in the
energy flux as given by equations (1) and (3) of DCH10 (except
for the form of the dependence on Dj), with no dependence on
D∗. In a general case, we need to apply formulae (14) and (15) to
equation (9) (i.e. substitute ε and x as above and multiply the rate
by D2

j /�j), integrate it numerically and then repeat the procedure
for the counterjet.

The distance between the electron cloud and the stellar centre,
R, and the components of the vectors e∗, eobs and ej are given
by equations (4) and (5) of DCH10, respectively. They depend on
several parameters of the system, namely, the orbital separation,
d, the height of the electron cloud along the jet, H, the binary
inclination, i, the inclination of the jet with respect to the normal
to the binary plane, given by the azimuth, θ j, and the polar angle,
φj, and the orbital phase, θ (note that DCH10 used a non-standard
definition of θ , with θ = ±π/2 rather than the usual 0, π, at the
conjunctions). We include here both the jet and the counterjet for
which the polar angle is φj + π (and its unit vector is −ej). We
note that the model of DCH10 neglects eclipses of the counterjet
by the star. We neglect them here as well for consistency with
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2960 A. A. Zdziarski et al.

the adopted assumption that both the blackbody emission and the
scattered emission are point like.

We use here the model of DCH10 with their assumed black hole
binary parameters, with d = 4.1 × 1011 cm, i = 30◦, T = 105 K
and R∗ = 2.3 R�. However, since we use a different relativistic
transformation between the jet and observer’s frames, we have re-
fitted the model to the observed orbital modulation of γ-rays using
equation (15). We have obtained H = 7.6 × 1011 cm, θ j = 319◦,
φj = 39◦, which are the same as in DCH10, but β j = 0.47 (�j �
1.13), which is somewhat higher than their value of 0.41.

At these parameters, relativistic beaming is moderate,Dj � 1.50,
Dcj � 0.62,D∗ � 1.45–1.60, 1−eobs·e∗ � 0–0.4 for the jet and 1.6–
2 for the counterjet and R/R∗ � 3.6–6.7. Since we use here the Klein–
Nishina cross-section instead of the Thomson approximation, the
actual spectrum is softer than in the Thomson limit, where p =
2γ-− 1 = 4.4. Here, we use p = 4, which approximately reproduces
the observational best-fitting spectrum.

Fig. 4 shows two example spectra for the electron distribution
with γ1 = 103 and θ = 0.2π and 0.7π. We see they look similar
to those in Fig. 3, except for an additional shift of their relative
normalization, introduced by the phase-dependent D∗ and R/R∗.
We then average the observed spectrum over the orbital phase, θ ,
which we plot in the solid curve.

We note, however, that we have to take into account the electrons
below γ1. Even if the electrons are accelerated only above γ1, they
lose energy via Compton, synchrotron and adiabatic losses and
form a distribution below γ1. Hereafter a dot will denote a time
derivative in the jet frame (as in Section 3), and d.../dt will denote
a time derivative in the observer’s frame. The loss rates in the jet
frame are given by

γ̇C = 4fKNσTUradγ
2

3mec
, Urad = 2π5(kT )4

15c3h3

(
R∗

RD∗

)2

, (16)

Figure 4. Example spectra for the best-fitting black hole model of DCH10
in the observer’s frame, but using the full Klein–Nishina spectra, p = 4,
and modified to account for the flux transformation of equation (15), see
Section 4. The dashed red and blue curves give the spectra from the jet at the
orbital phases (defined as in DCH10) of θ = 0.2π and 0.7π, respectively,
and the corresponding dotted curves give the spectra from the counterjet.
The solid black curve gives the spectrum from both the jet and counterjet
averaged over the orbit. The parameters are γ1 = 103, γ2 → ∞ and T =
105 K. The normalization corresponds to K = 1, then the unit of vertical
axis is keV s−1.

γ̇S = σTB2γ 2

6πmec
, γ̇ad � 2βj�jγ c

3H
, (17)

respectively, and Urad is the blackbody energy density within the
electron cloud, f KN < 1 gives the Klein–Nishina reduction with re-
spect to the Thomson limit, B is the magnetic field strength and the
factor of 2/3 in γ̇ad accounts for the expansion being in two dimen-
sions only. The cooling rate for a single electron for monoenergetic
seed photons using the Klein–Nishina cross-section was calculated
by Jones (1965, 1968). The Lorentz factor at which the Compton
and adiabatic rates equal each other, and the electron distribution
has a break, is

γb = 15

4π5

mec
5h3

σTfKN(kT )4

βj�j

H

(
RD∗
R∗

)2

, (18)

which for the assumed parameters equals to

γb � 130

(
T

105 K

)−4 0.018

(R∗/RD∗)2
, (19)

where f KN = 1 was assumed and the factor of 0.018 is the value of
the orbital overage of (R∗/RD∗)2 in Urad. Thus, the break Lorentz
factor at our parameters is well below the minimum Lorentz factor
of ∼103 required to explain the observed γ-ray spectrum. We note
that the dependence of γb on H and β j is rather complex; H−1

appears in equation (18), but R also depends on H, and D∗ depends
on H and β j. Furthermore, the parameters are mutually connected
via the requirement of fitting the observed orbital modulation.

We assume that the electrons are accelerated at a power-law rate,
which in either the jet or counterjet frame is given by

Q(γ ) � Kinjγ
1−p, γ1 ≤ γ ≤ γ2, (20)

where Kinj is the normalization factor. Hereafter, K and Kinj corre-
spond to the total number of electrons in the jet (and not to their
density). Then, assuming Compton losses in the Thomson limit
(f KN = 1) and synchrotron losses, and for γ1 > γb (fast cooling),
the steady-state distribution (in either jet or counterjet) will approx-
imately be

N (γ ) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Kγ
2−p
1 γ −1

b γ −1, γ0 ≤ γ ≤ γb,

Kγ
2−p
1 γ −2, γb ≤ γ ≤ γ1,

Kγ −p, γ1 ≤ γ ≤ γ2,

0, otherwise,

(21)

where γ0 ∼ 1 is a minimum overall Lorentz factor. The steady-
state electron kinetic equation in the comoving frame is N (γ ) =
γ̇ −1

∫ ∞
γ

Q(γ ) dγ , where γ̇ is total loss rate. Assuming the dominant
losses above γ1 are Compton in the Thomson regime, Kinj is then
related to K by

Kinj = 4σTUrad(p − 2)K

3mec
. (22)

Fig. 5(a) compares the models with p = 4 with the observations.
Here, we impose K to match the best-fitting Fermi spectrum and
require that both the low-energy break is at �0.1 GeV, and the
X-rays at ∼100 keV are not overproduced. We show the average
spectra for the electron distribution of equation (21) with γb =
130 and γ1 = 700 and 1500. As expected, the low-energy break
is at an energy ∝γ 2

1 . Fig. 5(b) compares the models with p = 3.5
and the normalization somewhat below the best fit, which both are
within the observational uncertainties. We see that these results
imply a constraint of 300 � γ1 � 1500. However, models with
γ1 < 103 give strong contribution to the hard X-rays, which appears
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The gamma-ray emitting jet of Cyg X-3 2961

Figure 5. The radio to γ-ray spectra (the same as in Fig. 1) compared to the Compton and synchrotron models for the electron distribution of equation (21)
with γ b = 130, γ2 → ∞ and T = 105 K. (a) The red dashed and blue solid curves show the Compton spectra for γ1 = 700 and 1500, respectively, and
p = 4. The model spectra are normalized to the best-fitting average Fermi spectrum. The dashed blue curve shows the synchrotron spectrum from the γ-ray
producing electrons for γ1 = 1500 and the magnetic field given by ηB = 10−3. The blue dotted curve shows the synchrotron self-Compton spectrum. (b) The
same for p = 3.5 and γ1 = 300 and 1300 for the red dashed and blue solid, dashed and dotted curves, respectively. The normalization of the solid curves
is below the best fit but within the error contour. We see that the value of the electron low-energy break is constrained to 300 � γ1 � 103, but models
with γ1 < 103 give strong contribution to the hard X-rays. The cyan dotted curve shows the Compton spectrum corresponding to the electron distribution
of equation (23) with γb = 103 and γ1 = 10. This model is in principle possible, but the value of γb used for this model is several times of our estimate,
equation (19).

in conflict with the related result that the orbital modulation at
∼100 keV during the γ-ray emitting intervals is characteristic to
bound–free absorption and Compton scattering by the stellar wind
and out of phase with the >0.1 GeV modulation (Zdziarski et al.,
in preparation). We note that the index of the accelerated electrons
in our models is p − 1 � 2.5–3.

The red and blue curves in Fig. 6 show the orbital modulation
pattern at 100 keV and 0.2 GeV of the model shown in Fig. 5(a) with
p = 4 and γ1 = 700 (at 0.2 GeV, the modulation pattern of the models
with γ1 = 700 and 1500 are identical). We see that the patterns at

the two energies are very similar, and have the maxima around
the superior conjunction, whereas the X-rays have the minimum at
this phase. Given that the optical depth through the wind from the
electron cloud is much lower than that from around the compact
object, we can use the orbital modulation of X-rays to distinguish
the X-ray source location close to the compact object from that in
the scattering cloud in the jet.

On the other hand, the parameters used in equation (19), e.g. T ,
R∗, bear large uncertainties, and we cannot exclude in principle a
much larger value of γb. For γ1 < γb (slow cooling), we would then
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2962 A. A. Zdziarski et al.

Figure 6. The orbital modulation of the (fast-cooling) model with γ1 =
700, γ b = 130 and p = 4 (which spectrum is shown by the red dashed curve
in Fig. 5a) at 102 keV (red solid curve) and 0.2 GeV (blue solid curve). The
blue dashed and dotted curves show separately the contributions of the jet
and counterjet at 0.2 GeV. The modulation pattern at 102 keV of the (slow-
cooling) model shown by the cyan dotted curve in Fig. 5(b) is relatively
similar to that shown by the blue solid curve. The superior conjunction
(compact object behind the WR star) is at θ/2π = 0.25, around which the
X-rays show the minimum due the maximum absorption/scattering. On the
other hand, our models have the maxima around this phase, which appears
to rule out any substantial contribution of the jet to the X-rays.

have approximately

N (γ ) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Kγ −1
b γ

2−p
1 γ −1, γ0 ≤ γ ≤ γ1,

Kγ −1
b γ 1−p, γ1 ≤ γ ≤ γb,

Kγ −p, γb ≤ γ ≤ γ2,

0, otherwise.

(23)

The cyan curve in Fig. 5(b) shows the case for p = 3.5, γb =
103, γ1 = 10. We consider this model relatively unlikely given the
estimate of γb of equation (19), and consider below models with
γb < γ1. Although it reproduces well the high-energy tail of the
softest X-ray spectrum, its orbital modulation is very similar to
those shown in Fig. 6, which is in conflict with the observed hard
X-ray modulation (Zdziarski et al., in preparation).

5 T H E J E T ST RU C T U R E

5.1 The jet power

The amplitude of the γ-ray orbital modulation close to unity indi-
cates the γ-ray emission region is rather compact, and the jet does
not emit along a range of heights large compared to the average
distance of the source from the compact object, H. Otherwise re-
gions at different heights would have different modulation patterns,
strongly reducing the net modulation amplitude. Thus, prior to the
γ-ray emission, we assume non-radiating electron–ion jet and coun-
terjet moving with the Lorentz factor of �j,0. The sum power of the
jet and counterjet is then dominated by the bulk motion of cold ions:

Pj,0 = 2mic
2(�j,0 − 1)

dNi

dt
, (24)

where dN i/dt is the ion number flux in either the jet or counterjet
in the observer’s frame and mi is the ion mass. Given that Cyg X-3
contains an He donor (van Kerkwijk et al. 1996; Fender, Hanson &
Pooley 1999), mi � 4mp, where mp is the proton mass. The jet then

enters a shock region, reducing its bulk Lorentz factor to �j, which
for the best-fitting parameters of the orbital modulation model is
�j � 1.13 (Section 4). The fraction of the initial energy dissipated
is

ηdiss = �j,0 − �j

�j,0 − 1
. (25)

The power supplied to the electrons is given by

Pe,inj = ηeηdissPj,0 = 2mec
2
∫

Q(γ )γ dγ, (26)

where ηe is the fraction of the dissipated energy supplied to electrons
in the shock acceleration region. We assume (e.g. Spitkovsky 2008)
that all electrons in the dissipative zone are accelerated/heated to
relativistic energies. Thus

dNi

dt
= ni

ne

dNe

dt
,

dNe

dt
= 1

�j

∫
Q(γ ) dγ, (27)

where dNe/dt is the total electron number flux in the observer’s
frame, Q(γ ) is the electron acceleration/heating rate in the jet frame
and the ion/electron density ratio is ni/ne � 1/2 for He in the absence
of pair production.

Combining equations (24)–(27), we find

�j,0 = �j

(
1 + mene

mini

γ̄inj

ηe

)
, (28)

where γ̄inj is the average Lorentz factor of the accelerated/heated
electrons in the jet frame. Here, we approximate Q(γ ), consisting
of a relativistic Maxwellian and a power-law tail (e.g. Spitkovsky
2008), as a power law with the index of p − 1 and a low energy
cut-off, see equation (20). Then, for γ2 → ∞,

γ̄inj =
∫

Q(γ )γ dγ∫
Q(γ ) dγ

� γ1(p − 2)

p − 3
,

dNe

dt
= γ

2−p
1 Kinj

�j(p − 2)
(29)

for p > 3 and p > 2, respectively, and where Kinj is given by
equation (22). Equation (28) then yields, for p = 4, �j,0 � �j +
(0.62/ηe)(γ1/103). The value of ηe remains unknown; if the dissi-
pated power is divided equally among electrons and ions, ηe ∼ 1/2.
For this value and γ1 = 103, �j,0 � 2.38 and ηdiss � 0.90.

The radiated power, Prad, is related to the power in the electrons
by

Prad = ηradPe,inj, (30)

where ηrad is the radiation efficiency. We then calculate the initial
jet power and the radiative power as

Pj,0 =
[

�j − 1

�j

mini

mene
+ γ1(p − 2)

(p − 3)ηe

]
8γ

2−p
1 KσTcUrad

3
, (31)

Prad = ηrad
γ

3−p
1 (p − 2)

p − 3

8KσTcUrad

3
. (32)

Note that in the above derivation we did not need to specify the
extend of the dissipation zone. Since γb 	 γ1, see equation (19),
the radiative efficiency in the dissipation zone is ηrad � 1.

The normalization constant in Fig. 5(a), for p = 4, is K/D2 =
2.1 × 105, which implies K � 1.0 × 1050(D/7 kpc)2. (For the
models in Fig. 5b with p = 3.5, K/D2 = 2.2 × 103.) This yields
the powers averaged over the orbital phase of Pj,0 � 7.2[0.11 +
(0.5/ηe)(γ1/103)](γ1/103)2−p(D/7 kpc)2 × 1037 erg s−1, and Prad �
3.6(γ1/103)3−p(D/7 kpc)2 × 1037 erg s−1. (We note that the jet radia-
tive output of electrons with γ > 103 given in DCH10 is mistakenly
too large by a factor of 4π.) The Klein–Nishina corrected radiative
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The gamma-ray emitting jet of Cyg X-3 2963

power for the steady-state electron distribution of equation (21) is
slightly lower.

We can compare the total mass flow rate in the pre-shock jet,
i.e. including the rest mass and the associated kinetic energy,
Ṁj = 2mi�j,0dNi/dt , to the mass accretion rate estimated from
the bolometric luminosity of the source. At ηe = 0.5, Ṁj �
1.5(D/7 kpc)2 ×1017 g s−1. On the other hand, the bolometric lumi-
nosity of Cyg X-3 in the soft state calculated by Szostek & Zdziarski
(2008) is �2(D/7 kpc)2 × 1038 erg s−1, which, at an accretion effi-
ciency of εaccr = 0.1, requires Ṁaccr � 2(D/7 kpc)2 × 1018 g s−1.
Thus, a relatively small fraction of the mass flow rate at the outer
boundary of the accretion source in its soft state is sufficient to
power the jet, unless ηe 	 1. We note that this fraction is still much
higher than that estimated for the hard-state jet in the black hole
binary XTE J1118−480 of ∼0.01 by Yuan, Cui & Narayan (2005).
The Eddington limit on the mass accretion rate for He corresponds
to ṀE � 3 × 1019(M/10 M�)(εaccr/0.1)−1 erg s−1, where M is the
black hole mass. Adopting this limit imposes a constraint on ηe.

5.2 Electrons, cooling and pair production

Based on the steady-state electron distribution of equation (21), we
can calculate the total number of relativistic electrons and their total
energy in the comoving frame for the distribution of equation (21)
(for γ2 → ∞) for either the jet or counterjet,

Ne = Kγ
1−p
1

[
γ1

γb

(
1 + ln

γb

γ0

)
− p − 2

p − 1

]
, p > 1, (33)

Ee � Kmec
2γ

2−p
1

(
p − 1

p − 2
+ ln

γ1

γb

)
, p > 2, (34)

respectively. This, for p � 4, γ b = 130, γ1 = 103, yields Ne �
4.4(D/7 kpc)2 × 1042 and Ee � 2.1(D/7 kpc)2 × 1038 erg. Then, the
radiative time-scale averaged over the electron distribution in the
jet frame is

〈trad〉 ≡ Ee

Prad/2
� 11

( γ1

103

)−1
(

T

105 K

)−4

s. (35)

The cooling time of an individual electron, ∼(104/γ ) s (neglecting
f KN, see equation 16), is approximately equal to 〈trad〉 at γ = γ1,
which is close to the average electron energy, see equation (29).
Furthermore, β j�jc〈trad〉 also gives the minimum size of the emission
region. It cannot be more compact because the electrons would not
then have time to cool.

The dynamical time-scale, in the jet frame, is longer (which also
follows from γ b < γ1 for our parameters),

tdyn ≡ H

βj�jc
� 50

(
H

8 × 1011 cm

)
s. (36)

Since the emission at >0.1 GeV is due to electrons with γ > 103,
their cooling time being <tdyn is compatible with the orbital mod-
ulation of photons with energies >0.1 GeV being close to 100 per
cent, requiring the corresponding emitting region to be compact.
On the other hand, low-energy electrons will radiate and lose their
energy over longer ranges of the jet length, and thus the depth of
the orbital modulation is expected to decrease somewhat with the
decreasing photon energy at E < 0.1 GeV.

As shown by Cerutti et al. (2011), e± pair production on accretion
blackbody disc photons in the γ-ray emission region is negligible.
This process would absorb only γ-rays emitted from a vicinity of
the accretion disc, at distances �108 cm for the parameters adopted
here, or, at �1010 cm if the disc emission get fully isotropized by the

Figure 7. The optical depth to pair production on stellar photons for γ-rays
produced in the electron cloud. The red solid and blue dashed curves are for
θ = 0.9 and 2.0 (in radians), respectively. The optical depth is around the
maximum for the former phase, and it goes to a minimum of τγ γ 	 1 at
all energies for θ � 3.2. The phase of θ = 2.0 is intermediate. The distance
from the stellar centre and the angle to the observer with respect to that
direction are R = 8.5 × 1011 and 6.2 × 1011 cm, and arccos(e∗ · eobs) = 54◦
and 40◦ at θ = 0.9 and 2.0, respectively.

stellar wind (but see Sitarek & Bednarek 2012). The present model
does not predict γ-ray emission in these regions. At higher energies,
γ-rays at �10 GeV are above the threshold for pair production on
stellar photons. The degree of attenuation strongly depends on the
assumed inclination (which, in turn, is related to the fitted value of
H since the observed modulation depth close to unity requires that
the star, the electron cloud and the observer are aligned at some
phase). For the parameters used here, the maximum optical depth,
τ γγ , to this process is moderate, as shown in Fig. 7, which has been
calculated using the method of Dubus (2006a) (taking into account
the finite size of the star). However, an inclination >30◦ would also
yield a lower value of H, with both changes significantly increasing
τ γγ .

5.3 Magnetic field

We then consider the magnetic field in the γ-ray emitting region.
We assume that the magnetic energy flux in the downstream region
is a fraction, ηB < 1, of the dissipated power. Including both the
jet and counterjet, the magnetic field in the jet comoving frame is
given by

B2

4
βj�

2
j c�

2
j H

2 = ηBηdissPj,0 = ηB

ηradηe
Prad, (37)

where �j is the jet opening angle in the dissipation region, ηrad �
1, and the magnetic energy flux in the second equality is expressed
in terms of the quantity closest to the observations, i.e. Prad.

For Prad estimated in Section 5.1, B � 120(ηB/ηe)1/2�−1
j G,

and B2/8π � 560(ηB/ηe)�−2
j erg cm−3. In comparison, the black-

body energy density within the electron cloud is Urad � 3.4 ×
103(T/105 K)4 erg cm−3, see equation (16). The magnetic field is
constrained by the contribution of the synchrotron component to
the broad-band spectra, which results in an upper limit on ηB,
discussed below.
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2964 A. A. Zdziarski et al.

The opening angle of the jet of Cyg X-3 on a 10 mas
scale [(d/7 kpc)1015 cm] based on 2001 radio-outburst data of
Miller-Jones et al. (2004) has been estimated as �j = 5.◦0 ± 0.◦5
by Miller-Jones, Fender & Nakar (2006). We note that Miller-Jones
et al. (2004) have fitted the jet curvature they observed as due to a jet
precession with the precession angle of 2.◦4, which precession may
smear the observed image, with the actual opening angle possibly
being <5◦.

We approximate here the synchrotron spectrum using a δ-function
approximation, in which the energy of a synchrotron photon aver-
aged over the pitch angle, α, is given by

ε = a
B

Bcr
γ 2, a � 1, Bcr = 2πm2

ec
3

eh
, (38)

where Bcr is the critical magnetic field. This formula follows from
the correspondence between the synchrotron and Compton pro-
cesses (Blumenthal & Gould 1970), in which synchrotron emission
is considered to be Compton scattering of virtual photons at the
dimensionless energy of B/Bcr. We then require that the power of
the synchrotron emission in this approximation equals the actual
synchrotron power, which then yields

ε dṅS

dε d�
� σTB2

cr(B/Bcr)1/2ε1/2

48π2mec
N

(√
εBcr

B

)
s−1. (39)

Since N(γ ) gives the volume-integrated electron distribution, this
formula gives the synchrotron emission from the entire source,
analogously to the treatment in Section 3. We have found that this
formula provides a good approximation to the actual synchrotron
spectrum. For a power-law spectrum, N(γ ) = Kγ −p, with a value
of p > 1/3, the spectrum averaged over the pitch angle is (cf. Jones,
O’Dell & Stein 1974)

ε dṅS

dε d�
� C1

σTcKB2
cr

48π2mec

(
B

Bcr

)(p+1)/2

ε−(p−1)/2 s−1, (40)

C1 = 3(p+4)/2� [(3p − 1)/12] � [(3p + 19)/12] � [(p + 1)/4]

25π1/2� [(p + 7)/4]
,

(41)

where γ-is the gamma function. In the δ-function approximation,
equation (39), C1 is set to 1. This approximation is fully accurate for
p = 3, for which C1(p) = 1. For p = 2 and 4, C1(p) = 1.14 and 1.20,
respectively. For a broken electron power law, the break energy also
appears close to the actual one. We note that a � 1, which provides
a phenomenological best fit to accurate results, does not correspond
to the average synchrotron emission of a single electron for which
a = 223−1/25−1sin α.

We need to take into account self-absorption of the synchrotron
spectra. The synchrotron self-absorption coefficient in the jet frame
for an electron power-law distribution averaged over the pitch angle
can be expressed as (cf. Jones et al. 1974)

αS = C2
πσT

2αf

K

V

(
B

Bcr

)(p+2)/2

ε−(p+4)/2

� C2πσT

2αfV

Bcr

B
γ −4N (γ ) cm−1, (42)

C2 = 3(p+3)/2� [(3p + 2)/12] � [(3p + 22)/12] � [(p + 6)/4]

24π1/2� [(p + 8)/4]
,

(43)

where αf is the fine-structure constant, V is the source volume in
the jet or counterjet frame, C2 � 1 for p = 3. The second formula in

equation (42) gives αS in the monochromatic approximation, with
γ (ε) given by equation (38). This also gives αS corresponding to
emission by electrons with a given γ . The volume depends on �H,
the length of the emission region along the jet in the observer’s
frame, and on the jet radius, �jH. The value of �H is relatively
uncertain; it is �βj�jc〈trad〉 � 0.24H based on the cooling argument
(Section 5.2), and �H 	 H to account for the depth of the orbital
modulation close to unity (DCH10). Given these constraints, we
adopt

�H = βj�jc〈trad〉, V � π�2
j H

2�H�j. (44)

For our adopted parameters, V � 2.8 × 1033 cm3. For B given
by equation (37), we can determine the turnover energy (in the
jet frame), at which the optical depth through the jet spine in
the observer’s direction, τS(εt) = 2αS�jH/Dj sin i = 1. We
find this takes place between the radio and IR ranges, around
∼0.007(0.5ηB/10−3ηe)3/10 eV, and in the part of the spectrum emit-
ted by electrons dominated by adiabatic losses, N(γ ) ∝ γ −1 of
equation (21). Below εt, ṅS ∝ ε3/2.

The resulting spectra, from both the jet and the counterjet, and
taking into account the relativistic transformation of equation (15),
are shown in Figs 5(a) and (b) for ηB = 10−3. The synchrotron
spectrum has the shape similar to that of the Compton one, and,
for the best-fitting parameters, its peak, from electrons with γ1, is
at εS � 16(ηB/ηe)1/2(γ1/103)2 eV. We see that IR measurements si-
multaneous with those in γ-rays would provide constraints and/or a
measurement of the jet magnetization, ηB. If the shown IR measure-
ments during radio flares are representative for γ-ray active periods,
the jet is relatively weakly magnetized, as an increase of B would
increase the synchrotron flux at the peak ∝B(p+1)/2. We note that ηB

∼ 10−3 is consistent with the theoretical estimates for magnetized
shocks of Medvedev & Loeb (1999), Medvedev (2006) and Sironi
& Spitkovsky (2011). At the above parameters and γ1 = 103, B �
60 G. As a consequence of �H derived from electron cooling, the
ratio of the magnetic field energy density to that in the electrons
equals to ηB/ηe, i.e. (B2/8π)/(Ee/V ) = ηB/ηe. The field strength
is thus much below equipartition.

We also need to consider the synchrotron self-Compton process.
The ratio of the energy density in the synchrotron photons, US, to
that in the magnetic field is

US

B2/8π
� 4

3π

p − 2

p − 3

Kγ
3−p
1 σT

�jH�H�j
, (45)

where �H is estimated as above, and the ratio is �4 for p = 4, γ1 =
103 and our adopted parameters. Thus, the self-Compton process is
important, though Comptonization of blackbody radiation still dom-
inates the electron losses, (US +B2/8π)/Urad � 0.2 (which reduces
γ b, equation 19, to �102) at ηB = 10−3. Note that since the electron
distribution is determined by the observed γ-ray spectrum (which
is due to blackbody scattering), the above ratio is independent of B.

We assume that the synchrotron emission is isotropic in the jet
frame. The Compton process is here mostly in the Thomson limit,
and we treat it using a δ-function approximation, ε = a′γ 2ε0, where
ε0 and ε are the seed and scattered photon energy, respectively, and
a′ = 1. This yields

ε dṅSC

dε d�
� σTcε1/2

8π

∫ min(1/ε,ε)

ε/γ 2
2

(nS + nSC)(ε0)

ε
1/2
0

N

(√
ε

ε0

)
dε0 s−1,(46)

(corrected in online version 2012 March 23) where nS + nSC is the
density of the synchrotron and self-Compton photons,

nS+nSC �4π
d(ṅS + ṅSC)

dε0d�

�jH

cV
� d(ṅS + ṅSC)

dε0d�

4

c�jH�H�j
cm−3,

(47)

C© 2012 The Authors, MNRAS 421, 2956–2968
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/421/4/2956/1087112 by C
N

R
S - ISTO

 user on 29 M
arch 2022



The gamma-ray emitting jet of Cyg X-3 2965

and the integration limits in equation (46) account for the Thomson
limit (assuring that ε < γ ) and γ2 ≤ γ < 1. Equations (46) and (47)
can be then solved iteratively to account for all orders of Compton
scattering. In our case, the first order dominates. We have found that
using a′ = 1 reproduces better the exact Thomson-limit results for
power-law electrons (see Appendix B) for 2 ≤ p ≤ 4 than a′ = 4/3,
corresponding to the average scattered energy. The resulting spectra,
from both the jet and the counterjet, and taking into account the
relativistic transformation of equation (15), are shown in Figs 5(a)
and (b). We see that the self-Compton component may contribute
to both the X-ray high-energy tail and the γ-ray spectrum above
0.1 GeV. The relative strength of this component is constrained by
the orbital modulation. Intrinsically, the self-Compton component
is not orbitally modulated, which implies its contribution to the
GeV range (with strong modulation) is weak. We find that the
contribution of the self-Compton component to the range >0.1 TeV
(not shown in Figs 5a and b) is below the extrapolation of the
Fermi/LAT power law. In the hard X-rays, we also see a relatively
strong orbital modulation due to wind absorption (Zdziarski et al.,
in preparation), which appears to imply that the tail is not mainly
due to this process. These constraints on the relative amplitude
of the self-Compton component also give an upper limit on B, as
its increase would amplify both the synchrotron and self-Compton
components by ∼B(p+1)/2. Thus, we obtain B � 102 G within the
γ-ray emitting source.

We also calculate the radial Thomson optical depth of the elec-
trons, τT = Ne/(2π�jH�H�j), which is �7 × 10−5 for our
adopted parameters.

6 D ISCUSSION

6.1 Electron acceleration

It remains unclear what mechanism is responsible for acceleration
of electrons producing high-energy gamma-rays in jets. It is of-
ten considered to be diffusive shock acceleration (DSA), which
involves the first-order Fermi process (e.g. Blandford & Ostriker
1978; Blandford & Eichler 1987). Initial studies of DSA scenarios
were focused on explaining the origin of cosmic rays. The pro-
cess was intensively explored by Monte Carlo simulations to take
into account different shock parameters and magnetic field struc-
tures (e.g. Niemiec & Ostrowski 2004 and references therein). Such
simulations fully confirmed the ability of DSA to produce ultrarel-
ativistic cosmic rays, but acceleration of electrons (and positrons)
was achieved only after assuming that they were pre-heated up
to energies corresponding with the momentum of thermal, shocked
ions. Recent results obtained using particle in cell (PIC) simulations
have shown that in collisionless relativistic electron–ion shocks a
quasi-Maxwellian distribution of electrons is produced, with the
average energy of γ̄inj � (mi/me)γ̄i (Sironi & Spitkovsky 2011, see
also Spitkovsky 2008), where γ̄i is the average Lorentz factor of
ions. A quasi-Maxwellian distribution of pre-heated electrons with
the temperature close to that of the ions is also found in PIC simula-
tions of non-relativistic shocks (Riquelme & Spitkovsky 2011). This
provides the required pre-heating, solving the above long-standing
problem.

There are still no available results of PIC simulations of mildly
relativistic shocks. However, given the results mentioned above
for relativistic and non-relativistic shocks, we can assume that a
quasi-Maxwellian distribution of efficiently pre-heated electrons is
produced also in mildly relativistic shocks, which is likely to be
the case in the Cyg X-3 jet. Noting that the relative contribution

of the low-energy tail of a Maxwellian distribution to observed
electromagnetic spectra is small, we have approximated the electron
injection spectrum to have a cut-off at an energy of γ1 ∼ γ̄inj. Then,
our finding of γ1 ∼ 300–103 is consistent with the above results,
with this value being related to the mi/me mass ratio.

We note that low-energy breaks at γ1 � 1 are common in jets of
active galactic nuclei (AGN), where they are also often attributed
to the ion mass (e.g. Stawarz et al. 2007). Ghisellini et al. (2010,
2011) find that the electron distribution of blazars observed by Fermi
commonly shows a relatively steep injection above γ1 ∼ 102–103

(denoted in their papers by γ b), and a hard injection below it,
for which the steady-state distribution is approximately compatible
with that of our equation (21). The low-energy cut-offs/breaks at
γ1 ∼ 102–103 are observed not only in blazars but also in spectra of
hotspots in radio-lobes (Blundell et al. 2006; Stawarz et al. 2007;
Godfrey et al. 2009) and used to argue for the presence of protons.
Finally, we note that since the mass per ion in Cyg X-3 (a helium
system) is ∼3 times higher than for the cosmic abundances, the
value of γ1 in it may be correspondingly higher than in comparable
systems with abundances dominated by hydrogen.

6.2 Caveats

DCH10 obtained some ranges of the allowed parameters, but, given
the complexity of the problem, we have just used the best-fitting
values (adjusted for the case of a steady jet) in this study. Further-
more, the best-fitting parameters of DCH10 may be modified if the
minimum of the X-ray folded light curve does not exactly corre-
spond to the superior conjunction. This may happen if the wind
is not symmetric with respect to the conjunctions, e.g. due to the
wind lagging the binary rotation, and/or a formation of a Compton
cloud around the compact object, as in the model of Zdziarski et al.
(2010a).

There is then a considerable uncertainty regarding the binary
parameters of Cyg X-3. We have adopted the binary parame-
ters for the black hole case used by DCH10, in particular the
mass of the WR star of 50 M�, which they assumed following
Szostek & Zdziarski (2008). We note that such high mass ap-
pears inconsistent with the mass-loss rate of ∼10−5 M� yr−1, esti-
mated for Cyg X-3 (e.g. Szostek & Zdziarski 2008 and references
therein). The mass versus mass-loss rate relationship in WR stars
is Ṁ ∼ 10−7(M∗/M�)m M� yr−1, with m � 2–2.5 (Langer 1989;
Schaerer & Maeder 1992). This implies M∗ ∼ 10 M�, which also
agrees with the results of Lommen et al. (2005) (though Hanson,
Still & Fender 2000 favour a higher mass in the black hole case).
However, the value of M∗ affects only relatively slightly the orbital
separation, ∝(M∗ + M)1/3.

The stellar luminosity adopted by DCH10, �1.8 × 1039 erg s−1,
is close (within a factor of 2) to that predicted by the WR mass–
luminosity relation (Schaerer & Maeder 1992). The chosen tem-
perature, 105 K, corresponds to the hydrostatic stellar surface rather
than the photosphere of an isolated star, with the effective temper-
ature of the photosphere a few times lower (Schaerer & Maeder
1992). However, the X-ray source in Cyg X-3 strongly ionizes the
wind on the side of the jet, and thus the jet is likely to be exposed
to radiation at the temperature close to the core one. On the other
hand, Compton scattering of the stellar radiation by the wind will
be substantial, which will increase the apparent size of the diluted
blackbody source.

In this study, we have used the Klein–Nishina cross-section for
calculating spectra, but still assumed the steady-state electron dis-
tribution is a power law. We note that such an approach is not fully
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2966 A. A. Zdziarski et al.

self-consistent if the energy losses of the electrons by Compton scat-
tering dominate over the synchrotron and adiabatic ones (Zdziarski
& Krolik 1993; Moderski et al. 2005). If the electrons are acceler-
ated at a power-law rate, the electron energy losses reduced in the
Klein–Nishina regime cause the steady-state electron distribution
to be no longer a power law. In fact, the reduced energy losses are
largely compensated by the reduced Compton scattering emission,
and the final spectrum is approximately a power law with the same
index and normalization as that in the Thomson regime (Zdziarski &
Krolik 1993; Moderski et al. 2005). Note that this effect would need
to be taken into account in calculating constraints on the maximum
accelerated energy, γ2.

Finally, we have found that a model with a low value of the low-
energy cut-off in the electron distribution, γ1 < γ b, and the break
energy due to energy losses at γ b � 103 can also explain the γ-ray
spectrum of Cyg X-3. Although we cannot rule out this model, we
consider it unlikely given our estimate of γ b � 102.

6.3 The uniqueness of γ -ray emission of Cyg X-3

We briefly address the question why Cyg X-3 is, so far, the only
accreting X-ray binary with confirmed high-energy γ-ray emission.
We note that although a number of other X-ray binaries, e.g. LS
I +61◦303 or LS 5039 emit high-energy γ-rays, that emission is,
most likely, due to collision of their pulsar winds with stellar winds
of their high-mass companions rather than due to accretion (e.g.
Dubus 2006b; Neronov & Chernyakova 2007; Zdziarski, Neronov
& Chernyakova 2010b).

DCH10 noted that since Cyg X-3 has both a very high wind
mass-loss rate and a very small separation, it may be unique in
forming a reconfinement shock in its inner jet. We note that, for the
adopted Cyg X-3 parameters, this requires a relatively large initial
jet opening angle for a reconfinement shock to occur, �j � 30◦.
This follows from equation (7) of DCH10, which implies H > R
for a smaller �j, while H < R from the geometry of the system.
Such a large initial opening angle may be formed in the jet formation
mechanism utilizing disc magnetic field (Blandford & Payne 1982).
We note that a similar initial wide opening jet angle is seen in the
radio galaxy M87 (Biretta, Junor & Livio 2002).

A related unique feature of Cyg X-3 is the very large luminosity
of its companion (L∗ ∼ 1039 erg s−1) accompanying its very small
separation. This results in a very high blackbody flux irradiating the
γ-ray emitting region, which then yields a strong Compton-
scattering flux. If the orbital separation were �10 times higher
(as in Cyg X-1) or the stellar luminosity were much lower (as
in low-mass X-ray binaries), synchrotron and self-Compton emis-
sion would dominate instead of blackbody up-scattering (see Sec-
tion 5.3). The presence of such synchrotron component may be
searched for in those systems. The relative strength of the associ-
ated self-Compton component in jets of those objects during dissi-
pation events remains unknown (as it depends on the unknown jet
parameters); we note it might produce observable γ-ray emission.

6.4 Relationship to radio emission

After the relativistic electrons lose their energy at H ∼ 1012 cm,
the jet continues to propagate for a large distance until another dis-
sipation region forms. Since the stellar emission is very weak at
that point, the main energy losses are synchrotron. The character-
istic size of the sources of the resulting flaring radio emission is
∼1015 cm, and the variability is on a day time-scale (e.g. Miller-
Jones et al. 2004). In Fig. 1, we see that the average radio luminosity

during the active periods is much lower than the γ-ray luminosity.
Thus, the observed radio emission is energetically allowed to be
emitted by the jet downstream the γ-ray dissipation region, with its
power reduced by about an order of magnitude (Section 5.1) with
respect to the upstream jet.

If the jet experiences a dissipation episode of the kind studied
here, its velocity in the radio-emitting region should be similar to
that in the γ-ray emitting dissipation region (estimated from the
orbital modulation), β j ∼ 0.5. Indeed, such a velocity has been
estimated from the proper motion by Miller-Jones et al. (2006),
and a similar β j � 0.6 was estimated from fitting a precession
model to a radio image obtained during a flaring state (Miller-Jones
et al. 2004). Similar estimates have been obtained from a number
of other radio observations of Cyg X-3, e.g. β j � 0.5 inferred by
Martı́, Paredes & Peracaula (2001), except for Mioduszewski et al.
(2001), who estimated βj � 0.8. We note that our estimate of the jet
velocity before the dissipation region is compatible with that, β j,0

∼ 0.9. It is then possible that the measurement of Mioduszewski
et al. (2001) was done during a radio flaring episode during which
the dissipation region producing γ-rays was not formed, and the jet
propagated to large distances with β j,0. Occurrence of radio flaring
episodes without formation of a prior dissipation region at scales
	1015 cm can also explain a radio flare occurring before a γ-ray
flare (Williams et al. 2011).

Recently, mm radio flares lasting a fraction of a day and occur-
ring on intermediate-size scales, ∼1013 cm, have been discovered
(Tsuboi et al. 2010, 2012). This size scale is derived from the flare
rise time-scales of several minutes. The second flare of Tsuboi et al.
(2012), observed at 43 and 86 GHz, took place on MJD 54972.9
during a period quiescent in both radio emission at 15 GHz and in
γ-rays (FLC09). Thus, this is an example of a radio flare with-
out a prior jet energy dissipation on the orbital size scale. The
electron power required was found >3(D/7 kpc)2 × 1037 erg s−1

(neglecting relativistic corrections), similar to our estimate of the
electron power. The magnetic field was estimated at ∼10 G (assum-
ing equipartition), an order of magnitude below our upper limit for
the γ-ray emitting region.

7 C O N C L U S I O N S

We have obtained the average X-ray spectrum and the radio flux
emitted during the γ-ray active epochs (Section 2). We have then
calculated spectra from Compton scattering of a photon beam into a
given direction by isotropic relativistic electrons with a power-law
distribution with a low-energy cut-off. Simple analytical formu-
lae have been obtained both using the Klein–Nishina cross-section
(Section 3) and in the Thomson limit (Appendix A).

We have applied our results to scattering of stellar blackbody
radiation by relativistic electrons in the jet of Cyg X-3 (Section 4),
using the model of DCH10, fitted to the observed modulation of
γ-rays (FLC09). We have found a low-energy break at γ1 ∼ 300–
103 in the distribution of the accelerated electrons is required by the
observational data in order not to overproduce the observed X-ray
emission. We find Compton cooling to be efficient, which implies
the power-law index of the acceleration process of �2.5–3, rather
typical to astrophysical acceleration sites. The low-energy electron
break found by us is in agreement with recent shock acceleration
models, in which it is related to the ion/electron mass ratio. Fur-
thermore, the obtained value of the break Lorentz factor is similar
to those typically found in AGN jets (see Section 6.1).

We have calculated the jet kinetic power to be ∼1038 erg s−1

assuming equipartition between the energy supplied to the electrons
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The gamma-ray emitting jet of Cyg X-3 2967

and ions, which represents a firm lower limit. The estimated power
is comparable to the radiative power of this source. Assuming this
equipartition, the bulk Lorentz factor of the jet before the dissipation
region is ∼2.5. Most of the power supplied to the electrons is
radiated (Sections 5.1–5.2).

We have found that the magnetic field strength is constrained to
be below the equipartition with the electron energy density by a
factor of � a few times 10−3. At the upper limit (B ∼ 102 G), the
synchrotron emission from the γ-ray emitting region still gives rise
to a relatively strong IR flux. Thus, IR measurements simultaneous
with that of γ-rays would provide an estimate of the magnetic field
in this part of the jet (Section 5.3). The predicted synchrotron flux
is at the level at the IR flux measured during past radio flares of
Cyg X-3.
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A P P E N D I X A : T H E T H O M S O N L I M I T

In the Thomson limit, the flux per electron and per solid angle
becomes

ε dṅ(ε0, γ )

dε d�
=

⎧⎨
⎩

3σT

8π
ṅ0xr

[
(1 − r)2 + r2

]
, 2ε0xγ < 1,

0, 2ε0xγ ≥ 1,
(A1)

r = ε

2ε0γ 2x
, (A2)

where, in order to approximately constrain the resulting spectrum
to the energy range satisfying the Thomson limit, we have imposed
a sharp cut-off at the range boundary. This, in particular, assures
ε < γ . Then, the condition of r ≤ 1 yield the electron-integrated
rate given by equation (5) but with the lower and upper limits of

max[γ1, (ε/2xε0)1/2], max{min[γ2, 1/(2xε0)], γ1}, (A3)
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respectively. These limits, the constraint of ε ≤ 2ε0xγ 2
2 , and a

Thomson limit condition of ε ≤ 1/(2xε0) yield

ε dṅ(ε0)

dε d�
= 3σT

8π
ṅ0 K

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1–f3, min

(
ε

γ 2
2

,
1

ε

)
< 2xε0 < min

(
ε

γ 2
1

,
1

γ2
,

1

ε

)
,

f1–f4, min

(
ε

γ 2
1

,
1

γ2
,

1

ε

)
< 2xε0 < min

(
ε

γ 2
1

,
1

ε

)
,

f2–f3, min

(
ε

γ 2
1

,
1

ε

)
< 2xε0 < min

[
1

ε
, max

(
ε

γ 2
1

,
1

γ2

)]
,

f2–f4, min

[
1

ε
, max

(
ε

γ 2
1

,
1

γ2

)]
< 2xε0 <

1

ε
,

0, 2xε0 <
ε

γ 2
2

or 2xε0 >
1

ε
or 2xε0 >

1

γ1
,

(A4)

f1 =
(

ε

2ε0

)(1−p)/2

x(1+p)/2 11 + 4p + p2

(1 + p)(3 + p)(5 + p)
, (A5)

f2 = εγ
−1−p
1

2ε0(1 + p)
− ε2γ

−3−p
1

2ε2
0x(3 + p)

+ ε3γ
−5−p
1

4ε3
0x

2(5 + p)
, (A6)

f3 = εγ
−1−p
2

2ε0(1 + p)
− ε2γ

−3−p
2

2ε2
0x(3 + p)

+ ε3γ
−5−p
2

4ε3
0x

2(5 + p)
, (A7)

f4 = ε(2ε0x)1+p

2ε0(1 + p)
− ε2(2ε0x)2+p

ε0(3 + p)
+ ε3(2ε0x)3+p

ε0(5 + p)
. (A8)

When ε < γ 2
1 /γ2, there is no range for f 1–f 4, and when ε > γ 2

1 /γ2,
there is no range for f 2–f 3. When γ2 → ∞, only the f 1–f 4 and
f 2–f 4 ranges exist. When ε ≥ γ2, the spectrum is null. The above
formulae should be applied for ε � ε0 only. The emitted spectrum
in the part dominated by f 1 is a power law with an energy index of
α = (p − 1)/2.

Figs 2 and 3 compare the spectra obtained using equations (A4)
and (9) for blackbody irradiation, respectively, with the correspond-
ing ones obtained using the Klein–Nishina cross-section. When
ε/(2γ 2

2 x) 	 〈ε0〉 	 min[ε/(2γ 2
1 x), 1/(2xε)], where 〈ε0〉 is the

characteristic energy of the seed photons, the integral over f 1 in
equation (9) dominates and we can set its limits from zero to infin-
ity.

In the case of diluted blackbody seed photons, equation (12),
and for ε/(2γ 2

2 x) 	 kT /(mec
2D∗) 	 min[ε/(2γ 2

1 x), 1/(2xε)],
the scattered flux in a given direction per dimensional energy in the
jet frame becomes

ε dṅ

dε d�
= 2(p−9)/23σTc−2h−3K(εmec

2)(1−p)/2(kT )(5+p)/2

×
(

x

D∗

)(1+p)/2 (
R∗
R

)2

×11 + 4p + p2

5 + p
�

(
1 + p

2

)
ζ

(
5 + p

2

)
, (A9)

where ζ is the Riemann function. This flux was obtained by DCH10,
see their equations (1) and (3). (Their formula is in the observer’s
frame assuming the D3

j transformation, see Section 4, it is 4π times
larger than ours, which results from their definition of K as corre-
sponding to dN/dγ d� rather than dN/dγ , and the power of 2 in
their equation 3 is misprinted as p + 5/2, while it should be (p +
5)/2.)

APPENDI X B: ISOTROPI C SCATTERI NG

We note that integrating spectra over the scattering angle gives either
the spectrum for a photon beam integrated over all directions of the
scattered photon or the spectrum from scattering on an isotropic seed
photon distribution. Also, the case of isotropic seed photons and
isotropic electrons is equivalent to an electron beam when scattered
photons are integrated over all directions.

Therefore, integrating equation (A1) over cos ϑ in the range
corresponding to r ≤ 1 and multiplying by 2π (corresponding
to integration over the azimuth), we obtain the isotropic rate of
equation (2.42) of Blumenthal & Gould (1970). Integrating f i of
equation (A4) over x and multiplying by 2π gives power-law elec-
tron rates integrated over all directions, which also correspond to
emission at any direction in the case of isotropic seed photons. In
particular, assuming that we are far below both the maximum emit-
ted ε by electrons with γ2 and the boundary of the Thomson limit,
we obtain

ε dṅ

dε
= 3σT

8π
ṅ0K

{
f iso

1 (ε, ε0, p), ε ≥ 4ε0γ
2
1 ,

f iso
2 (ε, ε0, p, γ1), ε ≤ 4ε0γ

2
1 ,

(B1)

f iso
1 = 2π

∫ 2

0
f1dx = 23+pπ

(
ε

ε0

)(1−p)/2 11 + 4p + p2

(1 + p)(3 + p)2(5 + p)
,

(B2)

f iso
2 = 2π

∫ ε/(2ε0γ 2
1 )

0
f1 dx + 2π

∫ 2

ε/(2ε0γ 2
1 )

f2 dx = π

4γ
5+p
1

×
[

8εγ 4
1

ε0(1 + p)
+ 2ε2γ 2

1

ε2
0 (3 + p)

(
1 + 2 ln

ε

4ε0γ
2
1

)

− 8ε2γ 2
1

ε2
0 (3 + p)2

− ε3

ε3
0 (5 + p)

]
.

(B3)

These rates can also be obtained by integrating the isotropic rate
of equation (2.42) of Blumenthal & Gould (1970) over the electron
distribution (4). The rate of equation (B2) is given by equation
(2.64) of Blumenthal & Gould (1970). We can then integrate over
a photon distribution,

ε dṅ

dε
= 3σT

8π
K

[∫ ε/(4γ 2
1 )

0
ṅ0(ε0)f iso

1 (ε, ε0, p) dε0

+
∫

ε/(4γ 2
1 )

ṅ0(ε0)f iso
2 (ε, ε0, p, γ1) dε0

]
. (B4)

Integrating the rate of equation (A9) over x from 0 to 2 and
multiplying by 2π gives the isotropic rate of equations (2.65) and
(2.66) of Blumenthal & Gould (1970), except that their rate is given
for the seed photon density inside a blackbody field, with n0(ε0)
in units of erg−1 cm−3, rather for the photon flux, as in our equa-
tion (12). That rate can also be obtained from equation (B4) for
ε/(4γ 2

1 ) � kT /D∗ (i.e. neglecting the integral over f iso
2 ). Integrat-

ing the Klein–Nishina rate of equation (6) over the scattering angle
leads to the isotropic Klein–Nishina rate of equations (25) and (A9)
of Aharonian & Atoyan (1981).
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