
HAL Id: insu-03621056
https://hal-insu.archives-ouvertes.fr/insu-03621056

Submitted on 28 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Simultaneous exoplanet detection and instrument
aberration retrieval in multispectral coronagraphic

imaging
M. Ygouf, L. M. Mugnier, D. Mouillet, T. Fusco, J. -L. Beuzit

To cite this version:
M. Ygouf, L. M. Mugnier, D. Mouillet, T. Fusco, J. -L. Beuzit. Simultaneous exoplanet detection and
instrument aberration retrieval in multispectral coronagraphic imaging. Astronomy and Astrophysics
- A&A, EDP Sciences, 2013, 551, �10.1051/0004-6361/201220318�. �insu-03621056�

https://hal-insu.archives-ouvertes.fr/insu-03621056
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A&A 551, A138 (2013)
DOI: 10.1051/0004-6361/201220318
c© ESO 2013

Astronomy
&

Astrophysics

Simultaneous exoplanet detection and instrument aberration
retrieval in multispectral coronagraphic imaging

M. Ygouf1 ,2, L. M. Mugnier1, D. Mouillet2, T. Fusco1, and J.-L. Beuzit2

1 ONERA – The French Aerospace Lab, 92322 Châtillon, France
e-mail: marie.ygouf@obs.ujf-grenoble.fr

2 UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, 38041 Grenoble, France

Received 31 August 2012 / Accepted 16 November 2012

ABSTRACT

Context. High-contrast imaging for the detection and characterization of exoplanets relies on the instrument’s capability to block out
the light of the host star. Some current post-processing methods for calibrating out the residual speckles use information redundancy
offered by multispectral imaging but do not use any prior information on the origin of these speckles.
Aims. We investigate whether additional information on the system and image formation process can be used to more finely exploit
the multispectral information.
Methods. We developed an inversion method in a Bayesian framework that is based on an analytical imaging model to estimate
both the speckles and the object map. The model links the instrumental aberrations to the speckle pattern in the image focal plane,
distinguishing between aberrations upstream and downstream of the coronagraph.
Results. We propose and validate several numerical techniques to handle the difficult minimization problems of phase retrieval and
achieve a contrast of 106 at 0.2 arcsec from simulated images, in the presence of photon noise.
Conclusions. This opens up the the possibility of tests on real data where the ultimate performance may override the current techniques
if the instrument has good and stable coronagraphic imaging quality. This paves the way for new astrophysical exploitations or even
new designs for future instruments.

Key words. techniques: high angular resolution – techniques: image processing – planets and satellites: detection

1. Introduction

Ground-based instruments have now demonstrated the capabil-
ity of detecting planetary mass companions (Chauvin et al. 2004;
Lagrange et al. 2010; Marois et al. 2008) around bright host
stars. By combining adaptive optics (AO) system and corona-
graphs, some first direct detections from the ground have been
possible in favorable cases, at large separations and in young
systems when low-mass companions are still warm (≥1000 K)
and therefore not too faint. There is a very strong astrophysical
case to improve the high-contrast detection capability (105 for
a young giant planet to 1010 for an earth-like planet in the near
infrared) very close to stars (<0.1′′ to 1′′).

Several instruments will be capable of performing multispec-
tral imaging and will allow characterizing the planets by mea-
suring their spectra. This is the case of GPI (Gemini; Graham
et al. 2007), Palm 3000 (Palomar; Hinkley et al. 2011), SCExAO
(Subaru; Martinache & Guyon 2009), SPHERE (VLT; Beuzit
et al. 2008), and several others that will follow, such as EPICS
(E-ELT; Kasper et al. 2008). By combining extreme adaptive op-
tics (Ex-AO) and more accurate coronagraphs than before, the
level of star light cancellation is highly improved, leading to a
better signal-to-noise ratio. Even so, the residual host star light
is affected by the instrument aberrations and forms a pattern of
intensity variations or “speckle noise” on the final image. Part
of the speckles cannot be calibrated because they evolve on var-
ious time scales (neither fast enough to smooth down to a halo
nor stable enough to remove) and for this reason, these “quasi-
static speckles” are one of the main limitations for high-contrast
imaging.

Several authors have discussed the challenge posed by the
elimination of speckle noise in high-contrast multispectral im-
ages. It can be done by post-processing, after the best possible
observations. Because images are highly spectrally correlated,
one can use the wavelength dependence of the speckles to sub-
tract them. In the particular case of coronagraphic multispectral
imaging, only some empirical methods have been developed to
subtract the speckle field from the image in the focal plane.

We propose an alternative approach based on a parametrized
imaging model for the post-processing of multispectral coron-
agraphic imaging corrected by an extreme AO system in the
near-infrared domain. The aberrations and bright companions at
small separations are estimated jointly in a Bayesian framework.
In particular, it is possible to take advantage of prior informa-
tion such as a knowledge on the aberration levels. This type of
approach will be all the more efficient as the instruments im-
prove with lower or more stable aberrations and more efficient
coronagraphs.

In Sect. 2, we explain how previous methods used the in-
formation redundancy to suppress the speckles in high-contrast
imaging. Then, we describe the advantages of a joint Bayesian
estimation of the aberrations in the pupil plane and of the planet
map, based on a parametrized model of coronagraphic imag-
ing. Section 3 presents the long-exposure coronagraphic imag-
ing model that is used to simulate the images and to restore them.
We also study the case of an approximate model. Section 4 de-
scribes the proposed Bayesian joint estimation method as well
as theoretical and numerical problems of an alternating restora-
tion algorithm. In particular, we address the strong minimization
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Fig. 1. Evolution of the speckle field with the wavelength. Simulated images at 950, 1306, and 1647 nm for a 103 stellar flux over planet flux
contrast. The dynamic range is adapted to the visualization. The speckle field moves with the wavelength but not with the planet position.

difficulties associated to the aberration estimation and we pro-
pose some solutions. In Sect. 5, our method is validated by
restoring images simulated with a perfect coronagraph.

2. Post-processing speckle subtraction
and multispectral imaging

Several empirical post-processing methods have already been
proposed to overcome the problem of detection limitation caused
by the quasi-static speckles. Some of these methods used the
wavelength dependence of the speckle pattern (Fig. 1) to esti-
mate it and subtract it from the image, while preserving both the
flux and spectrum of the planet.

Racine et al. (1999) suggested to subtract two images at dif-
ferent wavelengths to eliminate both the point-spread function
(PSF) and the speckle field in non-coronagraphic images. The
main limitation of this simultaneous differential imaging (SDI)
method comes from the residuals caused by the evolution of the
general PSF profile and of the speckle pattern with wavelength.
These residuals can be reduced by increasing the number of im-
ages used for the speckle field subtraction. Marois et al. (2000)
showed with their double difference method that adding another
image to the SDI theoretically improves the signal-to-noise ratio
in the final image of the restored companion. The case of multi-
spectral images has been tackled by Sparks & Ford (2002), who
described the so-called spectral deconvolution method in the
framework of space-based observations for an instrument com-
bining a coronagraph and an integral-field spectrometer (IFS).
The method, subsequently improved and tested on ground-based
non-coronagraphic data by Thatte et al. (2007), is entirely based
on a speckle intensity fit by low-order polynomials as a func-
tion of wavelength in the focal plane. More recently, Crepp et al.
(2011) combined this method with the LOCI algorithm, which
is based on a linear combination of images (Lafrenière et al.
2007). They tested this approach to restored on-sky images from
the Project 1640 IFS on the Palomar telescope. These methods
are applicable to any optical system and in particular to those
with coronagraphs. However, it is challenging to prevent the
planet signals from being eliminated with the speckles because
the planet presence is not explicitly modeled.

In addition, some information on the measurement system
can be very useful to distinguish a planet from the speckle field.
Burke & Devaney (2010) combined classical empirical tech-
niques of differential imaging with a multi-wavelength phase
retrieval method to estimate the aberration pattern in the pupil
plane with a simple imaging model without a coronagraph. This
multi-wavelength phase retrieval is nicknamed wavelength di-
versity (Gonsalves 1982). Information diversity is obtained here
by different wavelengths whereas it is obtained by introducing

a known phase, e.g. defocus, in phase diversity. But in con-
trast to the phase diversity, the wavelength diversity does not
remove the phase sign ambiguity. In Burke & Devaney (2010),
the inversion algorithm is based on a maximum-likelihood es-
timator, which measures the discrepancy between the data and
an imaging model. The minimization of this estimator is all the
more difficult as the number of unknowns to estimate is high.
This problem is overcome by the sparse parametrization of the
unknown phases φλ through the optical-path-errors (or aberra-
tions) δ, assuming that the former are achromatic: φ (λ) = 2πδ/λ.
This allows one to exploit jointly the images at all wavelengths
to estimate the aberrations efficiently: the map of the unknown
optical-path-errors δ is common to all wavelengths. The num-
ber of unknowns is thus limited and the problem constrained.
In the present case, Burke’s wavelength diversity method does
not apply readily, because it assumes non-coronagraphic imag-
ing, whereas we consider the highly non-linear case of a coron-
agraphic imaging model.

That is why we propose to take advantage of a combined
use of wavelength diversity applied in a case of a coronagraphic
imaging model, and a Bayesian inversion to jointly estimate the
aberrations in the pupil plane and the planet map. The joint es-
timation aims at taking up the challenge of preserving the plan-
ets signal. An advantage of the Bayesian inversion is that it can
potentially include an important regularization diversity to con-
strain the problem, using for example prior information on the
noise, the planet map (position, spectrum, etc.) or the aberra-
tions. In the Bayesian framework, the criterion to be minimized
is the sum of two terms: the data fidelity term, which measures
the distance between the data and the imaging model, and one or
more penalty terms. An important difficulty is to define a real-
istic coronagraphic imaging model, that depends on parameters
(e.g. aberrations) that can be either calibrated beforehand or es-
timated from the data.

3. Parametric model for multispectral
coronagraphic imaging

To carry out the Bayesian inversion, we need a parametric direct
model of coronagraphic imaging. This direct model will also be
useful to simulate our test images.

We used a non-linear analytical expression of the corona-
graphic image as proposed by Sauvage et al. (2010), with an
explicit role of the optical aberrations before and after the coro-
nagraph, and turbulence residuals. This model assumes that the
coronagraph is “perfect” in the sense that the coherent energy
is perfectly canceled out. The presence of upstream aberration
however, will result in remaining intensity from the star in the
image. The aberrations, or optical-path-errors, δ, are assumed
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Fig. 2. Optical scheme of a coronagraphic imager. The upstream and downstream static aberrations, and the adopted notations are denoted δu

and δd.Ai(α) denote focal plane complex amplitudes, whereas Ψi(ρ) denotes pupil plane amplitudes.

to be achromatic as an approximation. The most recent spectro-
imagers take increasing care to avoid any source of chromatism,
such as out-of-pupil aberrations, down to a level compatible with
contrasts higher than 106. The variable α ≡

(
αx, αy

)
represents

the angular position in the focal plane in radians and the vari-
able ρ ≡

(
ρx, ρy

)
is the angular position in the pupil plane in

radians−1. Finally, λρ ≡
(
λρx, λρy

)
corresponds to a spatial posi-

tion in the pupil plane in meters.
We recall and discuss this model below. In particular, we esti-

mate its simplified expression in the asymptotic case of very low
phase, with its second-order Taylor expansion. This simplified
expression helps to understand the explicit way in which each
type of aberration impacts the image. It also helps to identify
some important ambiguities with different sets of phases that can
produce similar images, which will guide the subsequently se-
lected approach for phase retrieval. We also estimate the depar-
ture from this low-phase approximation when the phase grows
and discuss the validity of this approximation in a SPHERE-like
case.

3.1. Imaging model

We assume that for an AO-corrected coronagraphic image at the
wavelength λ, the direct model is the following sum of three
terms, separating the residual coronagraphic stellar halo, the cir-
cumstellar source (for which the impact of coronagraph is ne-
glected), and noise nλ:

iλ (α) = f ∗λ × hc
λ (α) +

[
oλ � hnc

λ

]
(α) + nλ (α) , (1)

where iλ (α) is the data, i.e., the image to which we have access,
f ∗λ is the star flux at wavelength lambda and hnc

λ (α), the non-
coronagraphic PSF, which can be estimated separately. Solving
the inverse problem is finding the unknowns, namely the ob-
ject oλ (α) and the speckle field hc

λ (α), which we also call the
“coronagraphic PSF”.

3.2. Long-exposure coronagraphic PSF model

A model description of hc
λ (α) directly depends on the turbulence

residuals and optical wave-front errors. After previous works to
model non-coronagraphic PSFs (Perrin et al. 2003) and coro-
nagraphic PSFs (Cavarroc et al. 2006; Soummer et al. 2007),
Sauvage et al. (2010) proposed an analytical expression for the
coronagraphic image with a distinction between upstream and
downstream aberrations (cf. Eq. (16) in Appendix B). The con-
sidered optical system is composed of a telescope, a perfect

coronagraph, and a detector plane (cf. Fig. 2). Some residual tur-
bulent aberrations δr(ρ, t) are introduced in the telescope pupil
plane. δr(ρ, t) is assumed to be temporally zero-mean, station-
ary and ergodic. Because we only consider exposure times that
are long with respect to turbulence timescales, these turbulent
aberrations contribute only through their statistical spatial prop-
erties: power spectral density S δr (α) or structure function Dφr .
The static aberrations are separated into two contributions: the
aberrations upstream of the coronagraph δu(ρ), in the telescope
pupil plane Pu(ρ) and the aberrations downstream of the coro-
nagraph δd(ρ) in the Lyot Stop pupil plane Pd(ρ). The perfect
coronagraph is defined as an optical device that subtracts a cen-
tered Airy pattern of maximal energy from the electromagnetic
field. Finally, the coronagraphic PSF depends on three parame-
ters that define our system: the aberration maps δu, δd and, the
residual phase structure function Dφr .

3.2.1. Approximate long-exposure coronagraphic model
in the low-phase regime

Because the analytical expression for hc
λ is a highly non-linear

function of the aberrations (Sauvage et al. 2010), we derived
and studied the relevance of an approximate expression for this
model (Ygouf et al. 2010). Approximate coronagraphic imag-
ing models have been derived in several works. Cavarroc et al.
(2006) have developed a short-exposure expression and showed
by simulations that the main limitation comes from the static
aberrations and particularly the aberrations upstream of the coro-
nagraph. Here, we consider a long-exposure imaging model and
confirm analytically the dominance of the upstream aberrations.
Soummer et al. (2007) have developed a two-term expression
with one static and one turbulent term. Nevertheless, these terms
are not explicitly linked to the aberrations, which is what we are
interested in.

Assuming that all phases are small and that the spatial means
of φu(ρ) and φd(ρ) are equal to zero on the aperture, we derive
a second-order Taylor expansion of expression 24 of Sauvage
et al. (2010):[
hc
λ

]app
(α) =

(
2π
λ

)2 {∣∣∣ ˜Pd (λρ) � ˜δu (λρ)
∣∣∣2}

+

(
2π
λ

)2 {∣∣∣ ˜Pd (λρ)
∣∣∣2 � S δr (α)

}

−
(

2π
λ

)2 {〈∣∣∣P [
δr (λρ, t)

]∣∣∣2〉
t
× ∣∣∣ ˜Pd (λρ)

∣∣∣2}
+ o

(
δ2

)
, (2)
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Fig. 3. Speckle non-centrosymmetry. Evolution of the level of residuals with respect to the rms value of the upstream quasi-static aberrations in an
image simulated with the model of Sauvage et al. These residuals correspond to the antisymmetric part of the image.

where ˜Pd (λρ) and ˜δu (λρ) are the Fourier transforms of the down-
stream pupil and upstream aberrations and P

[
δr (λρ, t)

]
denotes the

piston of the aberration map δr (λρ, t).
{〈∣∣∣P [

δr (λρ, t)
]∣∣∣2〉

t
× ∣∣∣ ˜Pd (λρ)

∣∣∣2}
is a corrective term that compensates for the fact that δr (λρ, t)
is stationary and thus non-piston-free on the aperture at every
instant.

∣∣∣ ˜Pd (λρ)
∣∣∣2 is the Airy pattern formed by the pupil Pd (λρ).

This approximate expression brings physical insight into the
long-exposure coronagraphic PSF model of Sauvage et al.:

– The speckle pattern scales radially in λ within the approxi-
mate model and evolves as 1/λ2 in intensity in the data cube.
It is consistent with the analysis of Sparks & Ford (2002),
who performed fits of low-order polynomials as a function
of the wavelength after rescaling radially.

– The approximate expression can be separated into one static
and one turbulent term. This is consistent with the analy-
sis of Soummer et al. (2007) with the advantage that these
terms depend on the parameters of interest. The turbulent
term is simply the turbulent aberration power spectral den-
sity, as seen at the resolution of the instrument, i.e., con-
volved by the output pupil Airy pattern. The static term is
explicitly a function of the upstream aberrations.

– The downstream aberrations do not appear in the static term.
This confirms that the role of the aberrations upstream and
downstream of the coronagraph is very different and that up-
stream aberrations are dominant in the final image.

– Four equivalent upstream aberration sets, δu(ρ), δu(−ρ),
−δu(ρ) and −δu(−ρ), which we call quasi-equivalent aber-
ration maps in the following, lead to the same image
(cf. Appendix A). This item is discussed in more detail in
Sect. 4.4.2.

– By using this approximate expression for hc
λ in the imaging

model (1), we can see that there is a degeneracy between the
value of the star flux and the rms value of the aberration map,
if there is no turbulence. Indeed, without turbulent aberra-
tions, the approximate model multiplied by the star flux can
be written as

f ∗λ · hc
λ(δu) = f ∗λ ·

(2π)2

λ2
×

∣∣∣∣P̃d � δ̃u

∣∣∣∣2 . (3)

This is discussed in Sect. 4.4.1 in greater depth.

3.2.2. Discussion

Because of the complexity of the long-exposure coronagraphic
PSF model of Sauvage et al., we first considered using the ap-
proximate model in our inversion algorithm to decrease the num-
ber of unknowns to estimate and simplify the criterion to min-
imize. But a study of this approximate model showed that the
resulting image is too different from the one simulated with the
Sauvage et al. expression: computing the root mean square of
the difference between the two images leads to a substantial er-
ror of typically 30% in SPHERE-like conditions (Ygouf et al.
2010).

Speckle non-centrosymmetry. A substantial part of this er-
ror arises because in the approximate model, the quasi-static
speckles are purely centrosymmetric. Thus, if we eliminate
the centrosymmetric part of the image by combining it with a
180 degree rotated version of itself as follows:

iantisym =
i − i180

2
, (4)

there are no residuals with this model, i.e. iantisym = 0. But this
is not the case with a more physically realistic image such as
the one simulated with the model of Sauvage et al. The level of
residuals after such a subtraction is determined by the quantity
of upstream aberrations, as we can see in Fig. 3. For example,
with 30 nm rms of upstream aberrations, the level of residuals is
about six times lower than the rms value of the simulated image
(cf. Fig. 4). Thus, for a significant quantity of upstream aberra-
tions, using the model of Sauvage et al. rather than the approx-
imate model for an inversion, should lead to fewer residuals on
the final image.

Speckle dilation. Another difference between the two models
tips the balance toward the model of Sauvage et al.. Indeed, in
the approximate model the speckle dilation is powered by the
1/λ2 factor. If we subtract an image at 950 nm from its 1650 nm-
dilation, there are no residuals with this model. The same oper-
ation with the model of Sauvage et al. (cf. Fig. 5) shows some
residuals, at a level 2.5 lower than the rms value of the simu-
lated image, which attests that it is not a pure speckle dilation.
To do this, we took the images at the minimum and maximum
wavelengths and rescaled the image at 950 nm with respect to the
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Fig. 4. Speckle non-centrosymmetry. In the same dynamic range: (left) simulated image, (center) 180 degree rotated version of the image and
(right) residuals after combination of the image with the 180 degree rotated version of itself. The gain on the rms value after the subtraction is
about 6.

Fig. 5. Speckle dilation. In the same dynamic range: (left) image at 950 nm rescaled at 1650 nm and multiplied by the γ coefficient, image
at 1650 nm (center) before and (right) after speckle subtraction. The gain on the rms value after the subtraction is 2.5.

image at 1650 nm. Finally, we performed the following spectral
differences between the two images: idiff1650 = i1650 nm − γi950 nm,
where γ is a coefficient that minimizes the squared difference
|imax − γimin|2, and is given by Cornia et al. (2010):

γ =

∑
ρ i950 nm(ρ)i1650 nm(ρ)∑

ρ i21650 nm(ρ)
· (5)

A fine model of the speckle field must be able to account for
deviations form centrosymmetry and for deviations from a ra-
dial scaling of the speckles proportional to the wavelength. That
is why we adopted the model of Sauvage et al. rather than the
approximate one in the inversion.

3.2.3. Assumptions on the long-exposure coronagraphic
PSF model

The information we obtained from the approximate model study
helped us define some key assumptions for the success of the
speckle field estimation with the Sauvage et al. long-exposure
coronagraphic PSF model.

Because they have quite a different impact on the final im-
age, it is important to distinguish the aberrations upstream and
downstream of the coronagraph. The effect of the downstream
aberrations is lower than that of the upstream aberrations, and
furthermore, in predicted systems such as SPHERE, they are
expected to be much more stable and easier to calibrate than
upstream aberrations. Additionally, because we consider long-
exposure images, the residual turbulent aberrations will be aver-
aged to form a smooth halo that is easily distinguishable from a
planet. Furthermore, the statistical quantity Dφr , which charac-
terizes this halo, will be measured through the AO system wave-
front sensor (Véran et al. 1997). Therefore, we here assumed that
both the static downstream aberrations and the residual turbulent

aberrations are calibrated and known. This decreases the num-
ber of unknowns because the only aberration map to estimate
in order to access the coronagraphic PSF is the quasi-static up-
stream aberrations. We therefore denote the long-exposure coro-
nagraphic PSF by hc

λ

(
δu; δd,Dφr

)
instead of hc

λ

(
δu, δd,Dφr

)
to un-

derline the fact that δd and Dφr are assumed to be known.
An advantage of our approach is that these assumptions can

evolve. The formalism will allow us to refine our method if we
finally decide to estimate either the downstream aberrations or
the residual turbulent aberrations. Thus, we can slowly increase
the complexity of the problem in anticipation of using real data
from SPHERE or from another instrument.

4. Joint estimation of wavefront and object
algorithm and minimization strategy

This section introduces the criterion to be minimized (Sect. 4.1)
as well as the regularization elements that were used to con-
strain the problem for the present validations (Sect. 4.2). The
minimization algorithm is then described, stressing the two
stages that constitute its core (Sect. 4.3). One of these stages
presents some convergence difficulties. A minimization strategy
is described in Sect. 4.4. The chosen optimizer in described in
Sect. 4.5.

4.1. Definition of the criterion to be minimized

Following the Bayesian inverse problem approach, solving the
inverse problem consists of finding the unknowns, firstly the ob-
ject characteristics o (α, λ) = {oλ (α)}λ, secondly the parameters
of the speckle field hc

λ(δu; δd,Dφr ) and f ∗ (λ) =
{
f ∗λ

}
λ
, which are

the most likely given the data and our prior information about
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the unknowns. This can be reduced to minimizing the following
criterion:

J(o, f ∗, δu) =
∑
λ

∑
α

1

2σ2
n,λ (α)

|iλ − f ∗λ × hc
λ(δu; δd,Dφr )

− oλ � hnc
λ (δu; δd,Dφr )|2 (α)

+ Ro + R f ∗ + Rδ + · · ·. (6)

This criterion is the sum of two terms: the data fidelity term,
which measures the distance between the data and the imaging
model, and a non-exhaustive list of regularization terms on our
unknowns Ro, R f ∗ , Rδ. We consider that the noise is the sum
of a photonic contribution and a detector contribution, that it is
white and approximately Gaussian, which is a valid approxima-
tion for the flux as considered in this application. The noise vari-
ance is assumed to be known here and if it were not, it could
be estimated as σ̂2

n,λ = σ̂
2
ph,λ + σ̂

2
det,λ (Mugnier et al. 2004),

where σ̂2
ph,λ = max(iλ, 0) is the photon noise variance and σ̂2

det,λ
is the detector noise variance previously calibrated. It is assumed
that the noise is not correlated from pixel to pixel or between
images.

The star flux at each wavelength can be analytically esti-
mated from the criterion provided the regularization on flux is
quadratic or absent. In the latter case, the maximum likelihood
solution being given by ∂J

∂ f ∗λ
= 0, we obtain:

f̂ ∗λ (oλ, δu) =

∑
α

[
hc
λ

(
iλ − oλ � hnc

λ

)
/σ2

n,λ

]
(α)∑

α

[(
hc
λ

)2
/σ2

n,λ

]
(α)

· (7)

Thanks to this analytical expression, the criterion to be mini-
mized is that of Eq. (6) with f ∗λ replaced by f̂ ∗λ , which will be
denoted by J′ (o, δu) and depends explicitly on oλ and δu only.

Estimating both the object and the aberrations from a single
image is a highly underdetermined problem. Any diffraction-
sized feature in the halo can be interpreted either as a circum-
stellar point-source or as a part of the stellar speckle halo. This
ambiguity can be decreased by using multispectral images but
it is not sufficient. It is thus necessary to regularize the problem
by adding more constraints. This is the role of the regularization
terms. In this paper, we study the case of constraints on the ob-
ject that is sufficient for the simulated images we used, but we
should keep in mind that it is also possible to use constraints on
the aberration map.

4.2. Regularization terms and constraints

We describe below the regularization terms that we used for the
validation tests of this paper. Other regularizations could be cho-
sen depending on the kind of images to be processed.

4.2.1. Regularization on the object Ro

A regularization on the object is fundamental to help compen-
sating for the degeneracy that exists in the inversion between the
aberrations and the object. By penalizing the energy in the object
map, it favors the energy in the aberration map and prevents the
speckles from being mistaken for a planet.

The regularization term Ro includes the prior spatial and
spectral information we have on the object. We chose here
an L1-L2 white spatial regularization, which assumes indepen-
dence between the pixels (Meimon et al. 2009) because we are

mainly looking for point sources. We used an L1-L2 regulariza-
tion rather than a true L1 regularization to keep a differentiable
criterion, which simplifies the minimization problem. The spec-
tral prior is based on smoothness of the object spectrum. We
currently assume that the object is white (constant spectrum) but
as the final aim is to extract some spectra, for future validations
we will use a L2 correlated spectral regularization (Thiébaut &
Mugnier 2006), which will involve the differences between the
spectrum at neighboring wavelength at each pixel and will en-
force smoothness on the object spectrum.

The regularization on the object is necessary to obtain a
sparse object. Without the regularization many residuals remain
on the estimated object.

4.2.2. Positivity and support constraints on the object

The object intensity map is a set of positive values, which is
an important prior information. One should therefore enforce a
positivity constraint on the object. This constraint can be imple-
mented in various ways, such as criterion minimization under
the positivity constraint, reparameterization of the object, or ex-
plicit modification of the a priori probability distribution (e.g.,
addition of an entropic term). Mugnier et al. (2004) have found
that the best way to ensure positivity, with respect both to speed
and to not introducing local minima, is to directly minimize the
criterion under this constraint. We proceeded similarly.

Because the star light is concentrated around the optical
axis, the flux is essentially estimated on this very bright region
(cf. Eq. (7)). But if there are too many residuals on the object,
the flux estimation can be biased. Thus, imposing, as is physi-
cally meaningful, that the object is null very close to the star, in
a region of typically 3λ/D radius, helps us estimate the star flux
accurately.

4.2.3. Regularization on the star flux R f ∗

To make the minimization more robust, it can be useful to con-
strain the flux estimation to physical values. Indeed, if there are
no turbulent aberrations, there is an indetermination between the
star flux value and the phase rms value in the approximate model
of Eq. (13). Consequently, for aberrations with very low rms
values, the coronagraphic PSF hc

λ is close to zero and thus the
analytical flux estimate given by Eq. (6) can diverge. The pres-
ence of known turbulent aberrations naturally constrains the flux
value, but to make the method more robust, we chose to prevent
the flux from diverging. In practice, we regularized the flux es-

timation by the following quadratic metric: R f ∗ =
( f ∗λ− f0)2

2σ2
f ,λ

. This

metric can be interpreted as a Gaussian prior low on the flux, but
its role is not as essential for the criterion minimization as that of
the L1-L2 regularization and the positivity constraint. This leads
to the following expression for the analytic star flux:

f̂ ∗λ =

∑
α hc
λ

(
iλ − oλ � hnc

λ

)
/σ2

n,λ + f0/σ2
f ,λ∑

α

(
hc
λ

)2
/σ2

n,λ + 1/σ2
f ,λ

· (8)

In practice, we chose a very high standard deviation σ f ,λ =
100 × ∑

α iλ, to avoid biasing the flux. With this standard de-
viation, we can choose any mean flux, for example, f0 = 0. This
is sufficient to avoid the division by zero in the flux computation
and thus the flux divergence.
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4.3. Iterative algorithm

The structure of the joint criterion of Eq. (6) prompted us
to adopt an estimation of wavefront and object that alternates
between estimation of the aberrations, assuming that the object
is known (multispectral phase retrieval) and estimation of the
object assuming that the aberrations are known (multispectral
deconvolution).

Multispectral deconvolution. For given aberrations, we define
the following intermediate data where the (assumed known) stel-
lar halo is subtracted, keeping then only the circumstellar object
as seen in classical imaging: i′′λ = iλ − f ∗λ · hc

λ(δu; δd,Dφr ). By
inserting these intermediate data into the the criterion of Eq. (6),
we obtain:

J′′(o, f ∗, δu) =
∑
λ

∑
α

1

2σ2
n,λ (α)

|i′′λ − oλ � hnc
λ (δu; δd,Dφr )|2 (α)

+ Ro + R f ∗ + Rδ + · · ·, (9)

which shows that the problem at hand is a non-myopic multi-
spectral deconvolution of images i′′λ . The chosen regularization
leads to a convex criterion (Mugnier et al. 2004) and thus to a
unique solution for a given set of aberrations and a given object
regularization.

Phase retrieval. If we replace the intermediate data i′λ = iλ −
oλ � hnc

λ (δu; δd,Dφr ) into the the criterion of Eq. (6), we obtain:

J′(o, f ∗, δu) =
∑
λ

∑
α

1

2σ2
n,λ (α)

|i′λ − f ∗λ · hc
λ(δu; δd,Dφr )|2 (α)

+ Ro + R f ∗ + Rδ + · · ·, (10)

which shows that the problem at hand is essentially a phase re-
trieval problem. In this phase retrieval stage, the combination
of a high number of parameters to estimate (typically 103, see
Sect. 5) and of a highly non-convex criterion complicates the
problem. To avoid local minima, several numerical solutions re-
sulting from a fine understanding of the imaging process are nec-
essary and are described below.

4.4. Phase retrieval: dealing with local minima

4.4.1. Choice of an appropriate starting point: very small
random phase

To keep the computation time reasonable, we used the local de-
scent algorithm described in Sect. 4.5 to minimize the criterion.
Because the latter is highly non-convex, the chosen starting point
so that we are fully in the conditions where the Taylor expansion
developed in 3.2.1 is valid and where the criterion is less non-
convex. It allows the algorithm to avoid many wrong directions,
and thus many local minima. As the algorithm converges, the up-
stream aberration rms value increases toward its true value and
a gradual non-linearity of the model is gradually introduced.

We tested the phase retrieval capability of our algorithm with
respect to the chosen starting point, assuming that there is no ob-
ject to estimate. We give the rms value of the estimated upstream
aberration map and the rms value of the difference between the
simulated and the estimated maps estimated as follows:

rmsdiff =

[∑
ρ

(
δsimulated

u − δestimated
u

)2
]1/2

[∑
ρ

(
δsimulated

u

)2
]1/2

× 100. (11)

The inversion is performed with one spectral channel and with-
out turbulence. Figure 6 compares some estimated upstream
aberration maps (a, b, c) to the simulated one (“true”):

(a) Using a random aberration map with the same rms value
as the true aberrations (30 nm at 950 nm) as a starting
point does not help in finding the global minimum. Indeed,
the algorithm converges very quickly toward a local min-
imum and the estimated aberration map (rmsa = 307 nm
at 950 nm) is completely different from the simulated one
(rmsdiff,a = 103%).

(b) Using a zero-aberration map as a starting point does not
work either. This is probably because the approximate model
is an even function. For this particular starting point, the
gradient is null, which leads to some convergence difficul-
ties. The rms of the difference between the two maps is
about 1.4 × 104%. The estimated aberration pattern (rmsb =
4069 nm at 950 nm) seems to show that the algorithm does
not explore the high frequencies.

(c) The solution we propose is to use as a starting point for the
minimization a non-null random aberration map with a low
rms value compared to those of the “true” simulated aberra-
tion map. In practice, we chose an rms value about 108 times
lower than the “true” value. This leads to a correct estimation
of the aberration map (rmsc = 30.2 nm at 950 nm) with an
rms of the difference between the two maps of about 0.6%.

If we plot the same results for images simulated with turbulence,
the conclusions are not the same. The convergence to an aberra-
tion map that resembles the true one and has similar rms value is
easier:

(a’) By using a random aberration map with the same rms value
as the true aberrations (30 nm at 950 nm) as a starting point,
the rms value of the estimated aberration map (30.7 nm) is
close to the true value. After a careful inspection, the esti-
mated aberration map turned out to be similar to the oppo-
site of the simulated one. This is discussed in more detail
in 4.4.2.

(b’) Using a zero-aberration map as a starting point leads to
a good pattern and a good rms value of aberration map
(30.1 nm).

(c’) Using a non-null random aberration map with a low rms
value as a starting point also leads to a good pattern and a
good rms value of the aberration map (30.1 nm).

For the (b’) and (c’) cases, the difference between the two maps
is bigger than before (17%) but the estimated aberration map is a
sufficiently good starting point for the alternating minimization.

The choice of an appropriate starting point seems not to be
as essential with turbulent aberrations as it was without turbulent
aberrations. Indeed, the presence of turbulent aberrations raises
the ambiguity that exists between the value of the star flux value
and the rms value of the upstream aberration map. Nevertheless,
even if we assume that there are turbulent aberrations in the fol-
lowing, we chose to use a random aberration map with a low
rms value as a starting point of the phase retrieval because it al-
lows us to avoid some local minima by linearizing the highly
non-linear model used in the inversion.

4.4.2. Avoiding some local minima by testing
quasi-equivalent starting points

In the approximate model, four different aberration maps can
give the same image (cf. Eq. (15) in Appendix A). This means
that, from a given starting point, the minimization algorithm can
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“true” (a) (b) (c)

rms“true” = 30 nm rmsa = 307.8 nm rmsb = 4069.7 nm rmsc = 30.2 nm
rmsdiff,a = 103% rmsdiff,b = 14000% rmsdiff,c = 0.6%

(i)

“true” (a’) (b’) (c’)

rms“true” = 30 nm rmsa’ = 30.7 nm rmsb’ = 30.1 nm rmsc’ = 30.1 nm
rmsdiff,a’ = 180% rmsdiff,b’ = 17% rmsdiff,c’ = 17%

(ii)

Fig. 6. Choice of an appropriate starting point. Estimated upstream aberration maps with one spectral channel for three different starting points.
[i] Without turbulent aberrations in the simulated images. [ii] With turbulent aberrations in the simulated images. From left to right, with a dynamic
range adapted to the visualization: “true” simulated aberration map, (a) and (a’) estimated aberrations with a random aberration map (rms value of
the simulated aberrations) as starting point, (b) and (b’) estimated aberrations with a zero aberration map as starting point, and (c) and (c’) estimated
aberrations with a random aberration map (rms value 108 times lower than the “true” one) as starting point. The estimation is performed with a
regularization on the star flux.

δinit,1
u δinit,2

u δinit,3
u δinit,4

u

rms1 = 31.2 nm rms2 = 30.1 nm rms3 = 31.7 nm rms4 = 31.6 nm
rmsdiff,1 = 160% rmsdiff,2 = 17% rmsdiff,3 = 140% rmsdiff,4 = 160%

Fig. 7. Estimated upstream aberrations for the four quasi-equivalent aberration maps as starting points. From left to right, with the same dynamic
range: δinit,1

u , δinit,2
u , δinit,3

u , δinit,4
u . The image simulation is performed with one spectral channel in the presence of turbulent aberrations.

take four different but equivalent directions from the approxi-
mate model point of view. But from the point of view of the
model used in the inversion, this is not the case because it de-
pends on downstream aberrations, which break the symmetry.
That is why we call them “quasi-equivalent” aberrations maps
(cf. 3.2.1).

The idea is then to explore the several regions offered by
the four different quasi-equivalent aberrations maps to determine
which of these solutions gives the smallest criterion. To do this,
we performed an initialization step where the very small ran-
dom phase is taken as a starting point. A first phase retrieval
stage was performed with this starting point, leading to a first
estimated aberration map denoted by δinit,1

u (ρ). Then, the three
other quasi-equivalent aberration maps δinit,1

u (−ρ), −δinit,1
u (ρ) and

−δinit,1
u (−ρ) were taken as starting points for three other phase re-

trieval stages. This led to three more estimated aberration maps
denoted by δinit,2

u , δinit,3
u and δinit,4

u .
Figure 7 shows the four estimated aberration maps at the end

of the initialization step. These estimated aberration maps are
compared to the simulated one (Fig. 6d). The final aberration

map chosen as a starting point for the alternating algorithm is
the one that gives the minimum value for criterion J of Eq. (6):

(δu)init = arg min
{
J
[
δinit,1

u

]
, J

[
δinit,2

u

]
, J

[
δinit,3

u

]
, J

[
δinit,4

u

]}
. (12)

In practice, quite often and in particular in this simulation, it
turns out that the chosen set of aberrations is also the one whose
rms value (rmsb’ = 30.1 nm at 950 nm) is closest to the ‘true”
phase (Fig. 6i. “true” and Fig. 6ii. “true”).

4.4.3. Avoiding some local minima in the multispectral
inversions by taking the previously estimated
aberration map as starting point

We used a local descent algorithm to minimize the criterion. For
this, the gradients are computed for each explored direction and
the computation is all the longer as there are spectral channels.
That is why it is useful to perform several inversions by gradu-
ally increasing the number of spectral channels. This also helps
us avoid some local minima. We begin by an inversion with one
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Fig. 8. Block diagram of the algorithm used for the joint estimation of the object map and the upstream aberrations.

spectral channel. Then, we add some more spectral channels for
new inversions and each time, we take the previous estimated
aberration map as a starting point.

Because an inversion with only one spectral channel some-
times leads to a local minimum, it is useful to also test the
four quasi-equivalent starting points with two spectral channels
(cf. Sect. 4.4.2).

4.5. VMLM optimizer

To minimize the criterion, we chose the variable metric with
limited memory and bounds (VMLM-B) method (Thiébaut
2002). Updated from the BFGS variable metric method (Press
et al. 2007), it is usable for a problem of large dimensionality.
Moreover, it offers the possibility to constrain these parameters.
This makes this method a good tool for many inversion problems
in high angular resolution (Meimon et al. 2009; Gratadour et al.
2005). It is available from http://www-obs.univ-lyon1.
fr/labo/perso/eric.thiebaut/optimpack.html.

4.6. Summary of the developed algorithm

Figure 8 summarizes the different steps of the developed al-
gorithm. The choice of a very small random phase as a start-
ing point is essential because it avoids falling into some local
minima (Sect. 4.4.1). An initialization phase is performed. It
consists in running the algorithm for the four quasi-equivalent
solutions (Sect. 4.4.2). The solution that leads to the lowest
criterion value is selected. Then, the minimization core is per-
formed, alternating between the aberration estimation, assum-
ing that the object is known (multispectral phase retrieval), and
the object estimation, assuming that the aberrations are known
(non-myopic multispectral deconvolution). Regularization terms
and constraints prevent the algorithm from falling into other lo-
cal minima (Sect. 4.2.3). Iterations are performed (Sect. 4.3)

until the stopping rule of the algorithm is verified. The chosen
optimizer is the VMLM-B (Thiébaut 2002, Sect. 4.5).

5. Validation of the inversion method by simulations

In this section, we validate the exoplanet detection capabilities
of our inversion method. After giving the numerical simulation
conditions, we investigate the estimation quality of the aberra-
tions and the object as a function of the number of images at
different wavelengths used. We also study the algorithm robust-
ness with respect to the simulated images and with respect to the
starting point we use. Finally, we study the effect of the band-
width on the quality of the object estimation.

5.1. Simulation hypothesis

From a data cube of six images simulated with the image forma-
tion model of Eq. (1) and the Sauvage et al. (2010) analytical ex-
pression for coronagraphic imaging (cf. Eq. (16) in Appendix B),
we jointly estimated the speckle field and the object map. We
chose pixel indicator functions as the basis for the phase rather
than, e.g., a truncated basis of Zernike polynomials, to model
and reconstruct phases with a high spatial frequency content.
The hypotheses are typical of a SPHERE-like instrument: up-
stream δu and downstream δd aberrations simulated with stan-
dard deviation of 30 nm (cf. their power spectral densities in
Fig. 10), star-planet angular separations of 0.2 and 0.4 arcsec,
contrasts, i.e. ratio of star flux over planet flux of 105, 106

and 107, a [950 nm; 1647 nm] spectral bandwidth and an inte-
grated flux of 4 × 1011 on the data cube in presence of photon
noise and a transmission (throughput and quantum efficiency)
of 10%, corresponding to the observation of a 6-magnitude star
for 25 min with the VLT. We used 128 × 128 pixels to sim-
ulate our images, Shannon-sampled at 950 nm. This results in
a number of unknowns to estimate for the aberration map of
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(a) Object map

1

2

3

4

(b) Image of the object map in
the focal plane

(c) Aberration map (d) Image of the speckle field
in the focal plane

Fig. 9. Simulated images at λ = 950 nm. a) Simulated object map and
b) associated image in the focal plane. The following planets are sim-
ulated: one with a star-over-planet contrast of 105 at a separation of
0.2 arcsec (planet 1), two with star-over-planet contrast of 106 at sepa-
rations of 0.2 (planet 2) and 0.4 (planet 3), respectively, and one with a
star-over-planet contrast of 107 at a separation of 0.4 arcsec (planet 4).
The image in the focal plane is obtained by convolving the object map
oλ by the non-coronagraphic psf hnc

λ . c) Simulated aberrations and d) as-
sociated image of the speckle field in the image focal plane. The image
is given by the coronagraphic PSF hc

λ.

about 3 × 103. If we add the unknowns to estimate for the ob-
ject map, which is 16 × 103, the total number of unknowns is
about 2 × 104. Figure 9 shows the simulated objet map (9a) and
the associated image in the focal plane (9b). For an easier visu-
alization, we represent the images in the focal plane and not the
object map in the following. Figure 9 shows the simulated aber-
ration map (9c) and the associated image of the speckle field in
the focal plane (9d).

5.2. Algorithm robustness and performance studies

We jointly estimated the upstream quasi-static aberration map
and the object map with multispectral data. To study the robust-
ness of the method we have developed, we ran several simula-
tions in a Monte Carlo-like manner. Both different simulated im-
ages (5.2.1) and different starting point (5.2.2) were used for the
inversion. The results of the inversions with two and six spectral
channels were compared to study the effect of the redundancy of
information offered by the multispectral imaging.

5.2.1. Different simulated phases

We applied our method to ten images simulated with different
random upstream aberration maps to assess the algorithm ro-
bustness. Figure 11 shows the estimated images of the object
from these images for a two-spectral channel inversion (a) and
a six-spectral channel inversion (b). These results bring several

conclusions, both on the robustness of the method and the mul-
tispectral redundancy.

Robustness of the method. In one out of ten cases, some resid-
uals from the speckle field remain on the object. The level of this
residual prevents one from detecting any planet. In the other nine
cases, the level of the residuals is negligible, which allows one
to detect at least one planet. These observations, independent of
the number of spectral channels used for the inversion, shows
that the method is relatively robust, given the minimization dif-
ficulties we met.

Multispectral redundancy. We can see some significant differ-
ences between the two-spectral channel inversion and the six-
spectral channel inversion:

– The planet with a contrast of 105 is detected in eight out of
ten cases with two spectral channels and in nine out of ten
cases with six spectral channels.

– Only one planet with a contrast of 106 is detected with two
spectral channels in three out of ten cases. The same planet
is detected in nine out of ten cases with six spectral channels.

– The other planet with a contrast of 106 is detected in three
out of ten cases with six spectral channels.

– Furthermore, the estimation of the flux of the planets is more
accurate with six spectral channels. The inversion shown in
Fig. 12 is representative of a large body of simulated tests
and is performed with two and six spectral channels. The
simulated and estimated image of the object maps for these
two different inversions are represented as the errors on the
estimated planet flux when the planet is effectively detected.

These results show that multispectral redundancy helps us detect
the planets. However, we note that even if the convergence prob-
lems were solved with our minimization strategy in most cases,
there are still challenges to be overcome to arrive at a perfectly
robust algorithm.

5.2.2. Different starting points

For each of the ten previous simulated phases, we took ten differ-
ent random aberration maps with the same level of rms value as
starting points to demonstrate than any random aberration map,
provided it is small, allows us to find a good solution. Figure 13
shows the estimated images of the object for the ten different
random aberration maps, used as starting points, for one phase.

The starting point does not have a strong impact on the planet
detection. In all cases, the three brightest planets are detected.
In only one out of ten cases, a false planet is detected. Despite
all the attention given to the initialization of the algorithm, the
choice of starting point can have, to a limited extent, an effect on
detection.

5.3. Bandwidth effect

We study here the bandwidth effect on the planet image esti-
mation quality. We selected the following spectral bandwidths:
[950 nm; 1050 nm], [950 nm; 1150 nm], [950 nm; 1350 nm], and
[950 nm; 1650 nm]. The two last bandwidths correspond to op-
erational modes of the SPHERE-IFS instrument, whereas the
other bandwidths are produced for the purpose of our study’s
completeness. Figure 14 compares the estimated planet image
maps for these different inversions. If the planet with a contrast

A138, page 10 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220318&pdf_id=9


M. Ygouf et al.: Exoplanet detection and instrument aberration retrieval in multispectral coronagraphic imaging

Power Spectral Density of Upstream Aberrations

1 10
Frequency (Cycles/Pupil)

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000

P
S

D

(a) Power spectral density of the upstream aber-
rations.

Power Spectral Density of Downstream Aberrations
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(b) Power spectral density of the downstream
aberrations.

Fig. 10. Power spectral densities of the simulated aberrations. The upstream and downstream aberrations are randomly generated according to
a f −2 spectrum and with an rms value of 30 nm. The downstream aberrations are not corrected by the adaptive optics. The upstream aberrations
are corrected by the adaptive optics up to 20 cycles/pupil. The residuals are due to the non-common path aberrations. Below 4 cycles/pupil, these
non-common path aberrations are corrected but there are some residuals from rotative optics.

(a) two-spectral channel inversion

(b) six-spectral channel inversion

Fig. 11. Robustness study on the simulated phases. With the same dynamic range, at 950 nm: estimated planet images [oλ�hnc
λ ] (x, y) from different

images, simulated with ten different randomly generated upstream aberration maps.

of 105 is detected each time, only the two broader bandwidths
(700 and 400 nm) allow one to detect the two planets with a con-
trast of 106. With a 200 and a 100 nm bandwidth, the planet with
a contrast of 106 which is at a separation of 0.4 arcsec is detected,
whereas the one that is at a separation of 0.2 arcsec is not.

The detection performance increases with the bandwidth be-
cause the incorporated spectral information helps the algorithm
to distinguish between speckles and planets. Indeed, from one
wavelength to another, the amplitude of a speckle movement is

proportional to the wavelength difference and to the radial posi-
tion of the speckle. For a given spectral bandwidth, it is there-
fore easier to detect a planet that is far away from the star than a
planet than is close to the star.

6. Conclusion

We have proposed an original method that jointly estimates
the object (multispectral deconvolution) and the aberrations
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flux error planet 1 = 19%
flux error planet 3 = 82%

flux error planet 1 = 1%
flux error planet 2 = 73%
flux error planet 3 = 47%
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Fig. 12. Multispectral redundancy. With the same dynamic range, at 950 nm, from left to right: simulated planet image [oλ � hnc
λ ] (x, y) and

estimated ones with a two- and six-spectral channel inversion. The errors on the planet flux estimations are computed when the planet is detected.

Fig. 13. Robustness study on the aberrations maps used as starting points. With the same dynamic range, at 950 nm: estimated planet images
[oλ � hnc

λ ] (x, y) from one image with different random aberration maps used as starting points.

Fig. 14. Bandwidth effect. With the same dynamic range, at 950 nm, from left to right: estimated planet images [oλ � hnc
λ ] (x, y) with a 700, 400,

200, and 100 nm-bandwidth inversion.

(multispectral phase retrieval) for the new generation of planet
finders. For the first time, a fine parametric model of corona-
graphic imaging, describing the instrument response, is used for
the inversion of simulated multispectral images in a solid sta-
tistical framework. Even though the model remains a simplifi-
cation of reality, in particular when assuming achromatic wave-
front errors, it goes much further than only assuming that the
spatial speckle pattern essentially scales with wavelength. We
have shown that the second-order approximation of the imag-
ing model has the same behavior as the often-used model for the
problem at hand: the speckle pattern is centrosymmetric, it scales
with the wavelength, and it is not dependent on the downstream
aberrations. The departure from this case quickly becomes very
significant as the phase grows. It is clear that the ability of a fi-
nite phase to produce non-symmetric speckles induces a strong

ambiguity between the estimates of the aberrations and the ob-
ject, even if the latter is a point-like companion.

To set up our method, we developed an iterative algorithm.
With only one spectral channel, this joint estimation is an under-
determined problem, as we emphasized before. This underdeter-
mination results mathematically in a degeneracy of the global
minimum. A multispectral inversion raises this underdetermina-
tion but it is still possible to fall into local minima. Because of
the high non-linearity of the coronagraphic imaging analytical
model and the number of unknowns to estimate (about 103 in
our case), the phase retrieval, even if it is multispectral, remains
a difficult problem. We set-up a minimization approach that re-
mains quite fast (without systematically exploring the whole pa-
rameter space in a search for global minimum) but that is still rel-
atively robust: extensive tests showed the success in converging
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to a good solution in 90% of the cases in a systematic manner,
and in the other cases, the failure appears obviously in the re-
sults with no risk of confusion and can motivate tests with al-
ternative criterion minimization approaches. We obtained these
convergence capabilities of the algorithm by bringing original
solutions to the minimization difficulties of the phase retrieval,
inspired by studying the imaging model. One element of the so-
lution is to use a small random aberration map as starting point.
Another element is to explore the several directions offered by
the quasi-equivalent aberration maps.

A wide variety of prior information, either about the sys-
tem (aberrations, flux, noise) or about the object of interest, can
be used to constrain the problem. The choice of a Bayesian ap-
proach allows this flexibility. In particular, a regularization that
minimizes the energy on the object map helped us in separat-
ing the aberrations from the object and in decreasing the speckle
noise in the reconstructed object map.

The restoration of images simulated with a perfect coron-
agraph is very encouraging for the extraction of planetary sig-
nals at levels that begin to be astrophysically interesting. We
demonstrated the efficiency of the method even with only two
spectral channels, by achieving a contrast of 105 at 0.2 arcsec.
Multispectral redundancy improves the detection, which allowed
us to achieve a contrast of 106 at 0.2 arcsec with six spectral
channels.

We therefore believe that this approach will be quite pow-
erful when we are faced with experimental data. This deserves
to be studied, as well as how the performance will evolve in
the cases of images simulated with a non-perfect coronagraph,
real images from the SPHERE instrument in the lab, or real im-
ages from an instrument on-sky. Eventually, this method could
be used to improve the performance of the existing multispectral
imaging instruments, providing better astrophysical exploita-
tions. Now that we demonstrated that we can manage the dif-
ficulties linked to the criterion minimization, we can now focus
on its applicability, and on adding more prior information, start-
ing with the full set of information that can be obtained from the
instrument calibrations.

The lessons learned by applying the method could also fa-
cilitate the approach for the design of future instruments such
as EPICS for the European Extremely Large Telescope (Kasper
et al. 2008), and the definition of their calibration procedures.

Appendix A: Indetermination on the estimated
aberrations from an image simulated
with our approximate model

We show here that four sets of upstream aberrations give the
same image for our approximate model. We re-write the expres-
sion below as a function of φu = (2π/λ) × δu and without the
variables for better readability:

[
hc
λ

]app
=

∣∣∣∣P̃d � φ̃u

∣∣∣∣2
+

∣∣∣∣P̃d

∣∣∣∣2 � S φr (α) −
〈∣∣∣P [
φr

]∣∣∣2〉
t
×

∣∣∣∣P̃d

∣∣∣∣2
+ o

(
φ2

)
. (13)

We consider here the static term
∣∣∣∣P̃d � φ̃u

∣∣∣∣2 and re-write it in the
form of a correlation. For this, we consider two functions f = Pd
and g = δu of the two variables ρx and ρy and denote f̌ (ρ) =
f (−ρ) = f (−ρx,−ρy).

By using the definition of the correlation Γ fg(ρ) and the con-
volution C fg(ρ) of the two functions f (ρ) and g(ρ),

Γ fg(ρ) = f (ρ) ⊗ g(ρ) =
∫

f ∗(ρ′)g(ρ′ + ρ)dρ,

C fg(ρ) = f (ρ) � g(ρ) =
∫

f (ρ′)g(ρ − ρ′)dρ,

and the properties

(
f̃
)∗
= ˜̌f ∗ and f � g = f ⊗ ǧ∗,

we obtain∣∣∣∣ f̃ � g̃∣∣∣∣2= f̃g × ( f̃g)∗= f̃g ×˜ˇ( fg)∗ = ˜fg � ˇ( fg)∗= ˜fg ⊗ fg=Γ̃ fg.

This yields

∣∣∣∣P̃d � φ̃u

∣∣∣∣2 = ˜Γ(Pd ·φu). (14)

The properties of the autocorrelation

Γ f (ρ) = Γ f ∗(−ρ)

and

Γ− f (ρ) = Γ f (ρ),

lead to∣∣∣∣∣ Γ(Pd × δu)(ρ) = Γ(Pd × δu)(−ρ)
Γ(Pd × (−δu))(ρ) = Γ(Pd × (−δu))(−ρ)

and

Γ(Pd × (−δu))(ρ) = Γ(Pd ·δu)(ρ).

This yields

Γ(Pd × δu)(ρ) = Γ(Pd × δu)(−ρ) = Γ(Pd × (−δu))(ρ) = Γ(Pd × (−δu))(−ρ), (15)

which means that the upstream aberration sets δu(ρ), δu(−ρ),
−δu(ρ) and −δu(−ρ) are equivalent with respect to the approxi-
mate model, because they give the same image. This is true even

in the presence of the turbulent term
∣∣∣∣P̃d

∣∣∣∣2�S φr (α)−
〈∣∣∣P [
φr

]∣∣∣2〉
t
·∣∣∣∣P̃d

∣∣∣∣2.

Appendix B: Indetermination on the estimated
aberrations from an image simulated
with the Sauvage et al. model

In classical imaging, i.e. “non-coronagraphic imaging”, the sign
of the even part of the phase cannot be deduced from only one
image in the focal plane (Blanc 2002). In other words, if we
denote φe and φo, the even and the odd parts of the phase, the two
phases φ = φe + φo and φ′ = −φe + φo give the same image. In
this appendix, we show that this is also the case for the Sauvage
et al. expression (Sauvage et al. 2010) in coronagraphic imaging,
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if we assume that the sign of the even part changes for all phase
errors.

The expression of Sauvage et al. is

hc
λ =

〈
AnA∗n

〉
+

〈
|(η0)|2

〉
AdA∗d − 2� {〈

η0A∗n
〉

Ad
}
, (16)

with An (α)=TF−1
[
Pd (ρ) e jφtot(ρ)

]
, Ad (α)=TF−1

[
Pd (ρ) e jφd(ρ)

]
,

φi (ρ) = 2πδi(ρ)
λ

and φtot (ρ) = φr (ρ) + φu (ρ) + φd (ρ). TF [.] de-

notes the Fourier transform.
〈
|(η0)|2

〉
represents the mean Strehl

ratio during observation, such as

η0(t) = 〈Ψ0(ρ)|Pu(ρ)〉
=

1
S

�
ρ

Ψ∗0(ρ)Pu(ρ)d2ρ

=
1

S 2

�
ρ

P2
u(ρ)e− jφ(ρ,t)d2ρ,

with φ(ρ, t) = φr(ρ, t) + φu(ρ).
The first term of Sauvage et al.’s expression

〈
AnA∗n

〉
is the

classical case of non-coronagraphic PSF, which is well-known
(Blanc 2002). The term AnA∗n stays identical whatever the sign
of the even part of the phase.

The second term of Sauvage et al.’s expression is the product
of two factors:

〈
|(η0)|2

〉
and AdA∗d. The latter stays identical what-

ever the sign of the even part of the phase. We take the following
phase φ′ = −φe + φo and calculate the corresponding η′0(t), as-
suming that ρ′′ = −ρ:

η′0(t) =
1

S 2

�
ρ

P2
u(ρ)e− jφ′(ρ,t)d2ρ

=
1

S 2

�
ρ

P2
u(ρ)e− j[−φe(ρ,t)+φo(ρ,t)]d2ρ

=
1

S 2

�
ρ

P2
u(ρ)e j[φe(−ρ,t)+φo(−ρ,t)]d2ρ

=
1

S 2

�
ρ′′
P2

u(ρ′′)e j[φe(ρ′′,t)+φo(ρ′′,t)]d2ρ′′

=
1

S 2

�
ρ′′
P2

u(ρ′′)e j[φ(ρ′′ ,t)]d2ρ′′

=
[
η0(t)

]∗ .〈
|(η0)|2

〉
=

〈
|(η0 · η0(t)∗)|2

〉
is then independent of the sign of the

even part of the phase. Thus, the product
〈
|(η0)|2

〉
AdA∗d is also

independent of the sign of the even part of the phase.
We study now the third term 2� {〈

η0A∗n
〉

Ad
}
. Assuming that

φd = (φd)e + (φd)o and φ′d = −(φd)e + (φd)o:

A′d (α) = TF−1
[
Pd (ρ) e jφ′d(ρ)

]
=

�
ρ′

[
Pd (ρ) e j[−(φd)e(ρ)+(φd)o(ρ)]

]
e−2iπ(ρα)d2ρ

=

�
ρ′

[
Pd

(
ρ′′

)
e− j[(φd)e(ρ′′)+(φd)o(ρ′′)]

]
e2iπ(ρ′′α)d2ρ′′

= [Ad]∗ .

In the same way as the previous demonstration, we can show
that A∗n = An. Under the effect of the transformation φ → φ′, the
different terms become⎧⎪⎪⎪⎨⎪⎪⎪⎩
η0 → η∗0
A∗n → An
Ad → A∗d.

In other words,
〈
η0A∗n

〉
Ad → [〈

η0A∗n
〉

Ad
]∗ When we take the

conjugate of a complex number, only the sign of the imaginary
part changes. Because we take the real part of this expression,
changing the sign of the even part of the phase does not change
the term.

To conclude, like in classical imaging, changing the sign of
the even part of the phase does not change the image in the fo-
cal plane. This means that two sets of aberrations give the same
image. But if we assume like in this communication that the
downstream aberrations are fixed and known, this removes the
degeneracy.
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