Recycled Components in Mantle Plumes Deduced From Variations in Halogens (Cl, Br, and I), Trace Elements, and <SUP>3</SUP>He/<SUP>4</SUP>He Along the Hawaiian-Emperor Seamount Chain - Archive ouverte HAL Access content directly
Journal Articles Geochemistry, Geophysics, Geosystems Year : 2019

Recycled Components in Mantle Plumes Deduced From Variations in Halogens (Cl, Br, and I), Trace Elements, and 3He/4He Along the Hawaiian-Emperor Seamount Chain

(1, 2) , (3) , (4) , (2) , (5)
1
2
3
4
5

Abstract

Halogens are primarily located within surface reservoirs of the Earth; as such they have proven to be effective tracers for the identification of subducted volatiles within the mantle. Subducting lithologies exhibit a wide variety of halogen compositions, yet the mantle maintains a fairly uniform signature, suggesting halogens may be homogenized during subduction to the mantle or during eruption. Here we present halogen (Cl, Br, and I), K, noble gas, and major and trace element data on olivines from three seamounts along the Hawaiian-Emperor seamount chain to determine if the deep mantle source has retained evidence of halogen heterogeneities introduced through subduction. High Ni contents indicate that the Hawaiian-Emperor mantle source contains a recycled oceanic crust component in the form of pyroxenite, which increases from the 46% in the oldest (Detroit) to 70% in the younger seamount (Koko). Detroit seamount retains mid-ocean ridge basalts (MORB)-like Br/Cl and I/Cl, while the Br/Cl and I/Cl of Suiko and Koko seamounts are higher than MORB and similar to altered oceanic crust and dehydrated serpentinite. Helium isotopes show a similar evolution, from MORB-like values at Detroit seamount toward higher values at Suiko and Koko seamounts. The correlation between pyroxenite contributions, Br/Cl, I/Cl, and 3He/4He indicates that subducted material has been incorporated into the primordial undegassed Hawaiian mantle plume source. The identification of recycled oceanic crustal signatures in both the trace elements and halogens indicates that subduction and dehydration of altered oceanic crust may exert control on the cycling of volatile elements to the deep mantle.
Fichier principal
Vignette du fichier
Geochem Geophys Geosyst - 2018 - Broadley - Recycled Components in Mantle Plumes Deduced From Variations in Halogens Cl .pdf (4.1 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

insu-03619836 , version 1 (25-03-2022)

Licence

Attribution - CC BY 4.0

Identifiers

Cite

Michael W. Broadley, Hirochika Sumino, David W. Graham, Ray Burgess, Chris J. Ballentine. Recycled Components in Mantle Plumes Deduced From Variations in Halogens (Cl, Br, and I), Trace Elements, and 3He/4He Along the Hawaiian-Emperor Seamount Chain. Geochemistry, Geophysics, Geosystems, 2019, 20 (1), pp.277-294. ⟨10.1029/2018GC007959⟩. ⟨insu-03619836⟩
27 View
7 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More