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ABSTRACT

Context. More than one hundred pulsars have been detected up to now at GeV energies by the Large Area Telescope (LAT) on the
Fermi gamma-ray observatory. Current modelling proposes that the high-energy emission comes from outer magnetospheric gaps,
but radiation from the equatorial current sheet that separates the two magnetic hemispheres outside the light cylinder has also been
investigated.
Aims. We discuss the region outside the light cylinder, the “near wind” zone. We investigate the possibility that synchrotron radiation
emitted by thermal populations in the equatorial current sheet of the pulsar wind in this region can explain the lightcurves and spectra
observed by Fermi/LAT.
Methods. We used analytical estimates as well as detailed numerical computation to calculate the γ-ray luminosities, lightcurves, and
spectra of γ-ray pulsars.
Results. Many of the characteristics of the γ-ray pulsars observed by Fermi/LAT can be reproduced by our model, most notably
the position of these objects in the P − Ṗ diagram, and the range of γ-ray luminosities. A testable result is a sub-exponential cutoff
with an index b = 0.35. We also predict the existence of a population of pulsars with cutoff energies in the MeV range. These have
systematically lower spindown luminosities than the Fermi/LAT-detected pulsars.
Conclusions. It is possible for relativistic populations of electrons and positrons in the current sheet of a pulsar’s wind immediately
outside the light cylinder to emit synchrotron radiation that peaks in the sub-GeV to GeV regime, with γ-ray efficiencies similar to
those observed for the Fermi/LAT pulsars.

Key words. pulsars: general – radiation mechanisms: non-thermal – stars: winds, outflows – gamma rays: stars – relativistic processes

1. Introduction

Since the launch of the Fermi space telescope, the sample of
gamma-ray pulsars has grown to include more than one hun-
dred objects. All these pulsars, whether young or millisec-
ond, single or in binaries, show spectra consistent with power
laws with exponential cutoffs, whose cutoff energy lies in the
range 1−10 GeV (Abdo et al. 2010). A prominent exception
is the Crab pulsar, which has been detected by ground-based
Cerenkov arrays in the TeV regime, and whose spectrum can
be well fitted by a broken power law (Aliu et al. 2008; McCann
2011). These observations point to the outer gap/slot gap mod-
els as the most probable explanation for the pulsed gamma-
ray emission, based on population prediction statistics and
lightcurve modelling (Gonthier et al. 2010; Decesar et al. 2011;
Pierbattista et al. 2011; Venter et al. 2009; Watters & Romani
2011; Venter et al. 2012), although for millisecond pulsars one
has to invoke non-dipolar field geometries or displaced polar
caps to reach the required energies (Harding & Muslimov 2011).
In those models, the emission originates within the light cylin-
der, defined by the cylindrical radius rLC = c/ω from the pulsar’s
rotational axis, where a corotating particle would reach the speed
of light. However, it was pointed out by Bai & Spitkovsky (2010)
that the emission region must be extended slightly outside the
light cylinder to reproduce the double-peaked light curves using
the magnetic field configuration from self-consistent, force-free
simulations of pulsar magnetospheres.

The idea that high-energy pulsations might come from
current sheets near or outside the light cylinder is not new.
Lyubarskii (1996) predicted that particles accelerated through
reconnection close to the light cylinder might emit gamma-rays
through the synchrotron process. Lyubarskii’s emission site is
the point where the warped equatorial current sheet that sepa-
rates regions of opposite magnetic field polarity in the pulsar’s
wind meets the current flowing to/from the pulsar’s polar caps,
the so-called Y-point (Spitkovsky 2006). Later it was pointed out
that pulsed emission naturally arises from the periodicity of the
pulsar wind, which is modulated by the star’s rotation in com-
bination with the large bulk Lorentz factors of the outflow (Kirk
et al. 2002). This model has been successfully applied to cal-
culate the polarization of optical emission from the Crab pulsar
(Pétri & Kirk 2005) and it has also shown promise in explain-
ing the gamma-ray light curves observed by Fermi/LAT (Pétri
2011). In these models the emission is attributed to the inverse
Compton process and starts in the wind region far from the light
cylinder, r � rLC. In the same context it was proposed that
the gamma-ray radiation of the Fermi/LAT band could be syn-
chrotron radiation from power-law electrons in the pulsar wind’s
equatorial sheet far from the light cylinder (Kirk et al. 2002; Pétri
2012).

There is, however, no obvious reason why emission should
be truncated outside the light cylinder (for magnetospheric gap
models) or start at a minimum radius in the far wind zone (for
the striped wind model). The emission region should evolve
continuously from the outer magnetospheric gaps through the
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light cylinder and into the equatorial current sheet, possibly af-
fected by the reconnection process that will inevitably occur in
the sheet (Bai & Spitkovsky 2010). The region beyond the light
cylinder but still in the near wind zone is the area that we are
trying to explore. The purpose of this paper is to demonstrate
how emission in the 100 MeV−100 GeV range explored by
Fermi/LAT can naturally arise from thermal populations of par-
ticles in the striped wind, without going into the details of recon-
nection physics, but just using a few simple assumptions about
the local description of the current sheet. In Sect. 2 we describe
our model, including our assumptions, and give some analyti-
cal estimates for the emitted radiation. In Sect. 3 we present ex-
amples of emission maps and phase-averaged spectra that arise
from our model and explore the parameter space to arrive at
more general conclusions about the pulsar population observed
by Fermi/LAT. Finally we discuss our results and the potential of
a more detailed description of the current sheet outside the light
cylinder as a source of pulsed energetic radiation.

2. Equatorial current sheet

2.1. Description of the particle population

To describe the wind outside the light cylinder, we will use the
“slow-rotator” solution to the magnetohydrodynamics equations
that govern the physics of the pulsar wind, which was found by
Bogovalov (1999). This solution refers to an electron-positron
wind launched by a rotating neutron star, the magnetic axis of
which is at an angle χ to its rotational axis. In this description
the wind is purely radial and super-fast magnetosonic at launch,
and the field can be described by a radial and an azimuthal com-
ponent of magnitude

Br =
BLC

R2
(1)

Bϕ =
BLC

βR
sinϑ, (2)

where R = r/rLC is the spherical radius normalized to the light
cylinder, ϑ is the polar angle, β = (1− 1/Γ2)1/2 is the bulk speed
of the wind, normalized to the speed of light, and BLC is a fidu-
cial magnetic field magnitude at the light cylinder. The adequacy
of this solution in describing approximately the structure of the
wind for radii as small as the light cylinder has been confirmed
by force-free simulations of pulsar magnetospheres (Spitkovsky
2006; Bai & Spitkovsky 2010).

A prominent feature of Bogovalov’s solution is the warped
equatorial current sheet, separating the two magnetic hemi-
spheres, across which the field changes sign. In the mathematical
solution the sheet is just a discontinuity, but in reality it should
have a finite thickness. Such a current sheet is populated by hot
particles, whose pressure balances the magnetic pressure of the
cold, strongly magnetized plasma outside the sheet. The sheet
oscillates in space and time with a wavelength of λ = 2πβ/ω,
and with the pulsar’s frequency ω = 2π/P, where P is the pul-
sar’s period measured in seconds.

We assumed that in the wind frame (the frame that propa-
gates radially outwards with a Lorentz factor equal to the bulk
Lorentz factor of the wind, Γ), the sheet can be locally described
by the relativistic Harris equilibrium (Hoh 1966). For this de-
scription to be valid, the segment of the sheet under consid-
eration should be approximately flat. For a relativistic outflow,
the hydrodynamically causally connected region of the flow has
an opening angle of roughly ∼1/Γ, centred on the direction of

motion of the outflow. Since for a pulsar wind Γ � 1, the hy-
drodynamically connected sheet segment can be considered to
be flat and the local Harris sheet description should be a good
approximation.

We denote quantities measured in the wind frame with a
prime. If we denote the sheet normal direction in the wind frame
with a capital X′, and the sheet midplane is at X′ = 0, then lo-
cally the field inside and outside the segment can be described
by a tangent hyperbolic profile

B′(X′) = ±B′0 tanh

(
X′

δ′

)
, (3)

where B′0 is the magnitude of the field outside the sheet, δ′ is a
measure of the sheet thickness and the field is in the direction
parallel to the sheet and perpendicular to the direction of cur-
rent flow, which is locally considered to be Z′. The particle pop-
ulation in the sheet consists of two counter-drifting relativistic
Maxwellian distributions whose density falls with X′, and whose
drift provides the net current. From the pressure balance across
the sheet follows the dependence of the density of each distribu-
tion on X′ (Kirk & Skjæraasen 2003):

N′± = N′±0 cosh−2

(
X′

δ′

)
(4)

N′±0 =
B′20

16πmc2Θ
, (5)

where Θ = kBT ′/(mc2) is a dimensionless temperature associ-
ated with the particle distribution. The condition connecting the
particle density, temperature, and current sheet thickness is (Kirk
& Skjæraasen 2003; Lyubarsky & Kirk 2001)

Θmc2

4πN′±0e2γ±
= δ′2β2

±, (6)

where γ± and β± are the Lorentz factor and the corresponding
speed, normalized to the speed of light, of the drift of the dis-
tributions in the wind frame. Finally, by assuming that the ideal
gas law holds for the distribution, we obtain

p′ = 2N′±T ′ = (γ̂ − 1)(e′ − 2N′±mc2), (7)

where e′ is the energy density associated with the two counter-
streaming distributions. For the relativistic Harris sheet solution,
this equation becomes

γ̂ = 1 +
Θ

γ2±
(
1 + β2±

)
Θ + γ± (K1(1/Θ)/K2(1/Θ) − 1)

, (8)

where K1 and K2 are modified Bessel functions of the second
kind. In the inner part of the pulsar wind, which is of interest to
us, the thermal particles in the distribution are predicted to be
highly relativistic, which allows us to set γ̂ = 4/3 in the above
equation and also has as a result that the thermal energy of the
particles in the distributions will greatly exceed their rest-mass
energy:Θ � 1. Using the approximations

K1(x � 1) � x−1 (9)

K2(x � 1) � 2x−2. (10)

Equation (8) can be simplified to

β± � 1√
Θ
· (11)
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This means that the drift of the distributions in the current sheet
is not relativistic, and beaming effects caused by it can be ig-
nored when calculating the emitted radiation. Therefore the dis-
tributions can for this purpose be considered to be isotropic in
the frame in which the sheet is at rest. With this approximation
we can solve Eqs. (5) and (6) for Θ and N′±0. In doing this, we
have to take into account the fact that the angle arccos(n̂ · r̂) be-
tween the sheet normal and the radius unit vector changes when
moving from the lab to the wind frame.

The magnetic field from the solution of Bogovalov (1999) is
always parallel to the sheet, if one ignores reconnection effects.
This means that close to the light cylinder and for a radial out-
flow, one cannot ignore the radial component of the field. The
full field in the wind frame will be

B′0 =
BLC

R2

√
1 +

(
R sinϑ
βΓ

)2

(12)

and the toroidal component will prevail in this frame only for
R > Γ (we call this region the far wind region). Conversely, in
the region R < Γ (which we call the near wind region), it is a
good approximation to ignore the second term under the square
root and approximate B′0 � BLC/R2.

If one considers a perpendicular rotator (a pulsar with χ =
π/2), the temperature and density in a current sheet segment are
given by the simple expressions

Θ =

(
aLCΔ sinϑ

2R

)2/3

(13)

N′±0 =
B′20

16πmc2Θ
· (14)

The dimensionless parameter aLC appearing above is called the
strength parameter, and is defined at the pulsar’s light cylinder as

aLC =
eBLCP
2πmc

· (15)

Taking a pulsar’s moment of inertia to be I = 1045 gcm2, the
spindown luminosity is calculated by the period and the period
derivative as (Abdo et al. 2010)

Ė33 = 4π21012ṖP−3, (16)

where we have normalized the luminosity to the value 1033 erg/s.
The magnetic field (in Gauss units) can then be expressed as

BLC = 46.83Ė1/2
33 P−1. (17)

The strength parameter then can be expressed as a function of
the spindown luminosity only:

aLC = 1.3 × 108Ė1/2
33 . (18)

All GeV pulsars detected so far have strength parameters in the
range 108−1011.

Finally, Δ < 1 is the fraction of a half wavelength that a sheet
occupies, measured in the radial direction (i.e. not perpendicu-
larly to the local sheet plane), in the lab frame. We assume that Δ
is constant with radius for the sake of simplicity, but it is far from
clear how this parameter evolves with radius and obliquity χ
close to the light cylinder. We also assume that Γ is constant,
although generally reconnection in the current sheet has been
shown to increase Γ with radius in the far wind zone (Lyubarsky
& Kirk 2001; Kirk & Skjæraasen 2003), a result that might also

apply to the near wind zone. These assumptions are based on
the fact that only a very limited radius interval contributes to
the gamma-ray radiation, as we will see below, therefore if the
change in Δ and Γ happens with a scale larger than rLC, it is not
relevant to the present estimations.

Substituting for aLC in Eq. (13), we obtain

Θ = 1.6 × 105Ė1/3
33

(
Δ sinϑ

R

)2/3

· (19)

The requirement that Θ � 1 in the near wind region R < Γ
translates into

Δ� 10−8 Γ

Ė1/2
33 sinϑ

, (20)

which, as we will see in the following, is easily satisfied for all
γ-ray pulsars, provided the emitting region is not very close to
the polar axis. In any case, the validity of the Θ � 1 assumption
has to be checked a posteriori for all cases of studied pulsars.

In the following, all results refer to the near wind region, R <
Γ, but still outside the pulsar’s light cylinder, close to which we
assume that the current sheet is formed. Therefore we consider a
minimum value for the radius of the radiating sheet of Rmin = 1.
Our model is valid only for relativistic outflows, therefore we
also set a lower limit on Γ of Γmin = 10.

In the next paragraphs, we assume a perpendicular rota-
tor (χ = π/2) to estimate analytically the emitted radiation
and the characteristics of the current sheet and its populations.
These estimates can be generalized to the oblique rotator (see
Appendix B), but the conclusions remain essentially the same as
long as the line of sight is not close to the edge of the current
sheet, where ζ = π/2 − χ.

2.2. Larmor radius of hot particles

An important condition for the consistency of our model comes
from the requirement that the hot particles’ Larmor radius in the
full field between the current sheets should be smaller than the
sheet width. In the wind frame this requirement translates into

〈γ〉mc2

eB′0
� ΔrLCR

(
1 +

R2

Γ2

)−1/2

· (21)

This inequality is equivalent to Θ1/2 � 1, which should hold
close to the light cylinder, by the assumptions of the model.

2.3. Energy of emitted photons

The mean Lorentz factor of the electron/positron distribution in
the current sheet is 〈γ〉 ∼ 3Θ. Electrons of this 〈γ〉 gyrating in
the field B′0, radiate photons of energy (in the observer’s frame):

E ≈ 3
2
Γ(3Θ)2

�
eB′0
mc
· (22)

After some manipulation, one finds the highest observable pho-
ton energy

EGeV ≈ 2 × 10−4 Ė7/6
33

P
Γ(Δ sin ζ)4/3

R10/3
min

, (23)

where the photon energy is measured in GeV. In Eq. (23) we
have kept only the poloidal component of the magnetic field,
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since it dominates close to the light cylinder, at R < Γ. All pul-
sars in the first Fermi/LAT catalogue have Ė7/6

33 /P � 1. This is
why it is possible for most objects in the catalogue to find an ap-
propriate combination of Γ, Δ and Rmin ≥ 1 that will bring EGeV
to the regime observed by LAT, while at the same time satisfy-
ing all restrictions on Δ, Γ, and R. This is especially easy for the
highest luminosity pulsars (Ė33 � 1), or for the very low pe-
riod ones (P � 1 s, millisecond pulsars), as one can deduce by
inspecting Eq. (23). In other words, for pulsars of the same spin-
down luminosity, millisecond pulsars are more likely to reach
GeV energies. Alternatively, if Γ and Δ are the same, millisec-
ond pulsars with lower spindown luminosities than young pul-
sars can emit in the Fermi/LAT band, a trend that might be ob-
servable as our statistics on gamma-ray pulsars increase.

From the constraints on Δ and R, we can calculate an ab-
solute maximum on the peak energy of the emitted spectrum
for ζ = π/2:

EGeV,max � 2.3 × 10−5 Γ
Ė7/6

33

P
· (24)

As we will see below, Δ is often more severely constrained by
the radiation reaction limit, so the energy EGeV,max will not nec-
essarily be reached for all objects.

The rapid fall of the peak photon energy with radius means
that in this simple model the most energetic photons come from
close to the light cylinder. In a realistic situation it is to be ex-
pected that either Γ or Δ or both will rise with radius, making
the fall of EGeV with radius less steep, but even if Δ and Γ were
to rise linearly with R, the emitted photon energy would still fall
as ∝R−1.

2.4. Energy losses

For the relativistic Harris equilibrium to hold in a quasi-steady
state, equilibrium has to be established in the wind frame within
a timescale of the order of magnitude t′R ∼ R(Γω)−1, which is the
timescale on which the magnetic field change is comparable to
its magnitude δB′ ∼ B′. Equilibrium is established in the current
sheet within a timescale

t′eq �
ΔrLC

c
·

Therefore the requirement t′eq < t′R holds close to the light cylin-
der as long asΔ � Γ−1, while this condition is relaxed with radius
to Δ � R/Γ.

For the particles not to suffer catastrophic energy losses,
their synchrotron cooling timescale t′s should be longer than t′R.
Comparing the two one finds

t′s
t′R
� 4.57

P

Ė4/3
33

ΓR11/3

(Δ sin ζ)2/3
· (25)

For the lower Ė33 pulsars the inequality t′s � t′R generally holds
for R > Rmin, but this may not be the case for some millisecond
pulsars, because of the linear dependency of the ratio on the pul-
sar period P. The steep radius dependence, however, relaxes this
condition rapidly, so that when it breaks down, it does so only
for a very limited R-range close to the light cylinder.

If t′s/t′R � 1, as is often the case for high spindown pul-
sars and millisecond pulsars, particles will lose energy rapidly
and cool, disturbing the pressure equilibrium between the pop-
ulations in the current sheet and the magnetic field outside it.
The pressure in the sheet will fall, thus causing its compression

by the external magnetic field. This can initiate compression-
driven magnetic reconnection, a phenomenon previously stud-
ied in the context of the interaction of current sheets in a pul-
sar wind with the wind’s termination shock (Lyubarsky 2003;
Pétri & Lyubarsky 2007; Lyubarsky & Liverts 2008; Sironi &
Spitkovsky 2011). Reconnection has been shown to be able to
accelerate particles to non-thermal distributions above the ther-
mal peak of the particle spectrum (and also, as already men-
tioned, to accelerate the bulk flow and cause the sheet width to
rise). A detailed study of this radiation-loss-induced process is
beyond the scope of this work. But if t′s/t′R < 1, some accel-
eration processes ought to be at work to supply the sheet with
energetic particles. This will in all likelihood result in power-
law distributions in the current sheet, a signature that might be
observable in the spectrum above the MeV-GeV peak for the
highest luminosity pulsars and for those millisecond pulsars with
t′s/t′R � 1 (something that has not been modelled in the present
article). Uzdensky & Spitkovsky (2012) recently reported on
their investigation of this regime.

2.5. Radiation reaction limit and maximum emitted energy

If the particles of mean energy ∼ 3Θmc2 in the current are gain-
ing energy through acceleration in an electric field E ∼ ξB
with ξ < 1, their acceleration is limited by radiation losses. For
radiation-reaction-limited synchrotron emission (in the full-field
amplitude B′0), energy losses compensate possible energy gain:[
dW
dt

]
syn

= eξB′0c � eB′0c. (26)

From this expression one can calculate an upper limit for Δ:

Δ � Δlim = 256
R5/2P3/4

Ė7/8
33 sin ζ

· (27)

The Ė33 dependence in the denominator implies that for the most
powerful pulsars, the sheet is thinner close to the light cylinder.
For the Crab we obtain Δlim = 3 × 10−4 sin−1 ζ at Rmin, whereas
for most of the weaker pulsars with Ė33 ≤ 102, Δlim is greater
than unity, i.e. it does not present a constraint. All millisecond
pulsars detected by Fermi/LAT fall into this category.

Inserting Δlim into Eq. (23), one recovers the classical syn-
chrotron limit:

EGeV,max < 0.36Γ, (28)

where the factor Γ comes from the boosting of the photon energy
to the lab frame. The minimum of Eqs. (24), (28), then, can give
an estimate of the maximum value of the GeV cutoff for any
individual object.

Inserting Δlim into Eq. (25), one obtains a lower limit for
the ratio t′s/t′R (applicable mainly to higher-spindown pulsars, for
which Δlim < 1):

t′s
t′R
>

[
t′s
t′R

]
min

= 0.23ΓR2P1/2Ė−3/4
33 . (29)

We see that, mainly for young pulsars with a high spindown lu-
minosity, the right-hand side can be less than unity. These pul-
sars either have smaller Δ to keep t′s/t′R > 1, or rapid reaccel-
eration mechanisms in their current sheets, as argued above (or
both). Therefore there should be a trend in the P − Ṗ diagram
to observe more objects with acceleration signatures (i.e. power-
law tails) in their spectrum as one moves to higher spindown lu-
minosities, or equivalently as one moves to higher Ṗ and lower
P (upward left region in a P − Ṗ diagram).
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Fig. 1. Sky maps of the pulsar’s total luminosity shown for two different bulk Lorentz factors Γ = 10 and Γ = 50 and for different χ. In the upper
panels χ = π/2, in the middle ones χ = π/3 and in the lower ones χ = π/6. All the plots have been made using the parameters Δ = 0.01 and
Rmin = 1. The luminosity is given by integrating Lν (Eq. (A.4)) over all frequencies and multiplying with d2, where d is the distance of the pulsar
from the observer. A beaming factor of FΩ = (4π)−1 has been used.

3. Lightcurves, spectra, and γ-ray luminosity

3.1. Lightcurves

The expected lightcurves and spectra produced in the current
sheets of a pulsar can be computed numerically by integrating
the emission coefficient of the particles in the magnetic field of
the current sheet along the line of sight to the observer. The pro-
cedure is explained in the appendix.

In the wind model of the pulsar radiation two pulses per pe-
riod are expected, the separation and the width of which varies
with the obliquity χ and the line of sight angle ζ. The width of
the pulses depends on the bulk speed of the outflow, with wider
pulses for lower Γ (Kirk et al. 2002; Pétri 2011). Examples of
the variations of skymaps with χ, ζ and Γ are shown in Fig. 1,
where we used a model pulsar of surface magnetic field equal to
B = 1010 G and period P = 0.01 s to plot the sky maps of the
pulsed total luminosity.

In the left column of Fig. 1 sky maps are shown for Γ = 10,
while in the right column the value of the bulk Lorentz factor is
Γ = 50. The width of the pulse strongly depends on Γ, as ex-
pected. Along with the gamma-ray intensity, we have indicated
the position of the radio pulses on the maps with white shad-
ing. The discs that represent the radio pulses are only indicative.
They are centred on the spot where a sharp radio pulse coming
directly from the corresponding pole would appear, and serve
to demonstrate the phase lag between the radio and the gamma-
ray pulse for different obliquities. As is seen from the sky maps,
both pulses are observable only for a limited range of observer
angle ζ, and for inclinations higher than χ = π/4. For smaller
inclination angles, like in the case χ = π/6, the beam from the
pole does not travel through the pulsar wind, the radio pulses
are above and below the region of high gamma-ray luminosity
in the sky map, and only one of the two kinds can be observed.
The exact shape and width of the radio pulse will depend on the
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Fig. 2. Peak flux νFν (multiplied by the square of the distance to give
a luminosity estimate) as a function of phase φ and peak energy E. E
ranges from 10 MeV to 1 TeV. The same pulsar parameters were used
as in Fig. 1, with χ = π/3 and ζ = π/2.

geometry of the radiating particle beam above the polar cap. The
details of the position calculation of the radio pulse can be found
in Pétri (2011).

The upper maps in both columns represent the case of the
perpendicular rotator, where χ = π/2, the middle ones are for
χ = π/3, and the lower ones for χ = π/6. As the obliquity de-
creases, the width of the pulse increases while the peak luminos-
ity falls, which causes the overall phase-averaged luminosity to
remain essentially constant for different obliquities. The widest
pulses are observed for the smallest inclination angles. However,
for very small χ the line of sight to the observer has to lie very
close to the equatorial plane of the pulsar for the pulse to be ob-
served, since the luminosity is significant only for ζ ≥ π/2 − χ.
This is a likely geometry for the objects that are observed to have
two wide pulses with a phase separation of δφ ∼ 0.5.

From the sky maps for Γ = 10 it can be discerned that there
is a slight substructure in the pulses. There is a slight dip in lu-
minosity at the peak of each pulse, resulting in two sub-peaks
appearing for all ζ. This is caused by the structure of the current
sheet. In the middle of the sheet the magnetic field is exactly
zero, rising towards the sides, while the density of the hot par-
ticles is highest and falls towards the sides. Therefore the bulk
of the radiation of each current sheet segment comes from two
regions away from the sheet midplane, where the product of par-
ticle density and magnetic field is largest. The double-peaked
shape of the pulse reflects the two luminosity peaks within the
sheet. Because of the shrinking pulse thickness with rising Γ
this phenomenon should be observable only for the lowest bulk
Lorentz factors.

It is useful to note here that the highest luminosities in the
sky maps are correlated with the highest peak energies EGeV, re-
sulting in pulses that become sharper for higher energy photons.
This is shown in Fig. 2, where the flux νFν has been plotted
in a colour map as a function of emitted energy E (in eV) and
phase φ. A horizontal slice of the map shows the lightcurve at
a specific energy while a vertical slice shows the spectrum at a
given phase. The pulses become narrower with increasing en-
ergy, as can be seen from the wider flux variation in a horizon-
tal slice as one moves higher in the map. Also, the peak energy
varies by many orders of magnitude within one phase, and is
lowest between pulses, something that can be seen when com-
paring spectra at different phases.

In Fig. 3 we show how the lightcurves change when moving
the minimum radius Rmin from the light cylinder to a distance in

Rmin =10, Γ =10
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28
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Fig. 3. Variation of the pulsar’s lightcurves for different Rmin. The bulk
Lorentz factor in these examples is Γ = 10 and the obliquity is χ = π/3.
The rest of the parameters are the same as in Fig. 1.

the far wind region, Rmin > Γ. For low Rmin, close to the light
cylinder, the pulse shape is almost symmetrical with respect to
its peak (also seen in Fig. 1). As one moves towards larger Rmin,
the pulses stop being symmetrical and instead present an abrupt
rise in luminosity followed by a gradual decrease, which makes
them asymmetrical with respect to the peak. Also, the total lu-
minosity in the pulse is reduced by many orders of magnitude
as one moves outwards in the wind. In the example of Fig. 3 a
change from Rmin = 1 to Rmin = 30 results in a decrease in lu-
minosity by seven orders of magnitude. These results agree with
previous investigations of pulses from the far wind region (for
example Kirk et al. 2002).

From the sky maps we showed we can conclude that the sep-
aration of the two pulses depends on χ and ζ, with a separation
of Δφ ∼ 0.5 when the line of sight lies at the equatorial plane.
However, as we have pointed out above, the phase-averaged lu-
minosity changes significantly only if the line of sight lies above

A101, page 6 of 13

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220110&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220110&pdf_id=3


I. Arka and G. Dubus: Pulsed γ-rays from thermal particles in pulsar wind current sheets

 1e+28

 1e+29

 1e+30

 1e+31

 1e+32

 1e+33

 1e+34

 1e+06  1e+07  1e+08  1e+09  1e+10  1e+11

νL
ν 

(e
rg

/s
ec

)

log10ε(eV)

χ = π/2, ζ= π/2, Δ= 0.01, Rmin=1

Γ = 10
Γ = 40

Γ = 100

 1e+28

 1e+29

 1e+30

 1e+31

 1e+32

 1e+33

 1e+34

 1e+06  1e+07  1e+08  1e+09  1e+10  1e+11

νL
ν 

(e
rg

/s
ec

)

log10ε(eV)

χ = π/2, ζ= π/2, Γ= 10, Rmin=1

Δ = 0.001
Δ = 0.005

Δ = 0.01

 1e+28

 1e+29

 1e+30

 1e+31

 1e+32

 1e+33

 1e+34

 1e+06  1e+07  1e+08  1e+09  1e+10  1e+11

νL
ν 

(e
rg

/s
ec

)

log10ε(eV)

χ = π/2, ζ= π/2, Γ= 10, Δ=0.01

Rmin = 1
Rmin = 2
Rmin = 4

Fig. 4. Phase-averaged spectra for the same model pulsar that was used
in Figs. 1 and 3. All the plots have been made using χ = π/2 (perpen-
dicular rotator) and ζ = π/2. Here the variation of the phase-average
flux with the parameters Γ, Δ and Rmin is shown.

the wind, i.e. if ζ < π/2 − χ. In the opposite case the overall
luminosity is not sensitive to variations of χ and ζ.

3.2. Phase-averaged spectra

In Fig. 4 we used the same model pulsar as in the previous sec-
tion to calculate phase-averaged spectra and their dependence on
the model parameters. In the upper plot we show the variation of
the spectrum when changing the bulk Lorentz factor Γ. As is
expected from Eq. (23), the peak of the spectrum rises linearly
with Γ, but the overall luminosity falls with rising Γ. This can be
attributed to the diminishing of the area of the sheet from which
doppler-boosted radiation is received: the boosted area scales
as 1/Γ2, something that is only partly compensated for by the

square of the Doppler factor in the calculation of the received
flux (given in the appendix). The most strongly boosted radia-
tion comes from the line of sight, but the luminosity of the region
that directly intersects the line of sight is not the major contribu-
tion to the overall observed luminosity. This is because one ob-
serves only the effects of the perpendicular (i.e. azimuthal) field
at ϑ = ζ, while the effects of the much stronger poloidal field Br

come from a region at angle ∼1/Γ to the line of sight. Therefore
when the line of sight is directly aligned to the edge of the sheet,
where ζ = π/2−χ, still two pulses of the same amplitude are ob-
served, that come from the two parts of the folded current sheet
that are at angle ∼1/Γ to the line of sight, whereas the edge it-
self contributes only a little to the overall flux. This is different
to what has been predicted in the past (Pétri 2011). However, a
single wide pulse will be observed when looking over the edge
of the sheet. The disadvantage in this case is that the luminosity
decreases quickly with decreasing ζ, which makes such pulses
difficult to detect.

In the middle panel the change in the phase-averaged spec-
trum is shown when varying Δ. The dramatic rise of the cutoff
energy and of the luminosity with Δ can be explained by the de-
pendency of the peak of the spectrum on Δ, given in Eq. (23), as
well as the rise of the relativistic temperature in the current sheet
with Δ as seen in Eq. (19).

In the lower panel we demonstrate the dependence of the
cutoff and luminosity on the minimum radius Rmin. The peak fre-
quency of the spectrum and the overall luminosity both rise very
strongly with decreasing Rmin, which agrees with Eq. (23) and
is also expected because of the dependence of the temperature
of the sheet particles on radius, given in Eq. (19). Therefore the
bulk of the received high-energy radiation comes from a region
of limited range in R close to Rmin.

We would like to note at this point that the spectra that
come from thermal distributions have a characteristic slope in
the lower frequencies that is the same as the single-particle syn-
chrotron spectrum (with a flux of Fν ∝ ν1/3). This slope is not
clearly seen in the 100 MeV−10 GeV range for most pulsars, be-
cause there is a broad peak in that region. This peak is created
mainly by the spread of the magnetic field across the current
sheet, which causes different regions in the current sheet to emit
photons of different peak energies. Because the emissivity de-
creases rapidly with radius, the phase-averaged spectrum mainly
consists of the radiation emitted by the small part of the current
sheet that moves towards the observer, for a very short radius in-
terval, and is dominated by the spectrum at the peak of the pulse.
Different spectral slopes could be obtained by assuming the in-
jection of a power-law rather than a thermal distribution, albeit
at the price of introducing additional parameters. We return to
the question of the particle distribution in Sect. 4.

3.3. Examples

In Fig. 5 we present two examples of spectra and lightcurves of
Fermi/LAT-detected pulsars calculated with our model. The first
example is the millisecond pulsar PSR J1614-2230, which has
a period of P = 3.2 ms and a spindown luminosity of Ė33 = 5.
Its spectrum calculated according to our model can be seen in
the upper left panel of Fig. 5 along with the best fit power law
with exponential cutoff, as given in Abdo et al. (2009). The pa-
rameters used were Δ = 0.25, Γ = 20, χ = π/2, and ζ = π/2.
The lightcurve corresponding to the same parameters is depicted
in the lower left panel. The phase of the two peaks is correctly
predicted, but the width of the simulated pulses is narrower than
observed. This is because in this example Δ > 1/Γ, and in this
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Fig. 5. Phase-averaged spectrum and simulated lightrcurve of the millisecond pulsar J1614-2230 as calculated using our model, along with the
best-fit power-law plus exponential cutoff fit (Abdo et al. 2009). The parameters that were used are Δ = 0.25, Γ = 20, χ = ζ = π/2 for the
millisecond pulsar (left). For the young pulsar in the supernova remnant 3C 58 we used Δ = Δlim, Γ = 80, χ = π/5 and ζ = π/2.

case the lightcurve cannot be accurately predicted by our model
(as explained in Appendix B).

The second example, shown in the plots on the right side of
Fig. 5, is the pulsar PSR J0205+6449, which was discovered by
Fermi/LAT in the supernova remnant 3C 58. This pulsar has a
high spindown luminosity of Ė33 = 2.7 × 104 and a period of
P = 65.7 m s−1. It is a young, energetic pulsar for which Δlim �
1.5 × 10−3. The parameters that we used for these plots are Δ =
Δlim, Γ = 80, χ = π/5, and ζ = π/2. The relatively high Lorentz
factor needed to reach the cutoff of E ≈ 3 GeV causes the pulses
to be rather sharp, which is also observed with Fermi/LAT.

From these two examples and from the phase-averaged spec-
tra shown in Fig. 4 it can be seen that our model predicts a sub-
stantially higher energy flux at photon energies above 10 GeV
than would be expected using a power-law plus exponential cut-
off fit, which implies that for the more energetic pulsars, which
have larger bulk Lorentz factors, one could detect radiation in the
sub-TeV to TeV regime explored by Cerenkov telescope arrays.
Specifically, a good fit to our spectra is given by a power-law
with a sub-exponential cutoff:

dN
dE ∝ E

−p exp

⎡⎢⎢⎢⎢⎢⎣−
( E
Ecutoff

)b
⎤⎥⎥⎥⎥⎥⎦ · (30)

Our model predicts a cutoff with b = 0.35. This index is not
sensitive to the obliquity χ or the observer angle ζ, as long as
the line of sight intersects the equatorial current sheet, i.e. when
ζ > π/2−χ. The index b can reach the value∼ 0.4 for ζ < π/2−χ,

but the very low luminosities that are expected in that case make
the majority of those objects unobservable.

3.4. Peak energies and γ-ray luminosities

In Fig. 6 we show a prediction of the region in the P − Ṗ where
spectra that peak in the range 0.1−10 GeV are espected, accord-
ing to our model. Two shaded regions are shown that corre-
spond to Δ = 0.1 and Γ = 100 (yellow) and Δ = 0.001 and
Γ = 100 (green). We also plotted the lower and upper borders of
the region that corresponds to Δ = 0.1 and Γ = 10 (red lines).
Obviously almost all pulsars already detected by Fermi/LAT fall
in at least one of these regions, from which we conclude that one
can accommodate the cutoffs of almost all pulsars with parame-
ters in the range 0.001 ≤ Δ ≤ 0.1 and 10 < Γ < 100.

In principle, the peak energies emitted by the near wind re-
gion of a pulsar wind are not constrained to the GeV regime.
Peaks at TeV energies are likely excluded by the synchrotron
limit given in Eq. (28), but there should be a population of pul-
sars with spectra peaking in the MeV regime (or lower). These
pulsars can be found in a region of the P − Ṗ diagram roughly
below the yellow shaded region of the P − Ṗ diagram in Fig. 6.
The population of MeV pulsars will include objects with spin-
down luminosities lower than those detected by Fermi/LAT. This
becomes obvious by inspecting Eq. (23): for lower spindown lu-
minosities the same Γ and Δ lead to lower peak energies. For
example, a pulsar that is a perpendicular rotator with P = 0.5 s
and Ṗ = 10−15 with a bulk Lorentz factor Γ = 10 and Δ = 0.1
will radiate a spectrum that peaks at energies E � 0.3 MeV.
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The overall luminosity emitted by the near region of a pulsar
wind from a perpendicular rotator according to our model can be
estimated to within a factor of two by the expression

Ltot � 2.7 × 1031

Γ

( BLC

103

)4.7 ( P
0.1

)3.77 (
Δ

0.1

)1.7

erg s−1, (31)

where BLC is given in G and P in s. In terms of spindown lumi-
nosity, this can be expressed as

Ltot =
7.6 × 1029

Γ

( P
0.1

)−0.9

Ė2.35
33

(
Δ

0.1

)1.7

erg s−1. (32)

It is obvious from the above expression that, since no trend is
observed for γ-ray pulsars to have a γ-ray luminosity that is anti-
correlated to their spindown luminosity, the values of Γ and Δ
should vary significantly from object to object.

If the peak of the spectrum falls into the γ-ray regime, then
Eq. (31) gives a good estimate of the γ-ray luminosity of the pul-
sar. The dependence ofLtot on χ and ζ is very weak as long as the
line of sight intersects the wind, ζ > π/2 − χ, therefore one can
use the above formula to reach approximate conclusions about
the γ-ray luminosity of a pulsar. Equations (31) and (23) (which
yield an estimate of the peak energy of the phase-averaged spec-
trum) show that once P and Ṗ are known, the emitted luminosity
and peak energy can be fixed essentially by the two parametersΔ
and Γ. These two equations can also be inverted to deduce values
of Δ and Γ for a sample of pulsars for which P, Ṗ, Lγ and EGeV
are known. This was done for the pulsars of the First Fermi/LAT
pulsar catalogue and the results are shown in Fig. 7, where Δ
and Γ have been plotted for each object of the sample.

The blue squares represent the young pulsars in the catalogue
while the red triangles are the millisecond pulsars. For most ob-
jects Δ ranges between 10−3 and 1, and a trend is observed for
the millisecond pulsars to have higher values of Δ, slightly lower
than unity. The bulk Lorentz factor Γ ranges roughly between 10
and 100, and most objects have relatively low Lorentz factors in
the range 10−30.

Fig. 7. Parameters Δ and Γ estimated for the pulsars in the Fermi/LAT
one-year catalogue. Blue squares are the young pulsars and red triangles
represent the millisecond pulsars.

For the most part, the deduced Γ and Δ are reasonable, ex-
cept for five objects for which values Δ > 1 are predicted, which
are unphysical since Δ has to be less than unity for the current
sheet to be narrower than the wind’s half wavelength. These are:
J0633+1746 (the Geminga pulsar), J1057-5226, J1741-2054,
J1836+5925, and J2021+4026. These five pulsars are distinct
from the rest of the population, in that their estimated γ-ray lu-
minosity is a large part of (and for the last two pulsars even larger
than) their spindown luminosity. From Eq. (31) we see that a
higher Δ is needed to accommodate a higher Lγ, which explains
the values deduced for these pulsars. The unphysical values of Δ,
therefore, may arise because the γ-ray luminosity is estimated
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from the observational data using too simple an assumption (a
beaming factor of value unity). Also, our model is possibly too
simple to accommodate all pulsars in the catalogue, and a con-
tribution from another physical mechanism or emission region
might result in higher luminosities in the exceptional cases of
the objects with Δ > 1.

In the diagram on the right side of Fig. 6 we have plot-
ted the γ-ray luminosity Lγ of two random samples of pul-
sars (millisecond and young pulsars) with respect to their spin-
down luminosity Lsp. For this purpose two random samples of
pulsars were used, with periods and period derivatives in the
ranges −2 < log P < 0 and −15 < log Ṗ < −11 (for the young
pulsars) and −3 < log P < −2 and −20 < log Ṗ < −17 (for the
millisecond pulsars). We chose ζ and χ randomly in the interval
[0, π/2], the bulk Lorentz factor in the interval 1 < logΓ < 2, and
the sheet thickness either within logΔlim − 2 < logΔ < logΔlim
in the case Δlim < 0.1 or within −3 < logΔ < −1 if Δlim > 0.1.
The γ-ray luminosity was calculated by integrating the phase-
averaged flux between 100 MeV and 100 GeV and using a beam
correction factor FΩ = 1, to obtain a direct comparison with the
results of Abdo et al. (2010).

About 12% of all young pulsars in our sample and 30%
of the millisecond pulsars have a cutoff within the inter-
val 100 MeV−10 GeV and are shown in Fig. 6. These percent-
ages reflect our choice of the range in Δ. We constrained Δ to
be within two orders of magnitude of the value min(Δmin, 0.1). If
the range of Δ were narrower, resulting in systematically higher
values, the percentages quoted above would rise. Lower choices
of Δ lead to lower EGeV so there are more pulsars that have peaks
below 100 MeV and therefore do not make the cut.

The large beam correction factor used for this plot has as a
result the occurrence in some rare cases of objects with Lγ > Lsp,
whereas in most cases the γ-ray luminosity is a few percent
of Lsp. The young pulsars tend to lie higher in the diagram than
millisecond pulsars, which reflects their higher spindown lumi-
nosity in combination with the fact that the gamma-ray efficiency
is similar in both samples.

In Abdo et al. (2010) a trend was reported that the gamma-
ray luminosity is proportional to the square root of the spindown
luminosity for the highest luminosities: Lγ ∝ L1/2

sp . We have no
clear indication of such an effect in our simulated sample, mean-
ing that the gamma-ray efficiency of the highest spindown pul-
sars is predicted to be similar to that of the lower spindown pul-
sars. The best-fit line to the points in Fig. 6 gives Lγ ∝ L0.95

sp for
young and millisecond pulsars, and if the statistical error is taken
into account, the relationship is compatible with the proportion-
ality Lγ ∝ Lsp.

4. Discussion and conclusions

We have shown how gamma-ray pulses can naturally arise
within the framework of the pulsar wind’s equatorial current
sheet outside (but close to) the light cylinder. The advantage of
this emission model is that it is an intrinsic mechanism that natu-
rally produces peak energies in the MeV-GeV range. It can give
meaningful results for almost all pulsars, irrespective of age or
environment, employing only a few parameters: the bulk Lorentz
factor of the outflow Γ, the sheet thickness Δ, the obliquity χ,
and the angle of the rotational axis to the line of sight ζ. To
these the minimum radius Rmin can be added (which, in the cal-
culated examples, was set equal to Rmin = 1). However, it is
important to note that Rmin has to be sufficiently close to the
light cylinder, so that the peak energy of the spectrum reaches
the GeV regime. The parameters of the model are constrained

by the characteristics of the pulsar and by the physics of the cur-
rent sheet. The novelty of our model is that it makes an attempt
to account for the previously ignored region of the wind between
R = 1 and R � Γ, and is therefore able to take advantage of the
strong poloidal field close to the light cylinder, something that
has not been discussed in previous wind models.

The predictions of our model are the following:

1. Two pulses per pulsar period are expected. The pulses have
the same amplitude.

2. The shape of the pulses is symmetric with respect to their
peak, as long as emission starts close to the light cylinder,
and becomes increasingly asymmetric with rising Rmin.

3. There is no significant interpulse emission in the GeV range.
4. The width of the pulse decreases with increasing photon

energy.
5. The separation of the peaks varies with the obliquity χ and

the angle to the line of sight ζ, as in previous models of
pulsed radiation from the pulsar wind.

The features of the pulsed emission that cannot be explained by
our model, such as the interpulse or the peaks of different inten-
sity, could be accomodated by a model in which radiation comes
both from within the light cylinder, possibly in an outer gap,
and from the beginning of the wind. The difficulty of outer gap
models to produce double-peaked lightcurves, as noted in Bai
& Spitkovsky (2010), in combination with the difficulty of our
near wind model to produce single pulses, point to the need for a
combined model in which the high-energy emission starts within
the light cylinder and continues in the equatorial current sheet
outside the light cylinder. Therefore the physics of the formation
region of the current sheet is very important in the endeavour to
understand γ-ray emission from pulsars.

For pulsars in binaries, it is possible that the favoured ra-
diation process is not synchrotron but rather inverse Compton
on the low-frequency photons of the massive star, as investi-
gated in Pétri & Dubus (2011). In this case the peak energies
and emitted luminosities by the two mechanisms can be com-
parable, depending on whether the comoving energy density of
the low-frequency photons in the wind frame is comparable to
the magnetic field energy density close to the light cylinder. For
the pulsar B1259-63, which is a member of a binary with a B2e
star, the comoving stellar radiation energy density seen by the
pairs moving towards the star is u′� ≈ 5 Γ2 erg s−1, while the co-
moving magnetic field energy density is u′B ≈ 3×107 R−4 erg s−1

(the radial component dominates when R < Γ). Inverse Compton
scattering is dominant if ΓR2/ >∼ 2500, which requires emission
to start at 5−15 light cylinder radii for values of Γ ≈ 10−100.
The situation is more favourable to Compton scattering in the
other, more compact, gamma-ray binaries where the radiation
density is up to 200 times higher (LS 5039).

A possible problem of our model is that the supersonic so-
lution of Bogovalov (1999) might not apply for the objects of
lower bulk Lorentz factors. Particularly, the wind can acceler-
ate, as is predicted in various magnetohydrodynamic models of
pulsar winds (Beskin et al. 1998; Kirk et al. 2009). In this case
the shape of the current sheet can in reality be different, since
there is generally also a polar magnetic field component, which
in our model was zero. However, as was mentioned above, the
very strong dependence of EGeV on R implies that even if the
parameters Δ and Γ changed with R, the present model would
still be able to explain the main features of the observed spec-
tra. Adding to these considerations the fact that the particle den-
sity within the current sheet and the magnetic field decrease as
the wind expands to larger R, the conclusion is reached that the
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emitted luminosity, which depends on N′0 and B′0, will also de-
crease with radius. This in combination with the decreasing peak
of the spectrum means that the main contribution to the spectrum
near the cutoff will still come from a very limited region close
to Rmin. Therefore, possible changes in the dynamic evolution of
the wind should not have a strong effect on the observed spec-
trum and luminosity, while the exact shape of the current sheet
should influence mainly the shape of the pulse, but not the cutoff
energy or the emitted luminosity.

Another possible shortcoming of our model lies in the as-
sumption of a thermal distribution in the current sheet. The
Harris distribution has been extensively used in the past in the
context of the current sheets in pulsar winds (Kirk & Skjæraasen
2003; Lyubarsky & Kirk 2001; Sironi & Spitkovsky 2011),
which makes it the first reasonable assumption when one treats
these sheets. It is generally thought, however, that the particle
distribution close to the light cylinder should be non-thermal,
since the particles are accelerated by electric fields within the
light cylinder and possibly by the reconnection process at the
Y-point, where the current sheet originates. Nevertheless, using
the relativistic Harris equilibrium entails several advantages: it
is the simplest self-consistent solution to a relativistic current
sheet, and it has only two free parameters: a normalization con-
stant, and the particle temperature. Because of these restrictions
there are no degeneracies in our model, as we showed. The ob-
servational data uniquely predict the properties of the current
sheet for a given pulsar. This makes our model powerful and
able to give unambiguous predictions, but also refutable, should
it not accomodate the data. In the light of these advantages, we
kept the thermal distribution for our current sheets, and dit not
resort to a power-law distribution, which would pose fewer re-
strictions on our model because of the additional free parameters
associated with it. In principle, one way to distinguish between
power-laws and thermal inputs is the low-energy spectral slope.
For thermal distributions the slope asymptotes to 1/3, whereas a
wider range is expected for power-laws depending on the distri-
bution index.

It is expected that reconnection will generally alter the
physics of the current sheet beyond the pulsar’s light cylinder,
and might result in an evolution of the current sheet thickness
and the wind Lorentz factor, especially in objects for which
the radiative timescales of the thermal particles are very short
in comparison to the evolution timescale of the magnetic field
(Uzdensky & Spitkovsky 2012). Furthermore, particle acceler-
ation takes place during the reconnection process, which might
result in a non-thermal tail to the thermal distribution, the char-
acteristics of which will change as the current sheet evolves with
radius. These phenomena will leave their imprint on the pulsed
high-energy spectrum, and need to be investigated in a self-
consistent way, which is beyond the scope of this article. We
can, however, give a simple order-of-magnitude argument about
the reconnection-accelerated particles: deep in the current sheet
particles can be accelerated by reconnection electric fields to en-
ergies higher than the thermal peak. These particles would have
Lorentz factors extending to γ ∼ ξaLC/Γ (in the wind frame),
thus giving rise to photons up to an energy

EGeV ∼ 8.8
ξ2Ė3/2

33

ΓP
, (33)

where ξ = E′/B′0 < 1. This could extend beyond the thermal
peak for sufficiently large ξ or Ė33, whereas millisecond pul-
sars are again favoured by the dependence on the inverse of the
period. If these high-energy non-thermal particles escape the ac-
celeration site and radiate in the field within the current sheet,

their emission could give rise to a power-law tail extending be-
yond the GeV cutoff (Zenitani & Hoshino 2008). This mecha-
nism should be prominent for objects for which t′s/t′R < 1, which
tend to cluster at the upper left part of the P− Ṗ diagram, as dis-
cussed. It is for these pulsars that acceleration by reconnection
could become prominent and be observed in the form of power-
law tails in the GeV−TeV regime.

Another possibility is that the particles in the current sheet
are already accelerated to a power-law distribution when the
sheet starts radiating, in which case a different distribution func-
tion would have to be used to calculate the current sheet param-
eters (Balikhin & Gedalin 2008). This might apply particularly
to millisecond pulsars, which have lower surface magnetic fields
that lead to lower pair production rates and therefore less dense
plasmas in their magnetospheres. In this case a non-thermal par-
ticle distribution seems likely to describe the physics of the cur-
rent sheet in a more consistent way. We defer the investigation
of such particle distributions to a future article.
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Appendix A: Calculation of a received synchrotron
spectrum by a relativistically moving sheet

The flux that an observer receives from a relativistically moving
source is calculated by the formula (Lind & Blandford 1985):

Fν =
1
d2

∫
D2 j′

(
ν′
)

dV. (A.1)

– Primed quantities are in the wind frame, i.e. the frame where
the outflow is at rest. Since the wind is assumed to be flow-
ing radially, at each azimuth and polar angle (ϕ, ϑ) there is a
different, local, radially moving wind frame. Quantities per-
taining to a point of the wind with coordinates (r, ϑ, ϕ) are
calculated in this local wind frame.

– When calculating the emission coefficient j′ we should take
care to calculate it in the direction of the line of sight, taking
into account the aberration of photons in the wind frame (we
return to this matter below).

– The volume element is taken in the observer’s frame (or
the frame in which the pulsar is at rest) and is dV =
r2 sinϑdrdϑdϕ.

– D is the doppler factor, which depends on the angle between
the line of sight and the direction of motion of the wind. It is
calculated by the expression

D = 1

Γ(1 − βÔ · r̂)
· (A.2)

The unit vector r̂ is the radial unit vector in a spherical co-
ordinate system, whose centre is located at the pulsar. Ô is
a unit vector in the direction of the observer. The cosine of
the angle between these two vectors depends on ϑ and ϕ, and
thereforeD = D(ϑ, ϕ). The observed frequency is ν = Dν′.

– We assume that the direction to the line of sight is at polar
angle ζ and at ϕ = 0. In a cartesian system of coordinates,
then, we have

Ô = sin ζ x̂ + cos ζ ẑ,

whereas the radial unit vector can be expressed as:

r̂ = sinϑ cosϕx̂ + sinϑ sinϕŷ + cosϑẑ,

A101, page 11 of 13



A&A 550, A101 (2013)

which gives us

Ô · r̂ = sin ζ sinϑ cosϕ + cos ζ cosϑ. (A.3)

– Finally, d is the distance of the object from the observer. We
define a luminosity associated with the pulsar as

Lν = 4πd2FΩFν = 4πFΩ
∫
D2 j′

(
ν′
)

d3x. (A.4)

The parameter FΩ is the beam correction factor, which is
taken to be equal to FΩ = (4π)−1 in the plots of the pulsar
lightcurves and spectra, Figs. 1, 3, and 4. It is, however, taken
to be equal to unity FΩ = 1 for the Lγ − Lsp plot in Fig. 6.

Appendix B: Calculation of the emission coefficient

The emission coefficient can be calculated by multiplying the
energy distribution of the particles by the single-electron syn-
chrotron spectrum. This implies that the electrons are relativis-
tic, which is, strictly speaking, not true for the whole population,
since the distribution starts from γ′ = 1. However, since the tem-
perature of the distribution is relativistic, this approximation will
not introduce a significant error. The distribution gives the num-
ber of electrons per unit gamma factor, per solid angle, and per
unit volume:

dN′

d3x′dγ′dΩ′
=

N′0
4πΘK2(1/Θ)

γ′
√
γ′2 − 1e−γ

′/Θ cosh−2

(
X′

ΔX′

)
,

where Θ � 1 is the dimensionless temperature of the distri-
bution in units of mc2 as defined in the text. This distribution
is isotropic and its density decreases towards the edge of the
sheet. The direction perpendicular to the sheet midplane is de-
noted by X′ and ΔX′ is the width of the sheet at its local rest
frame.

Using the small argument approximation of the modified
Bessel function K2, Eq. (10), the distribution function can be
expressed as

dN′

dV ′dγ′dΩ′
=

N′0
2Θ3
γ′

√
γ′2 − 1e−γ

′/Θ cosh2

(
X′

ΔX′

)
· (B.1)

This then has to be doubled to take account of both species in the
sheet (electrons and positrons). The single-electron synchrotron
spectrum is

dE′

dt′dν′
=

√
3e3B′⊥
mc2

F

(
ν/D
ν′cr

)
tanh

(
X′

ΔX′

)
·

where F(x) is the well-known synchrotron function. In the above
expression, we encounter the following:

– The field B′⊥ = B′ sinα perpendicular to the direction that
the photons that reach the observer travel along in the wind
frame. α is the angle between the field in the wind frame
and the photon trajectory, which can be computed through

the scalar product
−→
B′ · Ô′. To calculate this, we need to find

the relativistic aberration of photons that follow the line of
sight in the lab frame. This is equivalent to calculating the
aberration of the vector Ô. The field has only a radial and
an azimuthal component, so only the aberration of these two
components of the unit vector Ô are needed. These compo-
nents are

Or = sin ζ sinϑ cosϕ + cos ζ cosϑ (B.2)

Oϕ = − sin ζ sinϕ. (B.3)

The corresponding primed components in the local wind
frame are

O′r =
Or − β

1 − βOr
(B.4)

O′ϕ =
Oϕ

Γ(1 − βOr)
(B.5)

and the angle α is

α = arccos
(
Ô′ · −→B′/B′

)
= arccos

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
O′rB′r + O′φB

′
φ√

(B′r)2 + (B′φ)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (B.6)

while the local magnetic field in the wind frame is

B′r =
BLC

R2
(B.7)

B′ϕ =
BLC

βΓR
sinϑ, (B.8)

where the superscript LC refers to quantities at the light
cylinder.

– The ratio X′/ΔX′ can be approximately converted to quanti-
ties in the lab frame to give:

X′

ΔX′
� R − R0(χ, ϑ, ϕ, t)

Δ
, (B.9)

where R0(χ, ϑ, ϕ, t) is the location of the current sheet point
under consideration at time t.

– The critical frequency ν′cr is

ν′cr =
3eB′⊥
4πmc

γ′2 tanh

(
X′

ΔX′

)
· (B.10)

– In the general case of the oblique rotator the temperature is
given by the expression

Θ = Θ⊥

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 +

(
βΓ

R0 sinϑ

)2

1 +
(
βΓ

R0 sinϑ

)2
C(ϑ, χ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1/3

(B.11)

C(ϑ, χ) = 1 +

⎛⎜⎜⎜⎜⎜⎝ cscϑ cotχ√
1 − cot2 χ cot2 ϑ

⎞⎟⎟⎟⎟⎟⎠
2

, (B.12)

where Θ⊥ is the value of the temperature for the perpendic-
ular rotator, given in Eq. (19).

The function C(ϑ, χ) is very close to unity for a wide range of ϑ
given a χ, and deviates significantly from that value only for
values ϑ � π/2 − χ, or for low obliquities, as is seen in Fig. B.1.
Therefore, the perpendicular rotator is a good approximation to
the general problem, and this is why we have used Θ⊥ in all our
estimates.

The emission coefficient j′ has to be calculated at the re-
tarded time

tret � t − d
c
+

−→r · Ô
c
,

where −→r is the position vector of the radiating point in the cur-
rent sheet, d is the distance of the pulsar from the observer, and t
is the time that the observer measures. Normalizing time to 1/ω
and distance to rLC the retarded time becomes

t∗ret � t∗ − d
rLC
+ R0 r̂ · Ô (B.13)
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Fig. B.1. Function C(ϑ, χ) plotted for 0 � χ � π/2,0 � ϑ � π/2. Away
from the sheet’s edge, where ϑ = π/2 − χ, its value is close to unity.

(normalized time is denoted with an asterisk). The retarded time
enters the computation via the equation for the motion of a cur-
rent sheet:

R0 = β
(± arccos (− cotχ cotϑ) + t∗ret − ϕ

)
.

We replace the retarded time in the last equation from (B.13),
and move the initial condition for time at t∗ = d/rLC so that the
new observer’s time is t∗d = t∗ − d/rLC. We obtain an expression
for the radius of the current sheet as a function of observer’s
time, polar angle and azimuthal angle:

R0 =
β
(
± arccos (− cotχ cotϑ) + t∗d − ϕ + 2kπ

)
1 − βÔ · r̂ · (B.14)

Depending on how large or small the dot product Ô · r̂ is, the
radius R0 where the current sheet part under consideration is lo-
cated, the radiation from which is received at time t∗d, can vary
strongly. This means that at each moment t∗d the observer re-
ceives radiation that comes from different parts of the current
sheet that propagates in the wind, with different coordinates
(R0, ϑ, ϕ). We note here that R0 is considered to be the radius
at the midplane of the current sheet.

Finally, the flux can be computed, according to the above, as
follows:

Fν = A
∫
D2 N′0
Θ3

B′ sinα
Bcr

F

(
ν

Dν′cr

) tanh
(

R−R0

Δ

)
cosh−2

(
R−R0
Δ

)dvdγ′, (B.15)

with the volume element, the function n(γ′), the constant A, and
the magnetic field B′0 given by

dv = R2 sinϑdRdϑdϕ (B.16)

n(γ′) = γ′
√
γ′2 − 1e−γ

′/Θ (B.17)

A =

√
3

4πd2
α f mc2r3

LC (B.18)

B′0 =
BLC

R2
0

√(
R0 sinϑ
Γ

)2

+ 1. (B.19)

The doppler factor has been given in Eq. (A.2) and is calculated
with the help of Eq. (A.3). The strength parameter aLC and the
density in the middle of the current sheet N′0 are given in the
text. The expression for the flux also includes the sine of angle
α, which is calculated by Eq. (B.6). The critical frequency ν′cr
is given in Eq. (B.10), with B′⊥ = B′0 sinα. Finally, the above
parameters are calculated at radius R0 with the help of t∗d from
Eq. (B.14). The purpose of the integration on R is to calculate
the integral of the emission coefficient across the sheet, when the
sheet midplane is at the point (R0, ϑ, ϕ). The numerical computa-
tion of the above integral for each point in time t∗d, or equivalently
each phase in a pulsar period, and each frequency ν, produces the
spectra and lightcurves needed.

Finally, the above prescription for the calculation of the pul-
sar lightcurves is accurate as long as Δ < 1/Γ. In the opposite
case, the pulse width is not governed by Γ, but is comparable
to Δ, which is not taken into account in the calculation pre-
sented here. However, the phase-averaged fluxes calculated by
our model are reliable even for Δ > 1/Γ.
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