Spectroscopic investigation and theoretical modeling of kaolinite-group minerals and other low-temperature phases
Abstract
This article summarizes some recent results obtained on the physical properties of environmental minerals, mostly kaolinite-group minerals and Fe- and Al-(hydr)oxides occurring in lateritic soils. The defective structure of these minerals, including impurities, stacking faults and radiation-induced defects, is probed using infrared spectroscopy and electron paramagnetic resonance. Resulting information bears on models of soil formation and transformation mechanisms of minerals in low-temperature environments. We underline the increasing impact of quantum chemical modeling in this field, providing straightforward interpretations of spectroscopic signals and overcoming the limits of fingerprint approaches. Importantly, the first-principles modeling of isotopic fractionation factors provides new links between mineralogical and geochemical investigations of secondary minerals.