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S U M M A R Y
Many extension zones have been subjected to folding and shortening in a direction perpen-
dicular to the stretching. Such deformation can be accounted for by the extension of a thin
superficial elastic layer overlying a substrate that has small elastic moduli or that deforms in a
viscous regime. Laboratory experiments are used to document the wavelength and amplitude
of the folds for a range of geometrical configurations. Folding is observed even for very small
amounts of extension (less than 1 per cent) with characteristics that are consistent with finite-
amplitude scaling laws. Because of the intrinsically 3-D nature of the deformation field, the
size of the region affected by folding and the direction of the fold axes depend on the orien-
tation of the extension with respect to the rigid blocks that bound the deforming region. For
regions of extension where the elastic thickness is about 10 km, as in the Basin and Range
province for example, it is predicted that folding occurs with wavelengths in a 20–40 km
range, such that it induces little deformation in the lower crust and maintains a flat Moho
discontinuity. These predictions are consistent with the observations. The characteristics of
faulting that is associated with such deformation are discussed.

Key words: Continental tectonics: extensional; Folds and folding; Mechanics, theory, and
modelling.

1 I N T RO D U C T I O N

Folding in regions of extension occurs in a bewildering variety of
dimensions and orientations to the direction of extension (Schlische
1995; Janecke et al. 1998). Furthermore, folds with different ori-
entations may develop in different domains of the same province
(Janecke et al. 1998; Faulds et al. 2002). At a smaller scale, several
types of folds may be observed in a single domain and it is useful
to discriminate between them using physical models.

In the following, folding refers to the physical mechanism that
generates folds and that is associated with shortening. Thus, in the
framework of this paper, folding acts in a direction perpendicular
to extension and generates extension-parallel folds, such that their
axes are aligned with the extension or lie at a small angle to the
extension direction.

Quasi-periodic extension-parallel folds have been documented in
many continental extension zones including the Basin and Range
province of the Western United States (e.g. Yin 1991; Fletcher &
Bartley 1994; Fletcher et al. 1995), the central Aegean (Avigad
et al. 2001; Jolivet et al. 2004) and the Norwegian Caledonides
(Chauvet & Séranne 1994). The lateral shortening that is asso-
ciated with such folding is contemporaneous with the extension
(Mancktelow & Pavlis 1994; Fletcher & Bartley 1994; Avigad et al.
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2001). Avigad et al. (2001) noted that, in the Aegean, extensional
tectonics led to no significant crustal thinning, which indicates that
some compensation mechanism has been active. They suggested
that this was shortening in a direction perpendicular to the exten-
sion. Folding in a direction perpendicular to extension results in
metamorphic domes that have been ductilely stretched and that are
bounded by normal faults (Mancktelow & Pavlis 1994). The ex-
act mechanism that is responsible for such deformation has been
debated for many years. The main question deals with the stress
regime that is responsible for extension in one horizontal direction
and shortening in the other horizontal direction. Fletcher & Bartley
(1994) have argued that a simple uniaxial stress field accounts for the
main deformation characteristics, with stretching in the direction of
regional extension and constrictional strain in the other horizontal
direction. This simple stress field is consistent with earthquake focal
mechanisms in the Basin and Range province, for example (Zoback
& Zoback 1989). The strain field, in contrast, cannot be reduced to a
simple 2-D configuration and must be studied in 3-D. This is shown
by the coexistence of extension in one direction and shortening in
the other direction as well as fold axes that are slightly oblique to the
stretching direction in many instances (Avigad et al. 2001). Another
important observation is that the Moho discontinuity is flat so that
the extension parallel-folds and the associated topography are not
isostatically compensated (Tirel et al. 2004).

Many analyses have been based on local observations of a few
structures. Here, we focus on the large-scale pattern, such that short-
ening in a direction perpendicular to regional extension proceeds
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Folding in regions of extension 1121

through folds of nearly identical characteristics with a well-defined
spacing. One test of the deformation mechanism is that it accounts
for the observed spacing and amplitude of folds. In a pioneering
study, Yin (1991) calculated deformation in a thin elastic plate due
to applied stresses. He obtained a periodic pattern of domes and
basins in only two cases. One involves a periodic variation of the
normal stress at the top or base of the plate. In the other case, no
vertical load is applied and tension in one horizontal direction and
compression in the other horizontal direction are both required for
folding. In the analysis of Yin (1991), therefore, no folding can be
generated by uniaxial extension, which is at odds with the conclu-
sions of Fletcher & Bartley (1994). This analysis, however, relies on
a plate of fixed dimensions, which does not allow for lateral shorten-
ing explicitly. A comprehensive study of folding due to compression
in 3-D was made by Kaus & Schmalholz (2006) for viscous rheolo-
gies. Following Schmalholz et al. (2005), these authors emphasized
the phenomenon of ‘structural softening’, such that strain rates in
the folded layer are smaller than the background horizontal shorten-
ing rate. This applies to other rheologies and stress configurations,
including those of this study, and we shall return to this issue in a
discussion section. The periodic alternation of basins and ranges has
been attributed to necking instabilities by many authors, following
Fletcher & Hallet (1983). Theoretical models have been limited to
plastic or viscous rheologies for the upper crust, and predict that
the spacing between topographic highs and lows is typically two to
four times the thickness of the strong upper crustal layer (Ricard
& Froidevaux 1986; Zuber et al. 1986; Martinod & Davy 1992).
Brittle extension of an upper crustal layer has been studied in the
laboratory and in numerical calculations (Benes & Davy 1996; Corti
2005; Wijns et al. 2005). In this case, extension induces a periodic
array of normal faults whose spacing is controlled by the thickness
of the brittle layer, but no explicit scaling is available. Most of these
models are carried out in two dimensions in a vertical plane and
hence cannot account for extension-parallel folds. In all cases, the
necking instability induces lateral variations of crustal thickness.
Fletcher & Hallet (1983), for example, found that, in their model,
the crust beneath the upper plastic layer and the upper mantle is
‘characterized by the development of a large structural relief’. This
would imply variations of Moho depth, which are not observed
beneath regions of extension (Klemperer et al. 1986; Gans 1987).
Other studies have been focussed on specific aspects of extension
regions, such as the flat Moho (Gans 1987) or the distributed re-
gional deformation (Buck 1991). None of these models account
for shortening and folding in a direction perpendicular to extension
(Mancktelow & Pavlis 1994).

Other than extension-parallel folds, several features of extension
regions have not been accounted for by the various models listed
earlier. For example, the strike of basins and ranges varies across
the Basin and Range province, from a roughly NS direction in
the eastern part to a NE–SW in the western part (Eaton 1980)
(Fig. 1). Also, there are small, but significant, differences between
the directions of extension and fold axes in the Aegean (Avigad et al.
2001). These observations attest to the fundamentally 3-D nature of
the deformation.

In this study, we argue that some important deformation charac-
teristics of extension zones are acquired in early phases of extension
when the amounts of strain are small, such that deformation pro-
ceeds in an elastic regime, before the onset of major normal faulting.
Marques & Podladchikov (2009) have made the same point for de-
formation in compression regimes. Specifically, we propose that
extension-parallel folds are due to elastic deformation and discuss
geometrical controls on the orientation of fold axes. One intrinsic

feature of this deformation regime is shortening in a direction per-
pendicular to extension, which provides a straightforward explana-
tion for the lack of significant crustal thinning that was emphasized
by Avigad et al. (2001) in the Aegean, for example. The paper
is organized as follows. We recapitulate a few observations that
demonstrate that folding does occur early during extension and that
provide the framework of our study. We then discuss evidence for
the important role played by flexural stresses, which are a direct con-
sequence of elastic deformation. We contend that extension-parallel
folds are due to a uniaxial extensional stress field and propose that a
thin elastic layer controls the initial large-scale deformation pattern.
We carry out laboratory experiments that document precisely the
characteristics of folding. We rely on theory originally proposed
by Cerda et al. (2002) and show that the observed wavelength and
amplitude of folds are consistent with the theoretical predictions.
Simple scaling laws allow easy evaluation of fold characteristics and
their dependence on the control variables and physical properties.
Because of the 3-D nature of the deformation, we also investigate
the influence of the boundary conditions and specifically the influ-
ence of the shape and orientation of the rigid domains that bound
the extension zone. We show how the intrinsically 3-D nature of
elastic deformation can lead to fold axes with different orientations
in different parts of the same province. In a discussion section, we
evaluate the conditions that are required for fold generation, which
include limitations on the elastic plate thickness and on the dimen-
sions of the deforming region. We also discuss the simple model of
an elastic sheet in relation to the more complex rheological proper-
ties of continental crust and lithospheric mantle. Finally, we study
some aspects of the faulting that occurs in association with folding.

2 C H A R A C T E R I S T I C S O F F O L D I N G I N
R E G I O N S O F E X T E N S I O N

We briefly recapitulate a few facts about extension and folding, as
illustrated by the Aegean and the Basin and Range. In both regions,
as shown by the large-scale deformation pattern and small-scale
strain analyses, extension develops in an intrinsically 3-D regime
involving extension in one direction and shortening in the other.

Extension in the Aegean region started 30 Ma (e.g. Jolivet &
Faccenna 2000). Present-day deformation is concentrated in periph-
eral regions (Dewey 1988; Jolivet & Faccenna 2000). GPS measure-
ments indicate that the current extension direction is North–South
(McClusky et al. 2000) and has apparently remained relatively con-
stant through time (Jolivet 2001). In the Aegean Sea, extension was
accompanied by EW shortening (i.e. perpendicular to the stretch-
ing), which started more than 20 Ma (Avigad et al. 2001). This
shortening resulted in large-scale folded structures which were later
exhumed (∼8 Ma) and form the metamorphic domes of Naxos,
Paros and Mykonos (Fig. 2). The metamorphic domes have a char-
acteristic spacing in the 20–30 km range, but the Moho discontinuity
beneath them shows no associated undulations and is flat (Tirel et al.
2004). On a larger scale, the crustal thickness is slightly thicker in
the Central Aegean than to the North and South (Jolivet et al. 2004).
According to Avigad et al. (2001), the EW shortening acted to com-
pensate for crustal thinning due to extension, so that the present
crustal thickness does not differ significantly from its value prior to
extension.

The Basin and Range Province of the western United-States is the
largest zone of distributed extension on Earth. It is remarkable for its
periodic alternation of topographic highs and lows bordered by nor-
mal faults (Fig. 1). Deformation was achieved in several phases.
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1122 F. Lévy and C. Jaupart

Figure 1. Topographic map of the Basin and Range province. The large area affected by folding may be identified easily from the topographic variations.
Lines in large dashes show boundaries that could be compared with the clamped edges of our laboratory experiments.

Extension began around 37 Ma and was oriented WSW–ENE
(Zoback & Thompson 1978; Eaton 1982). Around 17 Ma, it
switched to a WNW–ESE direction, probably due to the north-
ward migration of the Pacific Plate (Atwater 1970; Zoback &
Thompson 1978) and continues today at a rate of a few millime-
tres per year (Hammond & Thatcher 2004; Hammond & Thatcher
2005). Many exhumed metamorphic domes are observed in the
province and are related to folds with characteristic spacings in the
10–20 km range, similar to those of the Aegean (e.g. Fletcher &
Bartley 1994; Mancktelow & Pavlis 1994). Part of the complexity
of the observed deformations is due to the change of extension di-
rection and the presence of highly extended corridors (Faulds et al.
2002). The characteristics of folding have been analysed in detail
in several domains of the Basin and Range province. In the central
Mojave area, for example, stretching and folding developed at the
time of dyke and pluton emplacements about 22–23 Ma (Fletcher &
Bartley 1994), during the first extension phase. Tectonite fabrics are
consistent with lateral shortening and constrictional strain. The fold
axes and stretching lineations are sub-parallel to the WSW–ENE

direction, which was the direction of the regional extension at that
time (Fletcher & Bartley 1994).

These short summaries show that the Aegean and Basin and
Range extension regions exhibit similar features and in particu-
lar simultaneous extension in one direction and shortening in the
orthogonal direction. Both regions are characterized by large heat
flow values of 100 mW m−2 or more (Jongsma 1974; Lachenbruch
& Sass 1978) and flat Moho discontinuities. They differ in the area
affected by folding, however, which is much smaller in the Aegean
than in the Basin and Range. As shown later, this difference can be
explained by our model.

One final point deals with the intimate relationship between fold-
ing and faulting in extension zones (Mancktelow & Pavlis 1994). In
the highly extended Colorado corridor, Faulds et al. (2002) have de-
scribed anticlines between listric faults that dip towards one another
and synclines between outwardly dipping ones. Such folds are par-
allel to the strike of the normal faults, indicating that the processes
of folding and faulting are genetically related. These two processes
were both active at the start of extension and age uncertainties do
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Folding in regions of extension 1123

Figure 2. Map of the Aegean, and scheme of the domes observed in the
central part of the Aegean Sea (adapted from Jolivet et al. 2004). Domes are
restricted to the circled area. Paros, Naxos and Mykonos are domes parallel
to the extension direction (indicated by large black arrows). Other domes
such as Tinos are perpendicular to the direction of extension. They are not
studied here.

not allow to separate them in time (Faulds et al. 2002). Folding has
been attributed to deformation on a fault or within a fault array,
involving displacement on a fault plane and/or bending of the fault
plane. The fact that folding occurred at the start of extension and
was completed in a short amount of time, such that the folds af-
fected deposition of early ash-flow tuffs (Faulds et al. 2002), raises
two issues. One is that the small amount of extension of an early
phase must account for faulting as well as folding. The other issue
is why folding stops as extension continues with further displace-
ments on the faults. We shall show in this paper that small amounts
of extension can generate extension-parallel folds and faults. Once
faulting has occurred, little further folding can occur and most of
the extension is accommodated by movements on the faults.

Extension regions are characterized by low-angle detachment
faults. From a physical standpoint, such faults cannot be generated
by a simple horizontal strain field and necessarily involve flexural
stresses (Buck 1988; Spencer & Chase 1989). According to Buck
(1988), normal faults are initially generated with dips of about 60◦,
as predicted by theory, and then rotate due to flexure induced by
lateral topographic variations. Spencer & Chase (1989) proposed a
different model involving a pre-existing state of flexure, due perhaps
to isostically uncompensated Moho reliefs. These two models differ
in the time-succession of folding and faulting, but both involve
elastic flexure. Flexural stresses also account for the locations of
dykes and volcanoes in the Basin and Range (King & Ellis 1990).

These observations demonstrate that upper crustal units can sustain
significant elastic deformation.

3 F O L D I N G O F A T H I N E L A S T I C
S H E E T U N D E R E X T E N S I O N :
L A B O R AT O RY S T U DY

Although it is well established that the upper crust breaks or yields
after small amounts of strain, it is worthwhile to study what happens
before the onset of faulting, when deformation proceeds in an elastic
regime. We study folding that develops in thin elastic sheets under
extension and use the theoretical framework provided by Cerda et al.
(2002). We discuss later the elastic sheet approximation in relation
to the more complex rheological profile of continental lithosphere.
In their study, Cerda et al. (2002) report on measurements of fold
wavelength and we complement their observations with data on the
amplitude of folds. We also investigate other characteristics of the
deformation, focussing on parts where no folding occurs. We finally
document how folding proceeds in more complicated geometrical
configurations.

3.1 Fold characteristics

Large deformations of elastic thin sheets are governed by a set of
non-linear differential equations known as the Föppl-von Karman
equations. Analytical solutions are available in a few cases only
(Landau & Lifshitz 1986) and numerical solutions are hard to im-
plement due to high-order differentials and the changes of domain
dimensions that must be accounted for (Friedl et al. 2000). Simple
scaling laws for deformation under extension have been derived by
Cerda et al. (2002) and Cerda & Mahadevan (2003). They consider
an isotropic elastic sheet of thickness h, width W and length L. The
theory is only valid for thin elastic sheets, such that h/L and h/W
are �1, which is valid for geological cases.

In the reference set up, a rectangular elastic sheet is subjected to
a uniaxial extensional stress parallel to the two free boundaries in
the x-direction, by moving apart the two other boundaries that are
kept clamped (Fig. 3). The sheet develops periodic folds with axes
that are parallel to the extension in a central region even for very
small amounts of extension (Figs 3 and 4). The sheet remains flat
near its two clamped boundaries (Fig. 5). As shown in Appendix
A, minimizing the energy for bending and stretching leads to the
following scaling laws for the amplitude A and wavelength λ of the
folds:

A = (νLh)
1
2

[
16γ

3π 2(1 − ν2)

] 1
4

, (1)

λ = (2π Lh)
1
2

[3(1 − ν2)γ ]
1
4

, (2)

where γ is the amount of extension and ν is the Poisson’s ratio for
the sheet. Note that λ does not depend on the width of the sheet,
in contrast to buckling under compression (Turcotte & Schubert
1982).

To establish the validity of these scaling laws, we have used
two different materials (PolyEthylene and PVC) and different sheet
thicknesses (Table 1). We have also worked with sheets of differ-
ent sizes to provide data on the dimensions of regions affected by
folding and regions that remain flat near the clamped boundaries.
We determined the amplitude and wavelength of the folds with a
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1124 F. Lévy and C. Jaupart

Figure 3. Wrinkles in a polyethylene sheet stretched in the x-direction. The dashed lines mark the boundaries of flat zones near the clamped boundaries of the
sheet.

Figure 4. Deflection of a linear laser beam perpendicular to the fold axes, at equal distances from the clamped edges. The horizontal scale is larger than the
vertical one. Folds are fully developed in the central part of the sheet and decrease in amplitude towards the lateral edges of the sheet.

Figure 5. Longitudinal profile of a fold along its apex. Dots are amplitude measurements made with a laser beam at different distances from the clamped
edges.

Table 1. Dimensions of the stretched sheets.

Thickness, h PE 30, 80, 100 and 150 µm
PVC 50 and 80 µm

Width, W 10–22 cm
Length, L 24.8–33 cm

Aspect ratio (W/L) 0.38–0.75

planar laser sheet shone in the extension direction at a low inci-
dence angle relative to the horizontal (Fig. 4). Folds appear for very
small amounts of stretching. For the dimensions of the experimental
apparatus and elastic sheets, the critical amount of extension that
is required for folding cannot be determined because we observed
folding for all values of the amount of extension that could be mea-
sured, which were as small as 0.5 per cent. The amplitude of the
folds increases away from the free lateral edges of the sheet and
is maximum in the central part of the sheet (Fig. 4). Folds do not
develop in the vicinity of the clamped boundaries which prevent
lateral shortening.

The maximum amplitude and wavelength of the folds (i.e. in the
central part of the sheet) follow the theoretical scaling laws (eqs 1
and 2) up to about 10 per cent of extension. For further stretching,
the measured wavelength remains consistent with the scaling law,
but the amplitude falls below the predicted value (Fig. 6).

We have also tested the validity of the scaling laws using the total
amount of shortening at mid-distance from the clamped boundaries.

The shortening is due to folding, and hence can be written as∣∣∣∣�W

W

∣∣∣∣ = l − λ

l
, (3)

where l is the length of the sheet along one fold of wavelength λ

(Fig. 7)

l =
∫ λ

0
ds, (4)

where s is the curvilinear abscissa such that ds =
√

dy2 + dζ 2

(Fig. 7). Assuming that the folds are sinusoidal in shape, such that
ζ = A sin( 2πy

λ
), and replacing A and λ by their expressions, we

finally obtain∣∣∣∣�W

W

∣∣∣∣ = 2νγ

1 + 2νγ
. (5)

The agreement between predicted and measured amounts of
shortening is excellent for γ < 10 per cent (Fig. 8). For further
stretching, the observed shortening is slightly less than predicted,
which is consistent with the amplitude of folds being smaller than
predicted.

3.2 Undeformed regions near rigid bounding blocks

We have studied the characteristics of the undeformed regions near
the two clamped boundaries (Fig. 3). Near these boundaries and
away from the lateral edges of the sheet, where no stress is ap-
plied, the sheet cannot contract laterally and the normal stress in the
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Folding in regions of extension 1125

Figure 6. Dimensionless wavelength (left) and amplitude (right) as a function of the amount of extension. Circles: PE, h = 150 µm, L = 27 cm, W = 18 cm.
Triangles: PVC, h = 80 µm, L = 30 cm, W = 20 cm. Squares: PE, h = 80 µm, L = 30 cm, W = 16.5 cm. Diamonds: PVC, h = 80 µm, L = 30 cm, W =
19 cm. The solid lines show the scaling laws.

Figure 7. Notations used in Section 3.1.

direction perpendicular to extension, σ yy, is in tension. At some dis-
tance to the rigid boundaries (in the x-direction) noted δ, this stress
changes sign as the sheet is subjected to folding, which induces a
state of compression in the middle of the sheet (Friedl et al. 2000).
This distance defines the extent of the unfolded region. We have
measured this extent using the same illumination technique as that
for the folds. These measurements are not very accurate, especially
at small amounts of extension because of the very small amplitude
of the folds. Scaled to the large width of the sheet, however, such
uncertainties are small. From the data, we can clearly distinguish
between two behaviours. For amounts of extension that are less
than 10 per cent, δ/W , the dimensionless extent of the undeformed
regions remains approximately constant at a value of about 0.35,
independently of the sheet aspect ratio W/L (Fig. 9). For larger
amounts of extension, the unfolded region takes up an increasing
part of the sheet.

According to these results, the unfolded regions adjacent to the
rigid boundaries take a total length of 2δ = (2 × 0.35) W = 0.7W .
Thus, if the total length of the sheet is less than 0.7 × W , we expect
that no folding occurs. Indeed, we observed that the elastic sheet
does not fold visibly under stretching if L ≤ 0.75 × W .

Figure 8. Lateral shortening versus amount of extension for a thin elastic
sheet. Squares: PVC, h = 50 µm, L = 27.5 cm, W = 13.9 cm. Circles: PE,
h = 30 µm, L = 26.5 cm, W = 10.5 cm. The solid and dashed lines show
the scaling laws for PVC and PE, respectively.

3.3 Large amounts of extension

Based on our observations, we can interpret the behaviour of the
stretched sheet as follows. For amounts of extension that are less
than about 10 per cent, deformation is purely elastic and perfectly
described by the scaling laws given earlier. For larger amounts of
extension, plastic deformation near the clamped boundaries be-
comes significant and takes up an increasing part of the sheet,
reducing the area available for shortening and folding. As a con-
sequence, the folds are not fully developed. Their wavelength still
follows the elastic law, but their amplitude decreases with increas-
ing extension. The amplitude of folds eventually becomes negligible
when deformation is in a plastic regime everywhere.

For the experimental materials of this study, plastic deformation
becomes significant at strains of about 10 per cent. This was es-
tablished by determining the amount of residual deformation when
stretching is relieved. This was also reflected in the reduced am-
plitude of folds and the concomitant reduction in the amount of
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1126 F. Lévy and C. Jaupart

Figure 9. Dimensionless extent of flat zones in the Ox-direction against the
amount of extension. Squares: PE, h = 100 µm, L = 26.5 cm, W = 10 cm.
Triangles: PE, h = 100 µm, L = 26.5 cm, W = 15 cm.

lateral shortening that occurs. As shown by eq. (5), the amount of
shortening is a simple function of the amount of extension in the
elastic regime, and the breakdown of this relationship is a straight-
forward indication that deformation is no longer elastic. For geo-
logical cases, we are interested in early stages of deformation in an
elastic regime. In Section 4, we extend the results for an isolated
elastic sheet to cases involving an elastic layer underlain by material
deforming either elastically, but with different elastic properties, or
viscously.

3.4 Geometrical constraints on deformation

So far, we have studied extension in a simple configuration, such
that the elastic sheet has free boundaries parallel to the exten-
sion direction and rigid boundaries perpendicular to it. In the
Earth, such geometrical simplicity is unlikely. Because of the in-
herently 3-D nature of the strain field, we expect that the deforma-
tion field is sensitive to the shape of the elastic sheet in relation
to the extension direction. We investigate the consequences us-
ing a series of experiments with different configurations. We have
restricted our study to generic cases which illustrate a few key
features.

In a first set of experiments, we have considered a V-shaped rigid
boundary at one end of the sheet. This rigid boundary partially
encapsulates the elastic sheet and prevents shortening. We found
indeed that the encapsulated region does not fold at all and en-
larges the flat region at the end of the sheet (Fig. 10). We have
also considered an extreme case. A rectangular sheet had four rigid
edges (i.e. clamped boundaries) with small adjustment zones at the
four vertices between two adjacent rigid boundaries. This sheet was
stretched in a direction parallel to one side of the rectangle, as be-
fore, by moving the other two rigid boundaries. The adjustment
zones allowed folding perpendicular to extension with wavelengths
and amplitudes that were similar to those for free lateral bound-
aries (Fig. 11). The reason for this is that folding can develop even
with very small amounts of shortening, and hence can take advan-
tage of the shortening allowed by the adjustment zones. Complex
deformation occurred near the lateral rigid boundaries, involving
two conjugate folds that were oblique to the extension direction.
Another difference with the reference experiment of Fig. 3 was in
the shape and size of the undeformed region next to the moving
boundaries.

In a second set of experiments, we considered elastic sheets whose
boundaries were not aligned with the stretching or shortening direc-
tions. This generates complicated geometrical constraints on short-
ening, which should occur at a right angle to the extension in a
global sense but also at a right angle to free lateral edges. If the free
lateral boundaries are at an angle to the extension (Fig. 12), folding
occurs in the middle of the sheet, but the folds are at an angle, noted
α, to the extension, due to the two conflicting constraints on short-
ening. With increasing amounts of extension, the folds tend to align
themselves to the free boundaries, illustrating the dominant control
on the shortening direction. In a final set-up, the free lateral bound-
aries were parallel to the stretching direction but the rigid boundaries
were not perpendicular to it. In this case, the rigid boundaries are at
odds with the extension and shortening directions. We observed two
types of folds in different parts of the sheet. Shortening proceeds in
the middle of the sheet but the folds were again not aligned with the
extension (Fig. 13). Angle α also varies as the amount of extension
is augmented. Near each moving rigid boundary, folding occurs in
a small triangular area with axes that are parallel to the extension.
In these end zones, the amount of shortening varies along strike,
which causes a slight rotation of the folds in the middle part of the
sheet.

These experiments illustrate that folds may develop at an angle
to the extension direction due to geometrical constraints on defor-
mation and may rotate as the amount of extension increases.

Figure 10. Stretching of a PE sheet with one straight rigid boundary at one end and two orthogonal rigid boundaries at the other end. The large white arrows
show the stretching direction. The wrinkling pattern is similar as in Fig. 3. The white dashed lines are the boundaries of the flat regions. The area defined by
the V-shaped rigid boundary and the dashed black line is too constrained to wrinkle. The sheet dimensions are h = 80 µm, Lmax = 33 cm, W = 14 cm.
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Folding in regions of extension 1127

Figure 11. Stretching of a PE sheet with four clamped edges. White arrows show the stretching direction. The sheet dimensions are h = 100 µm, L = 28 cm,
W tot = 43 cm. A width of 21 cm is clamped.

Figure 12. Stretching of a PE sheet with clamped edges normal to the stretching direction (indicated by the large white arrows), and free edges forming an
angle θ with the stretching direction. The axis of the wrinkles tends to align parallel to the free edges as the amount of extension increases. The sheet dimensions
are h = 80 µm, L = 30 cm, W = 16 cm.

Figure 13. Stretching of a PE sheet with clamped edges at 45◦ of the stretching direction (indicated by the large white arrows). Two families of wrinkles
can be distinguished. Near the clamped edges, wrinkles are parallel to the stretching direction. In the central part of the sheet, they form an angle θ with the
stretching direction. This angle varies with the amount of extension. The sheet dimensions are h = 80 µm, L = 30 cm, W = 16 cm.
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1128 F. Lévy and C. Jaupart

Figure 14. Scheme of the model studied in Section 4.1. Left-hand panel: reference state, right-hand panel: wrinkled state. Rectangles of dimensions λ(1 +
2νγ ), hi and λ, hf define zones of equal masses.

4 T H E O R E T I C A L M O D E L F O R T H E
C H A R A C T E R I S T I C S O F F O L D S

4.1 Energy minimization

To adapt the theory developed before to terrestrial deformations,
we need to take into account several additional effects. One such
effect involves gravity and the changes of potential energy that are
associated with changes of topography. Such changes are negligible
at the scale of the laboratory, but cannot be ignored in geological
cases. We must also account for the fact that, on Earth, the thin
elastic plate is a superficial layer, underlain by a thicker ‘substrate’
(Fig. 14). For the large crustal temperatures that are implied by
the small effective elastic thickness and large heat flow values,
Young’s modulus decreases significantly with depth, such that one
may approximate this rheological stratification by a strong layer
overlying a weaker elastic substrate. Depending on the thermal
structure, this substrate may also behave as viscous material.

The total energy variation when such a system is stretched is the
sum of the following.

(i) A variation of potential energy. It is calculated assuming that
the wavelength of the wrinkles is too small for them to be isostat-
ically compensated, as observed. We only consider a large-scale
compensation due to shortening and the induced crustal thickening
(Fig. 14).

(ii) The bending energy of the superficial elastic layer.
(iii) The stretching energy of the superficial elastic layer.
(iv) If the substrate is viscous, the energy dissipation depends on

the deformation velocity. As the processes we study are slow, such
viscous dissipation may be neglected.

(v) If the substrate is considered as elastic, an energy contribution
due to the deformation of the substrate. In a substrate thick relatively
to the surface layer, the amplitude of superficial deformations decays
exponentially with depth, with a characteristic length scale equal
to the wavelength of the folds. We assume that the thickness of the
substrate is greater than the wavelength of the folds, and hence treat
it as a half-space.

A geometrical constraint of inextensibility in the shortening di-
rection is imposed when minimizing the energy. All the calculations
are detailed in Appendix B.

For a viscous substrate such that dissipation due to lower crustal
flow is negligible, the energy minimization leads to

3

4
ρcgλ4 +

(
C

�
+ Esγ h

)
λ2 − Esh

3 = 0, (6)

where C and � are defined later. For an elastic substrate, we obtain

3

4
ρcgλ4 + 2Ebλ

3 +
(

C

�
+ Esγ h

)
λ2 − Esh

3 = 0, (7)

with E s, the Young’s modulus of the surface layer, and Eb the
Young’s modulus of the substrate.

In both cases, � is the transverse shortening (eq. 5)

� = 2νγ

1 + 2νγ
, (8)

and

C = ρcgνγ h2
i (1 + 2νγ )

(
1 − 2

ρc

ρm

)
(9)

(see Fig. 14 for the definition of hi).

4.2 Numerical results

The new equations do not imply large departures from the simple
scaling laws given by eqs (1) and (2). The wavelength and ampli-
tude of the folds are moderately sensitive to the elastic thickness h
because they scale approximately with h1/2. This parameter is in a
5–15 km range in the Basin and Range according to Lowry & Smith
(1994) and we adopt a value of 10 km for the sake of example. We
take an initial crust thickness hi = 35 km, Young’s modulus E s =
30 GPa and ρc = 2700 kg m−3 for the crust and ρm = 3300 kg m−3

for the mantle (Table 2). Solutions were obtained for the simple
geometrical configuration of a rectangular elastic sheet with edges
that are aligned with and perpendicular to the extension direction,
which is not always appropriate. However, our laboratory experi-
ments show that the wavelength and amplitude of the folds remain
of the same order of magnitude for other configurations. This is
simply due to the inextensibility constraint in the folded region. We
thus use A ∼ λ

√
�.

Fig. 15 shows the wavelength and amplitude as a function of the
amount of extension. Even for very low extension factors, folds with
a significant amplitude are generated by the stretching. For a viscous
substrate, which seems appropriate for high heat flux regions such
as the Aegean and the Basin and Range, for 3 per cent of extension

Table 2. Geological parameter values.

h Elastic thickness 10 km
hi Crustal thickness 35 km
ρc Crustal density 2700 kg m−3

ρm Mantle density 3300 kg m−3

E s Young’s modulus, surface layer 30 GPa
Eb Young’s modulus, elastic substrate 1 GPa
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Folding in regions of extension 1129

Figure 15. Amplitude (left-hand panel) and wavelength (right-hand panel) versus the amount of extension γ . Solid lines are for the model with an elastic
substrate, dashed lines are for a viscous substrate. The parameter values used in the calculations are given in Section 4.2.

folds have an amplitude of 500 m, and a wavelength of 36 km. If
we consider a weak elastic substrate, with a small Young’s modulus
Eb = 1 GPa for example, eq. (7) leads to an amplitude of 300 m
and a wavelength of 23 km. The amount of extension that has been
chosen for these calculations may be larger than in reality and we
discuss this point later.

5 D I S C U S S I O N

5.1 Comparison with observations

Large-scale folds that form metamorphic domes and their internal
structure clearly indicate ductile deformation. We propose that duc-
tile extension-perpendicular folding was imposed by the folding of
a thin superficial elastic layer, and that folds were later exhumed. In
this model, the lateral shortening which generates the folds results
from a combination of the longitudinal stretching and the boundary
conditions (Friedl et al. 2000): no external compression in a direc-
tion perpendicular to extension is required. This is consistent with
the analysis of Fletcher & Bartley (1994). On the contrary, folding
of a ductile layer only (no elastic layer) would not be achievable
under such a regime: ductile folding may only proceed if some
compression is applied (Schmalholz 2008).

In geological reality, the amount of extension may not be known
with great accuracy. The main result is perhaps that the wavelength
of the elastic folding is not very sensitive to this variable and takes
values of a few tens of kilometres for all reasonable combination of
input parameters. Another important result is that folding does not
require large amounts of extension, as shown by the laboratory ex-
periments, and by Fig. 15. Structures with a significant amplitude are
formed even for amounts of extension that are less than 1 per cent.

The wavelength of folds is predicted to be in the 20–40 km range
depending on the behaviour of the substrate, which is consistent with
the observations of metamorphic domes in both the Aegean and the
Basin and Range. Similar folds have been mapped in the Norwegian
Caledonides (Chauvet & Séranne 1994). In the Basin and Range,
Mancktelow & Pavlis (1994) observe that the amplitude of the folds

decreases and the wavelength increases for progressively younger
structures. Assuming that the amount of extension increases with
time, this observation can be recast as an increase in the amplitude
of folds and a decrease of the wavelength of folds as the amount
of extension is increased, which is consistent with the theoretical
expectations.

In this model, the characteristics of folds are essentially set by
the elastic layer. The wavelength λ that is found has important
implications for deformation in the lower crust. Horizontal stress
variations are generated over that same wavelength at the top of the
substrate below the elastic layer and decay over an e-folding depth
of λ/(2π ), as shown by Turcotte & Schubert (1982). This e-folding
depth is therefore less than 10 km, implying that horizontal stress
variations are very small at the base of the crust, which explains why
the Moho discontinuity is not deflected. In other words, the Moho
remains horizontal because of the wavelength that is selected.

In the Aegean, the setting is relatively simple: the extension direc-
tion has not varied through time, and the geometry of the Aegean
Sea can be roughly approximated by a rectangle with long sides
parallel to the stretching direction. This allows a straightforward
comparison with laboratory experiments. Extension parallel folds
that form the domes of Naxos, Paros and Mykonos (Fig. 2) are lo-
cated in the central part of the extended region, which is consistent
with the experimental observations. In the Aegean, the aspect ratio
of the extension zone W/L was probably about 1, so that we expect
that the folded area is small and involves a small number of folds,
as observed.

In the Basin and Range, the geometry of the extended domain
is more complex than in the Aegean, and the extension direction
has changed with time, from WSW–ENE to WNW–ESE. The large
dimensions of this province prevent generalizations of the sim-
ple physical model. Mineralogical dating indicates that extension-
parallel folds that formed many metamorphic domes were gener-
ated in early stages of extension (Fletcher & Bartley 1994). The
topographic highs and lows are due to displacements along normal
faults that are nearly perpendicular to the stretching. We suggest
that some of these faults may have localized along folds that were
generated in the first extension phase and elaborate on this in a
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1130 F. Lévy and C. Jaupart

Figure 16. Topographic profile AB across the Basin and Range province, as defined on Fig. 1.

separate section. We note that many aspects of the Basin and Range
topographic structures are consistent with those of elastic folding.
Their strike is subparallel to the WSW–ENE extension direction.
It slightly varies across the region, which can also be compared
to laboratory observations (Section 3.4). The Moho is flat beneath
the province (Klemperer et al. 1986; Gans 1987). The amplitude
of the surface undulations is maximum at the centre and decreases
towards the edges of the province (Fig. 16), as in the experiments
(Fig. 4). Another interesting feature is the Snake River Plain at the
northern end of the province, which was subjected to the same
regional extension (Parsons et al. 1998), but which has remained
unfolded. This part of the province lies against rigid boundaries
where neither extension nor shortening are allowed.

5.2 Towards faulting

If the stress field driving the deformation is uniaxial along the exten-
sion direction, as proposed by Fletcher & Bartley (1994), classical
theoretical arguments predict faulting in a direction perpendicu-
lar to that of stretching (Spencer & Chase 1989). According to
Buck (1988) and Spencer & Chase (1989), such faults develop into
the prominent low-angle detachments that characterize extension
zones. In the Aegean and in the Basin and Range, however, there
is also another set of faults that are parallel to fold axes and to the
stretching direction (Fletcher & Bartley 1994; Janecke et al. 1998;
Faulds et al. 2002).

Folding of the elastic upper crustal layer may induce failure in the
extension direction, but it requires a minimum amount of folding
and hence a minimum amount of stretching. One must therefore con-
sider two different extension thresholds for the two types of faulting
that may occur: one for extension-parallel faults induced by folding
and the other for extension-perpendicular faults. Clearly, if the for-
mer is larger than the latter, extension gets accommodated mostly by
extension-perpendicular faults with minor extension-parallel folds
and no extension-parallel faults. We use the Mohr–Coulomb crite-
rion, such that the tangential stress τ exceeds a critical value given
by τ = μp + C , where μ is the friction coefficient, C is cohesion
and p the normal stress, respectively. For the elastic plate, we write
the force and momentum equilibrium equations in the Oyz plane
using beam theory (Landau & Lifshitz 1986):⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−dp

dy
+ d2ζ

dy2
τ − ρg

dζ

dy
= 0,

p
d2ζ

dy2
+ dτ

dy
+ ρg = 0,

dM

dy
= hτ,

(10)

where ζ is the shape of folds (Fig. 7), p is the average normal stress
through the plate, τ is the tangential stress and M is the bending
moment.

In a fold, half of the elastic layer is in compression and the other
half is in extension. On the contrary, the tangential stress is applied
over the whole plate thickness. Thus, faults will localize where the
tangential stress is maximum. The tangential stress τ can be derived
from the momentum equilibrium equation

τ = D

h

d3ζ

dy3
. (11)

Assuming that the folds are sinusoidal in shape, we obtain

τ = − 2π3 Eh2 A

3λ3(1 − ν2)
cos

(
2πy

λ

)
. (12)

The absolute value of the tangential stress is maximum at the in-
flection points of the folds, between the top (the range) and the base
(the basin) of the fold. The average normal stress p is deduced by
integrating the first equation

p = ρg

(
h

2
− A sin

(
2πy

λ

))
+ D

2h
A2

(
2π

λ

)4

sin2

(
2πy

λ

)
.
(13)

At the inflection point of the folds, p = ρgh
2 . Fig. 17 shows the

ratio (τ − C)/p as a function of the extension factor. For a friction
coefficient μ = 0.65 and a viscous substrate, rupture in a direction
parallel to extension occurs after ∼0.5 per cent of extension.

Figure 17. Stress ratio in a folded elastic sheet versus the amount of exten-
sion γ . Solid lines are for the model with an elastic substrate, dashed lines
are for a viscous substrate. The parameter values used in the calculations are
given in the text, except for cohesion C which is 20 MPa. The dotted line
shows the value of the friction coefficient μ = 0.65. Faulting occurs when
the stress ratio becomes larger than μ.
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Folding in regions of extension 1131

Rupture may also occur in conjugate strike-slip faults at an angle
to the uniaxial extensional stress field (Fletcher & Bartley 1994)
or steep normal faults perpendicular to the stretching (Spencer &
Chase 1989). This occurs when the regional stress has reached a
value

σR = 2 (μρgh + 2C)

3μ + √
3

. (14)

For a horizontal uniaxial stress field, the corresponding extension
factor is simply equal to this stress divided by Young’s modulus E.
We obtain a critical extension factor of 0.8 per cent, which is larger
than that for faulting due to folding.

We conclude that extension-parallel faulting occurs first, before
rupture in other directions. This is an important result for the model
that is proposed for the Basin and Range province. The fault ar-
ray bordering basins and ranges may have localized along folds
formed during the initial WSW–ENE extension phase, subparallel
to the extension direction at that time. In the more recent phase
of WNW–ESE extension, spreading in the direction of extension
could have been accommodated by displacements across the already
existing fault array.

5.3 Elastic thickness

In the Earth, the elastic thickness must be understood as an effective
thickness which depends on the thermal structure as well as the
magnitude and sign (i.e. in tension or compression) of the deviatoric
strain and stress (Goetze & Evans 1979). The effective thickness
is smaller in tension than in compression because rocks fail at
lower stress levels in tension than in compression. The mechanism
invoked in this paper relies on tension in the x-direction and zero
applied stress in the y-direction. Folding is due to shortening in the
y-direction with a total amount that depends only on the amount
of extension and Poisson’s ratio (eq. 5). The elastic thickness for
folding involves both tension and compression on either side of the
neutral surface (Goetze & Evans 1979). In geological reality, this
effective thickness is not the same as that for horizontal extension
due to the different deviatoric stress distributions involved. This
difference has no bearing on the analysis for folding, which relies
on the amount of extension and a purely geometrical constraint, and
not on the stresses involved.

Folding in an elastic regime is traditionally ruled out on the
grounds that it requires large stresses that are not available in nature
(Turcotte & Schubert 1982). This issue is discussed by Marques &
Podladchikov (2009), who provide some counter-arguments. These
authors emphasize that elastic deformation does occur for small
amounts of strain and that it may affect later phases of deformation.
As regards the conditions for a given amount of strain, a key vari-
able is the elastic thickness because stresses get concentrated in the
mechanically strong upper crustal material and hence in the elas-
tic layer (Marques & Podladchikov 2009): for a given total driving
force, the smaller the elastic thickness is the larger the extensional
stresses are. In regions of extension, we expect a small elastic thick-
ness in association with high heat flow, due to both stretching at the
lithospheric scale and magma intrusions in the crust. Analysis of
topography and gravity anomalies confirm that the effective elastic
thickness is small in these regions, in a range of 5–15 km (Lowry &
Smith 1994). In such conditions, the small amounts of deformation
that are needed for folding require small applied stresses and hence
a small total driving force.

We have already commented on the lack of isostatic compensa-
tion for the topography in both the Aegean and the Basin and Range.

For periodic undulations of topography with wavelength λ, relax-
ation in a viscous material occurs over a characteristic time �t ≈
4πμc/(ρcgλ), where μc is the effective viscosity. For λ = 40 km
and an effective viscosity that is less than 1022 Pa s (e.g. Kruse
et al. 1991; Kaufman & Royden 1994; McKenzie et al. 2000), it is
not possible to maintain basin-and-range topography for more than
3 Ma. Thus, such topography must be supported elastically.

6 C O N C LU S I O N S

In initial phases of extension, the total strain is small and there must
be an elastic component to the deformation. Our analysis suggests
that this has important consequences for further deformation at
larger values of displacement and strain. We have shown that the
stretching of a thin elastic plate leads to folding and have verified the
validity of simple scaling laws using laboratory experiments. Such
deformations are significant even for amounts of extension that
are as small as one percent or less. In the case of the longitudinal
extension of a rectangular plate, folds are oriented parallel to the
stretching direction. For more complex configurations, the fold axes
may not be perfectly aligned with the extension direction and may
rotate slightly with increasing amounts of extension.

We propose that metamorphic domes result from a ductile fold-
ing imposed by the elastic deformation of an upper crustal layer in
response to stretching. An energy minimization calculation allows
us to estimate the wavelength and amplitude of the folds in the
case of the Earth’s crust. We obtain values comparable to those of
extension-parallel folds that are observed in metamorphic domes in
continental extended terranes. We show that even though the amount
of extension which occurs before faulting is small, it is sufficient
to form significant undulations of Earth’s surface. This model ex-
plains the geometry of the structures observed in the Aegean Sea
and in the Basin and Range, as well as their main characteristics. It
also explains why the induced topography is not isostatically com-
pensated and why the Moho remains flat in such regions. Finally,
the model accounts for some of the topographic features of the
Basin and Range province, which may have been set up by the same
process.
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Chauvet, A. & Séranne, M., 1994. Extension-parallel folding in the Scan-
dinavian Caledonides: implications for late-orogenic processes, Tectono-
physics, 238, 31–54.

Corti, G., 2005. Dynamics of periodic instabilities during stretching of the
continental lithosphere: view from centrifuge models and comparison
with natural examples, Tectonics, 24, doi:10.1029/2004TC001739.

Dewey, J.F., 1988. Extensional collapse of orogens, Tectonics, 7, 1123–
1139.

Eaton, G.P., 1980. Geophysical and geological characteristics of the crust
of the basin and range province, in Continental Tectonics, pp. 96–113,
eds, Burchfiel, B.C., Oliver, J.E. & Silver, L.T., National Academy of
Science, Washington, DC.

Eaton, G.P., 1982. The Basin and Range Province: origin and tectonic sig-
nificance, Ann. Rev. Earth planet. Sci., 10, 409–440.

Faulds, J.E., Olson, E.L., Harlan, S.S. & McIntosh, W.C., 2002. Miocene ex-
tension and fault-related folding in the Highland Range, southern Nevada:
a three-dimensional perspective, J. Struct. Geol., 24, 861–886.

Fletcher, J.M. & Bartley, J.M., 1994. Constrictional strain in a non-coaxial
shear zone: implications for fold and rock fabric development, central
Mojave metamorphic core complex, California, J. Struct. Geol., 16(4),
555–570.

Fletcher, J.M., Bartley, J.M., Martin, M.W., Glazner, A. & Walker, J.D.,
1995. Large-magnitude continental extension: an example from the cen-
tral Mojave metamorphic core complex, GSA Bull., 107(12), 1468–
1483.

Fletcher, R.C. & Hallet, B., 1983. Unstable extension of the lithosphere:
a mechanical model for Basin-and-Range structure, J. geophys. Res.,
88(B9), 7457–7466.

Friedl, N., Rammerstorfer, F.G. & Fischer, F.D., 2000. Buckling of stretched
strips, Comput. Struct., 78, 185–190.

Gans, P.B., 1987. An open-system, two-layer crustal stretching model for
the eastern Great Basin, Tectonics, 6, 1–12.

Goetze, C. & Evans, B., 1979. Stress and temperature in the bending litho-
sphere as constrained by experimental rock mechanics, Geophys. J. Int.,
59, 463–478.

Hammond, W.C. & Thatcher, W., 2004. Contemporary tectonic deformation
of the Basin and Range province, western United States: 10 years of
observation with the Global Positioning System, J. geophys. Res., 109,
doi:10.1029/2003JB002746.

Hammond, W.C. & Thatcher, W., 2005. Northwest Basin and Range tectonic
deformation observed with the Global Positioning System, 1999–2003,
J. geophys. Res., 110, doi:10.1029/2005JB003678.

Janecke, S.U., Vanderburg, C.J. & Blankenau, J.J., 1998. Geometry, mecha-
nisms and significance of extensional folds from examples in the Rocky
Mountain Basin and Range province, U.S.A., J. Struct. Geol., 20(7),
841–856.

Jolivet, L., 2001. A comparison of geodetic and finite strain in the Aegean,
geodynamic implications, Earth. planet. Sci. Lett., 187, 95–104.

Jolivet, L. & Faccenna, C., 2000. Mediterranean extension and the Africa-
Eurasia collision, Tectonics, 19(6), 1095–1106.

Jolivet, L., Famin, V., Mehl, C., Parra, T., Aubourg, C., Hébert, R. &
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A P P E N D I X A : F O L D
C H A R A C T E R I S T I C S F O R A N
I S O L AT E D E L A S T I C S H E E T

The wavelength λ and amplitude A are obtained by minimizing the
total energy U of the elastic sheet, and by taking into account an
inextensibility condition in a direction perpendicular to stretching.
The energy U can be written as

U = Ub + Us, (A1)

where U b and U s are the bending and stretching energies of the
sheet, respectively.

In view of our experiments, we will assume that the shape ζ of the
wrinkles is to the first-order well-described by sinusoidal functions

ζ = A sin
(πx

L

)
sin

(
2πy

λ

)
. (A2)

A1 Bending energy

The bending of the sheet induces compressive stresses in the in-
ner part of the folds and extensive stresses in their outer part. For
sufficiently small amounts of flexure, the neutral line between the
extending and contracting domains is at mid-thickness of the sheet.
We take this assumption for the following calculations. The stress
σ and strain ε associated with the bending of a thin plate are in this
case

σ = E

1 − ν2
z
∂2ζ

∂y2
and ε = z

∂2ζ

∂y2
, (A3)

where ζ is the vertical displacement of a point of the plate caused
by the bending (Landau & Lifshitz 1986). The bending energy is

Ub =
∫ W

0

∫ L

0

∫ h
2

− h
2

σε dzdxdy, (A4)

Ub = 1

2

∫ W

0

∫ L

0
D

(
∂2ζ

∂y2

)2

dxdy with D = Eh3

12(1 − ν2)
.

(A5)

Replacing ζ by its expression (eq. A2) leads to

Ub = 2D A2
(π

λ

)4
LW. (A6)

A2 Stretching energy

The force applied in the longitudinal direction to stretch the sheet is

F =
∫ W

0
T dy, (A7)

with T = Eγ h. It induces an extension

dl =
√

dx2 + dζ 2 − dx, (A8)

which gives to the first order

dl ∼ 1

2

(
∂ζ

∂x

)2

dx, (A9)

assuming that the vertical displacement is small compared to dx .
The stretching energy is therefore

Us =
∫ L

0
Fdl, (A10)

Us = 1

2

∫ W

0

∫ L

0
T

(
∂ζ

∂x

)2

dxdy. (A11)

Using eq. (A2), we obtain

Us = π 2

8
T A2 W

L
. (A12)

A3 Condition of inextensibility

Shortening in the Oy-direction is dw =
√

dy2 + dζ 2 − dy, which
gives to the first order

dw ∼ 1

2

(
∂ζ

∂y

)2

dy. (A13)

We can write∫ L

0

∫ W

0

1

2

(
∂ζ

∂y

)2

dydx =
∫ L

0

∫ W

0

�(x)

W
dydx, (A14)

where �(x) is the shortening induced by the stretching.
With our expression of ζ (eq. A2), this leads to

A2W = 2λ2�̄

π 2
, (A15)

where �̄ is the average transverse shortening.

A4 Expressions of A and λ

Combining eqs (A6), (A12) and (A15), we get

U = �̄

(
4π 2

λ2
DL + 1

4
T

λ2

L

)
. (A16)

The wavelength which minimizes U is

λ = 2
√

π L

(
B

T

)1/4

. (A17)

The corresponding amplitude is obtained from eq. (A15)

A = λ

π

(
2

�̄

W

)1/2

. (A18)

If we assume that the average transverse shortening is �̄ = νγ W ,
we finally get

A = (νLh)
1
2

[
16γ

3π 2(1 − ν2)

] 1
4

, (A19)

λ = (2π Lh)
1
2[

3(1 − ν2)γ
] 1

4

. (A20)

A P P E N D I X B : A C C O U N T I N G F O R
D E F O R M AT I O N B E N E AT H T H E
E L A S T I C L AY E R A N D G R AV I T Y

B1 Variation of potential energy

We consider a crust of initial thickness hi and density ρc. Stretched
in the Ox-direction (Fig. 14), it folds and undergoes lateral shorten-
ing in the Oy-direction. The crustal thickness increases and becomes
hf = hi(1 + �), where � is the transverse shortening (� = �W/W ,
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see eq. 5). We assume that the surface folds are not compensated
isostatically, because of their small wavelength, but the augmenta-
tion of the crustal thickness implies a large-scale compensation. We
calculate the potential energy of the system for a constant mass,
by length unit in the Ox-direction. The mass unit that we con-
sider is hfλ, which corresponds in the reference state to hi(1 +
2νγ )λ. The potential energy in the initial and folded states are
therefore

Uini = ρcg

∫ λ(1+2νγ )

0

∫ hf −ha

hf −hi−ha

z dz dy , (B1)

Ufin = ρcg

∫ λ

0

∫ hf +A sin(ky)

0
z dzdy. (B2)

The variation of potential energy obtained after integration is

�Upot = ρcgλ
A2

4
+ ρcgλνγ h2

i (1 + 2νγ )

(
1 − 2

ρc

ρm

)
. (B3)

B2 Bending energy

We rewrite the stress and strain associated to the bending of a thin
plate (eq. A3) with scaling lengths. We obtain

σ = Esh
A

λ2
and ε = h A

λ2
. (B4)

The bending energy of the elastic surface layer is then

Ub = σεhλ = Esh
3 A2

λ3
. (B5)

B3 Stretching energy

The stretching energy by length unit in the Ox-direction is obtained
from eq. (A12):

Us = 1

2

∫ W

0
Esγ h

(
∂ζ

∂x

)2

dy, (B6)

which can be expressed with scaling lengths as

Us = Esγ h
A2

λ
. (B7)

B4 Energetic dissipation for a viscous substrate

In the case of a viscous substrate, the energetic dissipation is

Uvisc = η
A

λτ
, (B8)

where η is the viscosity and τ the time lapse required to get a
deformation ε = A/λ.

B5 Energetic cost of the deformation of an elastic
substrate

In the case of an elastic substrate, the variation of energy induced
by its deformation is calculated assuming that it is thick enough to
be assimilated to a half-space. With the characteristic lengths of the
problem, the stress can be written as

σ = Eb
A

λ
, (B9)

and the energy variation for the substrate by length unit is

Usubstrate = σ Aλ = Eb A2. (B10)

B6 Condition of inextensibility

The width variation (in the Oy-direction) is

dw =
√

dy2 + dζ 2 − dy. (B11)

We can therefore write

dw

dy
=

√
1 +

(
∂ζ

∂y

)2

− 1, (B12)

which, using scaling lengths, leads to

� ∼
√

1 + A2

λ2
− 1 (B13)

with �, the lateral deformation (see eq. 5),

� = 2νγ

1 + 2νγ
. (B14)

A

λ
� 1, implying that, to first order, A ∼ λ

√
�.
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