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ABSTRACT

Context. The test-field method permits us to compute dynamo coefficients from global, direct numerical simulations. The subsequent
use of these parameters in mean-field models enables us to compare self-consistent dynamo models with their mean-field counter-
parts. This has been done to date for a simulation of rotating magnetoconvection and a simple benchmark dynamo, which are both
(quasi-)stationary.
Aims. It is shown that chaotically time-dependent dynamos in a low Rossby number regime can be appropriately described by corre-
sponding mean-field results. We also identify conditions under which mean-field models disagree with direct numerical simulations.
Methods. We solve the equations of magnetohydrodynamics (MHD) in a rotating, spherical shell in the Boussinesq approximation.
Based on this, we compute mean-field coefficients for several models with the help of the previously developed test-field method. The
parameterization of the mean electromotive force by these coefficients is tested against direct numerical simulations. In addition, we
use the determined dynamo coefficients in mean-field models and compare the outcome with azimuthally averaged fields from direct
numerical simulations.
Results. The azimuthally and time-averaged electromotive force in rapidly rotating dynamos is sufficiently well parameterized by the
set of determined mean-field coefficients. In comparison to the previously considered (quasi-)stationary dynamo, the chaotic time-
dependence leads to an improved scale separation and thus to a closer agreement between direct numerical simulations and mean-field
results.
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1. Introduction

Mean-field electrodynamics provides a conceptual understand-
ing of dynamo processes generating coherent, large-scale mag-
netic fields in planets, stars, and galaxies (Krause & Rädler 1980;
Moffatt 1978). However, it depends on a number of free param-
eters, that are only poorly known under astrophysically relevant
conditions. We briefly summarize the essentials of mean-field
theory to specify this point. Within a mean-field approach, the
velocity and the magnetic field are usually divided into large-
scale mean fields, V, B, and residual parts, u, b, that vary on
much shorter length or timescales,

V = V + u, B = B + b. (1)

The evolution of the mean field is then governed by

∂B
∂t
= ∇ × (E + V × B − η∇ × B). (2)

In the above equation, the mean electromotive force is defined
as E = u × b and η is the magnetic diffusivity. Equation (2) is
coupled with an equation for the residual field

∂b
∂t
= ∇ × (G + V × b + u × B − η∇ × b), (3)

in which G is defined as G = u × b− u × b. The above system of
equations is equivalent to the usual induction equation and no ap-
proximation has been applied so far. An important simplification
of the mean-field approach consists of considering Eq. (2) alone,

which requires us to express E as a linear functional of u,V,
and B. This is justified by Eq. (3), and we may write

Ei = E(0)
i +

∫ ∫
Ki j(x, x′, t, t′) B j(x′, t′) d3x′ dt′, (4)

in which K denotes some integral kernel and we refer for the
moment to cartesian coordinates. The term E(0) in Eq. (4) ac-
counts for small-scale dynamo action and is not considered here
but discussed later. In addition, we assume that E depends only
instantaneously and nearly locally on B. This is crucial and is re-
ferred to as the assumption of scale separation in the following.
Therefore, B in Eq. (4) may be replaced by its rapidly converg-
ing Taylor series expansion at x,

B j(x′, t) = B j(x, t) + (x′k − xk)
∂B j(x, t)

∂xk
+ · · · , (5)

and taken out of the integral

Ei = ai jB j + bi jk
∂B j

∂xk
+ · · · , (6)

where

ai j =

∫ ∫
Ki j(x, x′, t, t′) d3x′dt′, (7)

bi jk =

∫ ∫
Ki j(x, x′, t, t′)(x′k − xk) d3x′dt′ (8)

· · ·
Article published by EDP Sciences A108, page 1 of 5

http://dx.doi.org/10.1051/0004-6361/201116642
http://www.aanda.org
http://www.edpsciences.org


A&A 533, A108 (2011)

The dynamo coefficients a and b defined in Eqs. (7) and (8)
together with the expansion in Eq. (6) may finally be used to
solve Eq. (2). Moreover, a and b are directly linked to dynamo
processes, i.e. to the generation, advection, and diffusion of the
mean magnetic field, thus provide physical concepts to explain
dynamo action (e.g. Rädler 1995). Unfortunately, they are not
known in general and previous work often relies on arbitrary as-
sumptions about them.

The test-field method by Schrinner et al. (2005, 2007) per-
mits us to compute a and b from direct numerical simulations.
It was first applied to a simulation of rotating magnetoconvec-
tion (Olson et al. 1999) and a simple geodynamo simulation
(Christensen et al. 2001), which are both stationary except for an
azimuthal drift. In the past three years, the test-field method was
intensively used to compute mean-field coefficients for box sim-
ulations (e.g. Sur et al. 2008; Gressel et al. 2008; Brandenburg
2009; Käpylä et al. 2009; Rädler & Brandenburg 2009), which
are not the focus of this paper. Although the test-field method
proved to be reliable, the parameterization of the electromo-
tive force for the steady geodynamo model was unsatisfactory.
The expansion in Eq. (6) does not converge for this steady ex-
ample because of a non-sufficient scale separation (Schrinner
et al. 2007). In this paper, we revisit the problem for chaoti-
cally time-dependent dynamos. We test azimuthally and time-
averaged electromotive-force vectors against their parameteriza-
tion based on corresponding dynamo coefficients and compare
azimuthally and time-averaged fields from direct numerical sim-
ulations with mean-field results.

2. Dynamo simulations

We solve the equations of magnetohydrodynamics (MHD) in the
Boussinesq approximation for a conducting fluid in a rotating
spherical shell as given by Olson et al. (1999),

E

(
∂V
∂t
+ V · ∇V − ∇2V

)
+ 2z × V + ∇P =

Ra
r
ro

T +
1

Pm
(∇ × B) × B (9)

∂B
∂t
= ∇ × (V × B) +

1
Pm
∇2B (10)

∂T
∂t
+ V · ∇T =

1
Pr
∇2T. (11)

The coupled differential equations for the the velocity V, the
magnetic field B, and the temperature T are governed by four
parameters. These are the Ekman number E = ν/ΩL2, the (mod-
ified) Rayleigh number Ra = αTg0ΔT L/νΩ, the Prandtl num-
ber Pr = ν/κ, and the magnetic Prandtl number Pm = ν/η. In
these expressions, ν denotes the kinematic viscosity, Ω the ro-
tation rate, L the shell width, αT the thermal expansion coeffi-
cient, g0 is the gravitational acceleration at the outer boundary,
ΔT stands for the temperature difference between the spherical
boundaries, κ is the thermal and η = 1/μσ the magnetic diffu-
sivity with the magnetic permeability μ, and the electrical con-
ductivity σ. In addition to these input parameters, we introduce
the magnetic Reynolds number Rm = Vrms L/η, and the local
Rossby number Rol = Vrms/(ΩL) · (l/π) as important output pa-
rameters. For the latter parameter definitions, Vrms denotes the
rms-velocity and π/l is the mean half-wavelength of the flow de-
rived from the kinetic energy spectrum (Christensen & Aubert
2006).

No-slip mechanical boundary conditions were chosen for all
simulations presented here and the magnetic field continues as a

potential field outside the fluid shell. Convection is driven by an
imposed temperature difference between the inner and the outer
shell shell-boundary.

3. Computation of dynamo coefficients

To determine the dynamo coefficients a and b, we apply the test-
field method explained in full detail in Schrinner et al. (2007).
The principal idea of this approach is to measure the mean elec-
tromotive force generated by the interaction of the flow with an
arbitrarily imposed test field, BT. The imposed test field appears
as an inhomogeneity in Eq. (3),

∂b
∂t
− ∇ × (G + V × b − η∇ × b) = ∇ × u × BT, (12)

which is solved simultaneously with Eqs. (9)−(11). The elec-
tromotive force due to a given BT may then be computed as
ET = u × b with b resulting from Eq. (12). Finally, ET is used to
solve Eq. (6) for the dynamo coefficients. To close the resulting
system of linear equations and determine all components of a
and b, the numerical experiment in Eq. (12) must be repeated
several times with different fields BT.

So far, averaged quantities labelled by an overbar are ax-
isymmetric fields, whereas u and b in (12) are non-axisymmetric
residuals. For a stochastically stationary but nevertheless chaoti-
cally time-dependent flow,E and the mean-field coefficients vary
in time. Thus, we introduce an additional time-averaging indi-
cated by brackets, 〈· · · 〉, and write

E ≈ a〈B〉 + b〈∇B〉 + · · · (13)

instead of Eq. (6). In the above equation, E has been time-
averaged,

E = 〈u × b〉, (14)

and a and b also denote time-averaged tensors. Furthermore, we
interpret averages in Eq. (2) as combined azimuthal and time av-
erages. Neither is formally correct. However, the approximations
applied can be justified, if

i) temporal fluctuations of the axisymmetric velocity and mag-
netic field are comparatively small, and

ii) time averages of the non-axisymmetric residuals of the ve-
locity and the magnetic field are negligible.

The above assumptions imply that azimuthal and time averaging
act in a similar way and reinforce each other. As a consequence,
mean-field coefficients are derived in this context from time av-
erages of vectors ET resulting from Eq. (12). We emphasise that
assumptions i) and ii) are not justified a priori but have to be
tested in numerical simulations.

4. Comparison of mean-field results with direct
numerical simulations

Mean-field coefficients determined from direct numerical sim-
ulations may be used in mean-field models. Subsequently, az-
imuthally and time-averaged magnetic fields resulting from
three-dimensional, self-consistent models may be compared
with their mean-field counterparts. Mean-field calculations pre-
sented here are based on Eq. (2) written as an eigenvalue
problem

σB = ∇ × DB, (15)
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Table 1. Overview of the models considered, ordered with respect to
their local Rossby number.

Model E Ra Pm Mean l Rol Rm ΔE λ/(η/L2)

1 1 × 10−3 100 5 5 0.013 39 4.6 4.18
2 1 × 10−4 334 3 11 0.014 123 1.6 –7.05
3 1 × 10−4 334 2 11 0.015 86 1.4 –3.87
4 3 × 10−4 195 3 9 0.019 67 1.6 2.22
5 3 × 10−4 243 2 9 0.024 56 1.2 0.66
6 3 × 10−4 285 2 9 0.026 61 1.3 0.05
7 3 × 10−4 375 1.5 11 0.042 60 1.1 0.78

in which the linear operator D is defined as

DB = V × B + aB + b∇B − 1/Pm∇ × B, (16)

and a and b are time-averaged dynamo coefficients as described
above. The eigenvalues σ lead to a time evolution of each mode
that is proportional to exp (σt). For more details about the eigen-
value calculation, we refer to Schrinner et al. (2010b).

In addition, the parameterization of the electromotive force
by dynamo coefficients, i.e. Eq. (6), may be tested against the
mean electromotive force in direct numerical simulations. Again
by virtue of Eqs. (13), (14), we compare E as given in Eq. (14)
and derived directly from numerical models, with

E(1) = a〈B〉 + b〈∇B〉, (17)

in which 〈B〉 and 〈∇B〉 are also obtained from direct numerical
simulations. Furthermore, we follow Schrinner et al. (2007) and
introduce

ΔE =
∫

V

∣∣∣E − E(1)
∣∣∣ dV∫

V
|E| dV

(18)

in order to quantify errors in the parameterization of E.

5. Results

Besides the (quasi-)steady benchmark dynamo (model 1), we
considered six chaotically time-dependent dynamos. The mod-
els are defined by four control parameters; E, Ra, and Pm were
varied (see Table 1), whereas the Prandtl number was kept fixed
and set to 1 for all simulations. The local Rossby number is
always lower than 0.12 for the models considered here. They
therefore belong to the regime of kinematically stable dynamos
(Schrinner et al. 2010a). To simplify the time averaging, models
with low and fairly moderate Rm were chosen. The resulting ve-
locity fields are almost symmetric with respect to the equatorial
plane, except for model 7, and convection occurs mainly out-
side the inner core tangent cylinder. Figure 1 shows the volume-
averaged kinetic energy density for model 3 and illustrates the
irregular time-dependence of these models.

The parameterization of the mean electromotive force given
by Eq. (17) was found to be more suitable for the chaotically
time-dependent dynamos than the benchmark dynamo; ΔE de-
creases by more than a factor of 4 from model 1 to model 7.
The considerable decline in ΔE from the steady to the time-
dependent models is most clearly visible in Fig. 2. It shows
ΔE for different models versus their magnetic Reynolds num-
ber. Apart from the aforementioned difference between the time-
dependent and the stationary models, a dependence of ΔE on Rm
cannot be inferred.

Fig. 1. Volume-averaged kinetic energy density versus magnetic diffu-
sion time for model 3.

Fig. 2. ΔE versus the magnetic Reynolds number for the (quasi)-
stationary benchmark dynamo (triangle) and the six chaotically time-
dependent dynamos considered.

In addition, the growth rate of the leading eigenmode of D,
λ = �(σ), may be taken as a measure for the accuracy of the
mean-field description. Ideally, it is 0, whereas all overtones are
highly diffusive (Schrinner et al. 2010a, 2011b). For numerical
simulations, however, it is impossible to hit the critical point ex-
actly. The growth rates of the fundamental mode for all models
are given in Table 1 in units of η/L2. We note that the turbulent
diffusivity largely exceeds the molecular one. For model 2, for
instance, we find values of β-components up to 63η. Thus, for
model 2, 1/λ ≈ 1/7 L2/η is much larger than one effective decay
time and the fundamental mode is already near its critical state.
With decreasing ΔE, the growth rates become even smaller and
the values closest to zero have been obtained for models 5−7.

Model 7 provided the closest fitting and enabled ΔE = 1.1 to
be achieved. This is still clearly larger than for the simulation of
rotating magnetoconvection for which ΔE = 0.28 was found by
Schrinner et al. (2007). Figure 3 compares E to E(1). Differences
are visible in all components, but also principal similarities.

Figure 4 compares the azimuthally and time-averaged mag-
netic field resulting from direct numerical simulations with the
fundamental eigenmode of D for model 7. Apart from small dif-
ferences, direct numerical simulations and mean-field calcula-
tions agree very well for this example.

6. Discussion

We do not derive mean-field coefficients for time-averaged mean
fields in a formal sense. The comparisons in Figs. 3 and 4 are
motivated by assumptions i) and ii) in Sect. 3, instead. They
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Fig. 3. Contour plots of Er , Eθ , and Eφ (top line, from left to right)
and E(1)

r , E(1)
θ , and E(1)

φ (bottom line, from left to right) for model 7
in units of (ν/L) (
μηΩ)1/2. In these units, contour lines correspond
to ±3,±9,±15.

are reasonably well fulfilled for the simulations considered here.
For model 7, u time-averaged over 30 magnetic diffusion times
declines sharply to 0.1% of V. A similar decrease has been
found for b. Moreover, the axisymmetric flow and the axisym-
metric magnetic field show comparatively little time variation.
The time-dependent components of V and B are of the or-
der of 8% (37%) and 17% (23%) of the total (axisymmetric)
flow and the total (axisymmetric) magnetic field, respectively.
In other words, time-averaging results in axisymmetric fields
and azimuthal averaging somewhat reduces the time variabil-
ity. Combining both leads to an extended averaging and thus to
an improved scale separation. This finding is also supported by
Figs. 5 and 6. Figure 5 shows a noticeable decrease of ΔE for
model 5, if the time-averaging period τ is increased. ΔE drops
rapidly until τ ≈ 2L2/η; an extension of the time-averaging
interval over more than 2 magnetic diffusion times improves
the scale separation only slightly. Moreover, Fig. 6 compares
the residual with the mean magnetic field for model 1 (upper
panel) and model 7 (lower panel). In contrast to model 1, the
time-dependent residual and the time-averaged mean magnetic
field of model 7 vary on fairly different length-scales. Thus,
a clearer scale separation for the time-dependent models seems
to be plausible. Consequently,ΔE drops drastically from model 1
to model 2. However, there are still noticeable differences be-
tween E and E(1) in Fig. 3 for model 7. On the basis of this
comparison alone, it would be difficult to decide, whether the
parameterization of E is already satisfactory. Additional support
for its reliability comes from the good agreement between the
results of direct numerical simulations and mean-field model-
ing in Fig. 4. Contour plots of all three components of the lead-
ing eigenmode of D agree well with corresponding results from

Fig. 4. Comparison between direct numerical simulations and mean-
field calculations for model 7. Bottom line: azimuthally and time-
averaged magnetic field obtained by solving (9)−(11). Top line: fun-
damental eigenmode resulting from (15). Each component has been
normalised with respect to its absolute maximum. Therefore, the
greyscale coding varies from −1, white, to +1, black, and the contour
lines correspond to ±0.1, ±0.3, ±0.5 ± 0.7,±0.9.

Fig. 5. ΔE for model 5 varying with increasing time-averaging period τ.

direct numerical simulations. Moreover, the growth rates of the
leading eigenmodes are close to zero, as expected for stochasti-
cally stationary dynamos in the kinematically stable regime.

Dynamo action in stars and planetary cores most probably
takes place on a wide range of length and time scales. Owing to
computational limitations, numerical simulations do not cover
the whole range of scales possibly involved. Global dynamo
simulations focus only on large scales, and we typically do not
find small-scale dynamo action as reported for box simulations
(e.g. Vögler & Schüssler 2007). Therefore, the component of
the electromotive force independent of the mean magnetic field,
i.e. E(0) in (4), is zero for most global dynamo simulations. The
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Fig. 6. Upper panel: non-axisymmetric radial magnetic field at arbitrary
longitude (left) and azimuthally-averaged radial magnetic field (right)
for model 1. Lower panel: non-axisymmetric and time-dependent radial
magnetic field at arbitrary longitude and time (left) and azimuthally and
time-averaged radial magnetic field (right) for model 7. The style of the
contour plots is the same as in Fig. 4.

possibility of a contribution to E from small-scale dynamo ac-
tion has been intensively discussed in the literature (e.g. Rädler
1976; Rädler 2000; Rädler & Rheinhardt 2007). It has been used
to argue against the applicability of mean-field theory (Cattaneo
& Hughes 2009). However, the conceptual difficulties that might
result from simultaneous small- and large-scale dynamo action
are at present irrelevant to the approach followed here.

The problem of scale separation has been addressed in this
study only on spatial scales. This seems to be appropriate be-
cause we intend to describe stochastically stationary mean-fields
with zero growth rate resulting from self-consistent dynamo sim-
ulations. More generally, time derivatives of the mean field in
the expansion of E have to be taken into account. As for non-
local effects (Brandenburg et al. 2008), memory effects of the
flow may also influence the parameterization of the electromo-
tive force (Hubbard & Brandenburg 2009; Hughes & Proctor
2010).

Mean-field theory as presented here is intrinsically a kine-
matic approach. In general, an eigenvalue calculation based on
Eq. (15) will lead to growing modes, even if the mean-field co-
efficients are derived from a saturated velocity field (Tilgner &
Brandenburg 2008; Cattaneo & Tobias 2009). In this situation,
mean-field models might not agree with direct numerical simu-
lations, unless a more self-consistent extension of the theoreti-
cal framework and the test-field method is applied (Courvoisier
et al. 2010; Rheinhardt & Brandenburg 2010). However, the
class of chaotically time-dependent dynamos we considered is
kinematically stable. Schrinner et al. (2010a) identified a regime
of rapidly rotating dynamos that are dominated by only one dipo-
lar mode at marginal stability, whereas all overtones are highly
diffusive. A saturated velocity field from this class of dynamos
does not lead to exponential growth of the magnetic field in a
corresponding kinematic calculation. Consequently, the mean-
field approach based on Eq. (15) is applicable to this dynamo

regime, as confirmed once more in this study. In particular for
models beyond this regime, the reliability of the mean-field ap-
proach presented here is not guaranteed and has to be demon-
strated to be plausible by a comparison with direct numerical
simulations (e.g. Schrinner et al. 2011a).

7. Summary

The mean-field description of a (quasi-)stationary dynamo has
been affected by a poor scale-separation, hence from an insuf-
ficiently accurate parameterization of the electromotive force
(Schrinner et al. 2007). We have demonstrated that the chaoti-
cally time-dependent dynamos considered here can provide im-
provements in both cases, if a combined azimuthal and time av-
erage is applied. The more accurate parameterization of E leads
to close agreement between mean-field models and direct nu-
merical simulations: field topologies and growth rates resulting
from both approaches have indeed be shown to be very similar.

In conclusion, the test-field method for determining mean-
field coefficients from direct numerical simulations has also been
found to be reliable for chaotically time-dependent dynamos.
Mean-field theory may serve as a powerful tool to analyse the
dynamo processes in global models resulting from direct numer-
ical simulations.
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