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[1] Among the variations in the rotation of the Earth, the nutation is the most suitable for
studying the Earth’s internal structure. The nutation is mainly driven by the gravitational
torque of the Moon, the Sun and the planets acting on its equatorial bulge. The Earth
response to this external forcing is influenced by its internal structure. Because the
gravitational forcing is known to a very good accuracy, the high precision nutation
observations, using the very long baseline interferometry (VLBI) technique, allow to
estimate Earth interior parameters. The nutational response of the nonrigid Earth to the
gravitational forcing has previously been modeled by a semianalytic model which depends
on parameters, related to the Earth interior, that are adjusted on the nutation observations.
Those parameters are the dynamical ellipticities of the whole Earth and fluid core,
compliances describing the deformability of the whole Earth and fluid core, and coupling
constants related to the torques generated by the differential rotation of the mantle, fluid
core and solid inner core. Most of the nutation models are frequency domain models so
that, in previous studies, the time series of observations are processed before the fit in
order to get data in the frequency domain. Because the parameters are fit only on the
twenty dominant terms in the frequency domain, this fit leads to a loss of information. In
this paper, we present a new fit procedure of the nutation model to the observations, which
estimates the Earth’s parameters directly from the time series of nutation data. This allows
to use all the information of the time domain data and to account for the time variable
uncertainties on the data (this time variability is due to the improvement of the
measurement techniques). Rather than the linearized least squares method used in previous
studies, we use a probabilistic (Bayesian) inversion method. This method does not rely
on the assumption that the model is linear in its parameters, it is thus particularly
well-suited for the highly nonlinear nutation model. In addition, we include an
additional parameter to allow for uncertainties in the nutation model itself. This parameter
is estimated jointly with the geophysical parameters. As result, we obtain a probability
distribution on the parameters. The numerical results are compared with those obtained
from previous studies.

Citation: Koot, L., A. Rivoldini, O. de Viron, and V. Dehant (2008), Estimation of Earth interior parameters from a Bayesian
inversion of very long baseline interferometry nutation time series, J. Geophys. Res., 113, B08414, doi:10.1029/2007JB005409.

response of the Earth to those external geophysical and
gravitational forcings depends on its internal structure. The
forcing of the polar motion and length-of-day variations by
the geophysical fluid layers is poorly determined. On the
other hand, as the positions of the celestial bodies are known
very accurately from the ephemerides, the gravitational
forcing, acting on the Earth and giving rise to nutation, can
be computed very precisely. This explains the interest of
studying the nutation: the forcing being well known, the
comparison of the nutation model with the observations
allows to get information on the Earth’s internal structure.

1. Introduction

[2] Earth’s rotation variations can be separated into three
components: the polar motion, length-of-day variations and
the nutation. While the polar motion and length-of-day
variations are mostly driven by the effects of the external
geophysical fluids (atmosphere, ocean and hydrology),
nutation on the other hand is mainly driven by the external
gravitational forcing from the Sun, the Moon and, to a lesser
extent, the other planets of the solar system. The rotational
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[3] Classically, the nutation for the nonrigid Earth is
modeled in two steps. First, from the gravitational torque
exerted by the Sun, Moon and planets, the nutation of an
hypothetic rigid and homogeneous Earth is computed.
Then, the rigid-Earth nutation motion is convolved with a
transfer function, which contains the departures of the real
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Earth from the rigid and homogeneous approximation. All
the geophysical modeling of the Earth internal structure is
included in this transfer function. This two-step procedure
allows to separate the geophysical aspects concerning the
Earth’s interior from the celestial mechanics problem of the
rigid Earth nutation.

[4] The transfer function for the nonrigid Earth adopted
by the International Astronomical Union (IAU) since 2000
is based on the model developed by Mathews et al. [2002].
In the following, this paper will be referred to as MHB. The
model derived in MHB is semianalytic: the analytic equa-
tions depend on several parameters, characterizing the
internal structure, which are computed numerically. Among
these parameters, those that have a large influence on the
nutational response of the Earth are fit on the nutation
observations.

[s] As the gravitational forcing of nutation can, to a very
good degree of approximation, be decomposed as a sum of
periodic terms, nutation models are often built in the
frequency domain. On the other hand, nutation observations
are given as time series. In order to fit the model to the
observations, the method used in the IAU2000 model
[Herring et al., 2002] consists in estimating from the data,
with the least squares method, the complex amplitude of the
prograde and retrograde part of each periodic term, whose
frequencies are known from the rigid-Earth nutation theory.
They estimate the complex amplitudes of 21 frequencies in
the nutation series. The specific terms chosen are those that
can be reliably estimated (some of the nutation frequencies
are so close that a reliable estimate of the associated
amplitudes is unachievable). However, those nearby fre-
quency terms, which could not be estimated separately,
were taken into account in the computation. The secular
trends, corresponding to a change in the precession constant
and an obliquity rate, are also estimated. The geophysical
parameters of the nutation model are then adjusted to these
complex amplitudes and to the precession rate with a
linearized least squares method.

[6] In this paper, we develop a new method to estimate
the Earth internal parameters from nutation observations.
First, rather than to process the data to get frequencial
information, we express the nutation model in time domain
in order to be able to adjust it directly to the time series data.
This avoids the loss of information due to the truncation at
the 21st term in the frequency domain. The quality of the
nutation data is varying in time due to the improvement of
the measuring techniques. A processing of the data in the
time domain allows to take directly this time variation of the
quality into account. Note however that the time dependent
data quality was also taken into account by Herring et al.
[2002] when computing the complex amplitudes at given
frequencies. The procedure presented here allows to remove
this intermediate step and allows for a direct estimation of
the Earth interior parameters from the data time series.

[7] We use Bayesian inversion to estimate the parameters
from the data in the time domain. The main reason is that
the linearized least squares fit, used in IAU2000, is only
justified if the dependence of the model in its parameters is
weakly nonlinear. This assumption is not satisfied by the
nutation model which has a highly nonlinear dependence in
its parameters. The results are probability distributions on
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the parameters, which is more general than a single numer-
ical value and an associated error on the parameter.

[8] Finally, we include in the Bayesian framework mod-
eling uncertainties accounting for some imperfections in the
nutation model itself. Imperfections in the model may arise
from the following causes: the Earth’s interior model is very
simple, the effects of ocean tides on nutation are computed
by using ocean models which assimilate some oceanic data,
and the atmospheric excitation of nutation is poorly known.

[9] We notice here that another estimation of Earth
internal parameters from VLBI nutation time series has
been recently performed by Krasinski and Vasilyev [2006].
This estimation relies on the theoretical model of Krasinski
[2006] (note that P. M. Mathews, N. Capitaine, and
V. Dehant proposed a comment to this paper, available on
arXiv, DOI:2007arXiv0710.0166M). However, Krasinski
and Vasilyev [2006] did not estimate the same parameters,
what does not allow for a direct comparison with our
results.

2. Nutation Model
2.1. Dynamical Equations

[10] The Earth’s interior model used by MHB is made of
three ellipsoidal layers: the anelastic mantle, the liquid outer
core and the solid inner core. These layers interact with each
others because of pressures on the boundaries, gravitational,
electromagnetic and viscous couplings. The pressure cou-
pling is separated into a contribution coming from the
ellipsoidal shape of the boundaries, which is called the
inertial coupling, and a contribution from the additional
topography of the interfaces, which is called the topographic
coupling. The rotation of the Earth is perturbed by an
external tidal potential, which creates a torque I' on the
Earth’s equatorial bulge.

[11] Each region within the Earth has an instantaneous
rotation vector: {2 for the whole Earth, 2, and €} for the
outer and inner cores respectively. The rotation of the three-
layered Earth is derived from the angular momentum budget
equations which relates the angular momentum of the whole
Earth H, the fluid core Hrand the solid inner core Hj to the
torques applied on these regions. From Mathews et al.
[1991a, 1991b] and MHB, those equations can be written
as:

d—H+Q><H:I‘
dt

dH,
7f+QXHf:QfXHf+FCMB_F1CB (1)
dH

dt

+QxH, =T, + I,

[12] The torque I’y on the inner core is the sum of three
contributions: the gravitational torque generated by the
external tidal potential, the gravitational torque generated
by the masses in the mantle and fluid core and the torque
which results from the fluid pressures acting on the ellip-
soidal surface of the inner core. This torque has been
computed by Mathews et al. [1991a, 1991b]. The torque
/B results from all the other types of interactions between
the layers (electromagnetic, viscous, topographic) which
can create a torque on the inner core. In the same way,
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the torque ' results from all such couplings applied on

the fluid outer core.

[13] The instantaneous rotation vector can be expressed in
terms of the so-called wobbles of the mantle m, fluid outer
core m’ and solid inner core m*. They are defined by: Q =
Qo(i3+m), Qf:Qo(ig;-i-m-i-mf)andQS:Qo(i3+m+
m’), where () is the mean rotation rate of the Earth and i3 is
the instantaneous figure axis.

[14] In order to study nutation, only the two first compo-
nents of the three-dimensional vectorial equation (1) are of
interest and it is conventional to introduce complex combi-
nation of these two first components, e.g., m = my + im,.

[15] The angular momentum for each layer appearing in
equation (1) can be written as the product of its inertia
tensor and its instantaneous rotation vector. The inertia
tensor of each layer is composed of the principal moments
of inertia of that layer in the equatorial plane (4, 4/, A,
respectively for the whole Earth, outer and inner cores) and
axial direction (C, Cf, C%) and of small corrections, c;, c,f,
and cj;, which arise from the deformation of the Earth, of the
outer core and of the inner core respectively. Those defor-
mations are the consequence of the tidal potential and the
centrifugal potentials of the whole Earth, fluid outer and
solid inner cores. Following Sasao et al. [1980], the incre-
ments to the inertia tensors due to the deformations can be
expressed as a linear combination of the parameters char-
acterizing the deformation (¢, the nondimensional tidal
potential introduced by Mathews et al. [1991a, 1991Db],
for the tidal deformations and m, ' and m* for the
deformations due to the centrifugal potential of the Earth,
outer and inner cores respectively):

G3 =31 +icp = A[k(m — @ + &y + (g
=dy +id;, :A/[fy(iﬁ—fb) + By + g ()

S[0(m — @) + xiny + ving ] .

KU

where the parameters «, v, 0, &, 8, x, ¢, 6 and v are called
the compliances. Those parameters describes the ability of
the different regions of the Earth to deform due to different
causes. They can also be written in terms of the Love
numbers. Because of the anelasticity of the mantle, there is a
phase lag between the tidal forcing and the deformational
response. Within this setting, the compliances become
complex and frequency dependent. However, when study-
ing nutation, only diurnal variations are of interest so that, in
the narrow band of the nearly diurnal frequencies, the
compliances can be considered as constant in the frequency
band of nutations.

[16] Inthe MHB nutation model, the dynamical equation (1)
are expanded to first order in the perturbation. Because the
tidal torque I', or equivalently the nondimensional quantity ¢,
can be expressed very accurately as the sum of periodic terms
with frequency o, the linearized dynamical equations can be
solved for each frequency independently.

[17] By expanding the dynamical equation (1) to the first
order and expressing the angular momentum in terms of the
wobbles and inertia tensors (whose increments due to
deformations are given by equation (2)), those equations
can be written in the following matricial form:

M(g, 0)x(0) = ¢(0)y(g, 0), 3)
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where x is the 4-dimensional vector defined by:

o)
xio) = | i) (@)
()

S

S

M is a4 x 4 matrix and y is a 4-dimensional vector whose
complete expressions are given by Mathews et al. [1991a,
1991b, equations (26b)—(26c)] and in MHB for the
contributions arising from the torques I'“™# and TV
The fourth equation of the system in equation (3) comes
from the freedom of motion of the solid inner core in its
fluid environment which effect has to be added to equation
(1) in order to completely describe the rotation of the three-
layered Earth model. This equation, derived in Mathews et
al. [1991a, 1991b], is a function of 7°, the tilt of the solid
inner core with respect to the mantle.

[18] The parameter g introduced in equation (3) contains
all the geophysical parameters of the Earth interior model,
namely, the dynamical ellipticities of each region, defined as
e = (C — A)/A for the whole Earth and equivalently for the
outer and inner cores, the nine compliances introduced in
equation (2) and two nondimensional complex constants,
K%MB and K related to the torques I'“*# and T by the
following relations:

KOMS — TOVB (1024 .
KICB — f\]CB/(iQéAs (,,hs _ I’;’lf))

They are referred to hereafter as the coupling constants at
the CMB and the ICB.

[19] Using Euler’s kinematic relation, which in the fre-
quency domain can be expressed as:

(o)
140’

(o) = (6)

the solution for the complex nutation 7 can be computed
from the solution of the mantle wobble m obtained with
equation (3) by inverting the matrix M for each value of the
frequency:

(M~ (g,0)y(g.0)],(0)
l+o

(g o) =— (7)

where [...]; stands for the first component of the 4-vector
and M~' the inverse of M. The complex nutation 7
appearing in equations (6) and (7) is defined by 7= A1) sin
€g + iAe, where Ay and Ae are the components of the
nutation in longitude and in obliquity respectively.

[20] Instead of expressing the nutation as a function of the
gravitational potential ¢ as it is done in equation (7), the
effect of the gravitational potential on a hypothetic rigid and
homogeneous Earth is computed, and the nutation of the
nonrigid Earth is expressed in terms of the rigid Earth
nutation. It can be shown [Mathews et al., 1991a, 1991b;
MHB] that the first order equations for the nutation of the
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nonrigid Earth can be written as the product of the rigid
Earth nutation 7z and a transfer function:

ER—O'[

(g, o) =

er 71(g7 U)'y(g’ U)LﬁR(Uv eR)7 (8)

where ey, is the value of the dynamical ellipticity used in the
rigid-Earth model, which can be different from the one used
in the nonrigid model (contained in the set of parameters g).
[21] Several rigid-Earth nutation models have been de-
vised and they all reach a very high accuracy (of the order of
0.1 pas). In this work, we use the rigid-Earth model RDAN97
developed by Roosbeek and Dehant [1998]. Their value of
H,;=0.0032737674 leads to ex = 0.0032845202.

2.2. Ocean Tides Effects

2.2.1. Modification of the Dynamical Equations

[22] Ocean tides modify the nutational response of the
Earth for two reasons: they induce increments in the inertia
tensors and change the angular momentum balance due to
the motion of the water with respect to the Earth surface. The
increment to the inertia tensor of the whole Earth due to the
ocean tides is written ¢ and is due to the additional ocean
mass itself and to the load induced deformation. The incre-
ment to the inertia tensor of the fluid core, &, is due to the
load induced deformations of the fluid core. Strictly speak-
ing, there would also be an increment to the inertia tensor of
the solid inner core, but this effect is very small and
consequently is neglected. Therefore the ocean tides contri-
bution to nutation can be studied in the framework of the two-
layered Earth model used by Sasao and Wahr [1981].

[23] The increments & and &° can be expressed, accord-
ing to Sasao and Wahr [1981], in terms of a dimensionless
potential ¢, resulting from the surface load and of three
parameters 7, x and 7). The surface load potential induces two
kinds of increments in the inertia tensor of the whole Earth.
The first one is an increment resulting from the loading mass
of the ocean itself and can be described by the parameter 7:

5]3\/[ = *ATa)b 9)

The second increment is due to the deformation of the Earth
induced by the loading mass and is described by the
parameter . The total increment in the inertia tensor of the
whole Earth due to the surface load potential can then be
written:

30— A(T_X)(ESL (10)
The increment to the inertia tensor of the fluid core, due to
the load-induced deformation, is described by the parameter

n:

& =Ang, (11)

[24] By putting the increments to the inertia tensors &5
and & as well as the relative angular momentum of the
ocean H in the dynamical equations, we get:

~0

20(0) +3:(0) S 4wy () )

M(g, o)x(0) = y(g,

KOOT ET AL.: BAYESIAN INVERSION OF VLBI NUTATION TIME SERIES

B08414

where the first term of the right-hand-side, representing the
gravitational forcing, is the same as in equation (3), and
where:

—(1+0) (1+0)
o 7 0
N I EEACE (13)
0 0

[25] With the modified dynamical equations given in
equation (12), one obtains the nutation amplitude of a
three-layered Earth with ocean tides:

eR—O'[

(g7 ) er 71(ga 0)'y(g> 0—)]17~7R(0—7 eR)

M (g,0).y.(0)], &

140 A
- 0).yulo h(o
3 [M (g17+)ay ( )]1 A(_j (14)

where, again the first term represents the gravitational
forcing and is the same as 1n equation (8).
2.2.2. Computation of &5 and h From OTAM Data
[26] The numerical value of &§ and h can be obtained
from the values of the oceanic tidal angular momentum
(NOTAM) They are given in terms of the OTAM height
" and current H¢ terms which are defined as:

(15)

where we used the fact that, from equations (9) and (10),

M= ﬁ . We use the OTAM numerical value from Chao
et al. [1996] given for the 01, O1, P1 and K1 diurnal tides.

[27] Numerical values of OTAM at other diurnal frequen-
cies are extrapolated from the values at O1, O1, P1 and K1
with an empirical procedure developed by Wahr and Sasao
[1981]. This procedure relies on the assumption that the
OTAM at a given frequency o can be obtained from the
value at the frequency oo from [Wahr and Sasao, 1981,
equation (4.8)]:

R(o,00)D(c,00) ;b((ao)) 030(00)

&(0) =

(16)

This expression has been obtained by noting that the tidal
sea level helght function used by these authors is
proportional to &5.

[28] The R(o, o) factor in equation (16) is a real-valued
function which is resonant at the FCN-frequency. Its ex-
pression, given by equation (4.5) of Wahr and Sasao
[1981], depends on the frequency-dependent body and load
Love numbers. We use the numerical values of the body
Love numbers from Wahr [1981] and the load Love number
from Wahr and Sasao [1981]. Those expressions of the
Love numbers depend on the FCN-frequency that we fix
here to —1.00232 cpsd, which corresponds to a period of
430 d in space, the value obtained in MHB.
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[20] The D(o, o¢) factor in equation (16) describes the
effects due to all the dynamical processes taking place in the
ocean. It is assumed to be a complex-valued function which
varies smoothly with ¢ in the diurnal band. We assume this
function to be linear:

D"(0,00) = dy* +d\* (0 — o), (17)
where the superscripts # and ¢ hold for the height and
current terms respectively. The complex constants d¢ and
d'* are those which give the best fit of equation (16) to the
data of Chao et al. [1996]. For oy = 01, we obtained the
values df = 1.0255 — 0.0165i, d = 3.5476 + 0.8212i, df =
1.0246 — 0.0833/ and di = 0.2608 + 3.3782i.

[30] We note here that, as mentioned above, we use in the
expression of R(o, o() a fixed frequency of the FCN
resonance from MHB. This may seem to be inconsistent
because this resonance frequency depends strongly on the
dynamical ellipticity of the fluid core, one of the parameters
we have to adjust to the observations. This apparent
inconsistency can be resolved by noting that the value of
the core ellipticity can only have a significant influence on
R at frequencies close to the FCN resonance. Because those
frequencies are far from P1, O1, Q1 and K1 waves, the error
coming from the extrapolation method will be larger than
that coming from a small variation in the FCN frequency,
which is rather accurately determined. Moreover, the value
of OTAM at the four waves does also have an uncertainty
which is not given by the ocean tide models. From those
considerations and by noting that, in the frequency band close
to the FCN resonance, the tide generating potential has
relatively small amplitudes, we consider that fixing the
FCN resonance to a given value for the purpose of computing
& (o) from equation (16) is a reasonable approximation.

2.3. Unmodeled Effects

[31] In the nutation model presented herein, some effects
are not explicitly included: the geodesic nutation, the
contributions from nonlinear terms, the atmospheric effects,
and the excitation of the Free Core Nutation (FCN) mode.
The way those effects are however taken into account is
described here.

[32] The contribution of the geodesic nutation has been
estimated by MHB and their numerical values can be found
in Table 7 of their paper. As was done in MHB, we subtract
those values from the data, prior to the inversion. The
contributions from nonlinear terms, computed by Lambert
and Mathews [2006], are also subtracted from the data
before the inversion.

[33] The atmospheric effects on nutation are mainly due
to thermal tides generated by the heating of the atmosphere
by the Sun, which affects primarily the prograde annual
term of nutation. Atmospheric tides excited by the external
tidal potential have a smaller effect. The atmospheric
contribution to the prograde annual term has been computed
by Bizouard et al. [1998]. This estimate is however very
dependent on the considered data set [Yseboodt et al.,
2002]. In this paper, following MHB, the atmospheric
contribution to the prograde annual term is modeled by an
additional unknown parameter of the nutation model. Note
that this parameter also contains other effects giving rise to a
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correction on the prograde annual term, such as the solar
heating of the VLBI antennas [Herring et al., 1991].

[34] In addition to the forced nutations described by
equation (14), a free oscillation due to the excitation of
the FCN mode by the geophysical fluids is observable in the
VLBI data. Atmospheric pressure variations in the diurnal
band are considered as an important cause of the excitation
of the FCN [e.g., Sasao and Wahr, 1981]. However,
Lambert [2006] shows that those atmospheric contribution
to the FCN only accounts for roughly one half of the
amplitude of the FCN observed in the VLBI data. More-
over, this author shows that, at the present level of accuracy
of the atmospheric data, the time variability of the atmo-
spheric forcing does not explain the time variability of the
observed FCN amplitude. The contributions from other
geophysical fluids, like the oceans, are still less known.
For those reasons, in our paper, the oscillation is dealt with
empirically, without any physical forcing, as a periodic term
whose amplitude is variable in time. This time-variable
amplitude is estimated in section 6.2 and then is subtracted
from the data prior to the estimation of the nutation model
parameters.

2.4. Earth Interior Parameters to be Estimated From
Nutation Data

[35] The nutation model depends on several Earth internal
structure parameters denoted by g in the previous equations.
Among them, some have a large influence on the nutational
response of the Earth. They have been put forward by MHB
and are listed in the part “Geophysical Parameters” of
Table 1. They are the dynamical ellipticities of the whole
Earth and fluid core, the complex compliances describing
the deformation of the Earth and fluid core under the action
of the tidal potential, namely « and v from equation (2) and
the complex coupling constants KM% and K/“B. Because of
their large influence on nutation, their numerical values are
estimated from the nutation observations.

[36] The other Earth interior parameters (e.g., the dynam-
ical ellipticity of the solid inner core, the compliances for
the deformability of the Earth and fluid core due to the
centrifugal potentials of the outer and inner cores, the
compliances for the deformations of the inner core, ...),
because of their rather weak influence on nutation, are fixed
to the values computed by Mathews et al. [1991b] from the
PREM model of Dziewonski and Anderson [1981].

[37] Concerning the estimation of the compliances x and
~ from the observations, note that, in this paper, we estimate
the real and imaginary parts of the compliances from the
observations. In MHB, the compliances are expressed as the
sum of the compliance for a hypothetic purely elastic Earth
and a complex correction due to mantle anelasticity. The
complex correction is computed independently, from the
integration of the deformation equations, using a model of
the anelasticity such as the one of Wahr and Bergen [1986].
This correction is then fixed in the nutation model and the
real compliance for the hypothetic elastic Earth is fit to the
nutation observations. The direct estimation of the complex
compliances performed in this paper allows to free our-
selves from a priori anelasticity modeling and get directly
the compliances from nutation data.

[38] As the inertial coupling, due to the ellipsoidal shape
of the fluid core, cannot be separated from an additional
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Table 1. Parameters to be Adjusted to the Nutation Observations®

Symbol Definition PREM
Geophysical Parameters
e dynamical ellipticity of the whole Earth 32471072
4 dynamical ellipticity of the fluid core 2548 1073
K complex compliance of the whole Earth 1.039 103
y complex compliance of the fluid core 1.965 1073
KC{WB complex coupling constant at the CMB —
KB complex coupling constant at the ICB —
Atmospheric Contribution to the Prograde Annual Term
Ay complex correction to the amplitude of this term
Time Dependence Parameters
dAe/dt obliquity rate
Cyy Ce constant offsets
Probabilistic Modeling Parameter
oum standard deviation of the Gaussian modeling uncertainty

“For the geophysical parameters, the numerical values from PREM Earth model of Dziewonski and Anderson [1981] are listed.

coupling at the CMB due to another mechanism, the
dynamical ellipticity ¢, related to the flattening of the fluid
core, cannot be estimated independently from the real part
of the coupling constant at the CMB. We therefore choose
to estimate directly the sum ¢/ + Re(K“™®) from the
observations. The physical interpretation of the estimated
parameter requires a physical modeling of the coupling
mechanism at the CMB, which allows to determine KME,

?9 When estimating the complex coupling constant
K and K'“?, we do not assume (as was done by
MHB) that the torques are of electromagnetic origin. We
consider that the coupling constants contain contributions
from several interactions between the different regions of
the Earth: electromagnetic, topographic and viscous cou-
plings. In this paper, we do not try to separate those
contributions.

[40] The atmospheric effects on the prograde annual term
is handled in MHB as follow: they observe that a residual is
persistently found on the prograde annual nutation so that
they decide to remove this residual from the data before the
final fit of the nutation model. In this paper, we consider a
correction term a,, on the prograde annual nutation as an
additional parameter which is estimated simultaneously
with the other parameters.

[41] We notice here that in MHB, beside the geophysical
parameters, there are several empirical parameters which are
adjusted to the observations prior to the final fit. Those
parameters are (1) a scaling of the mantle anelasticity
contribution by a factor 1.09 (see MHB, section 2.3), in
order to account for the imperfection of the frequency-to-
the-power-alpha law used for anelasticity and (2) a scaling
of the ocean tide current contribution by the large factor 0.7
(see MHB, section 2.5 [50]) in order to account for
imperfections in the ocean current computation due to the
fact that large contributions to this quantity come from small
areas where the ocean is very deep.

[42] In this paper, we choose to not estimate scaling
factors on the physical effects (ocean tide and anelasticity),
unlike what was done in MHB, in order to stay as close as
possible to the physics. They are introduced in MHB in
order to cope for imperfection in modeling of those effects,
but we prefer to use the present best solution for these
effects. Instead of those scaling factors, as presented in

section 5.3, we include modeling uncertainties which also
allow to take into account imperfections of the model.

[43] However, in order to compare our results with that of
MHB, in addition to our main estimation without the scaling
factors, we also perform an estimation with the 0.7 factor on
the ocean tide currents and the results of this estimation are
reported in section 7.

[44] In addition, in Herring et al. [2002], the a priori
standard deviations on the nutation data series are increased
by means of a procedure relying on a Kalman filtering
technique [Herring et al., 1990]. This correction implies
also additional parameters which are calculated prior to the
final fit of the geophysical parameters. We do not perform
such an increase of the standard deviations, however, as we
will show in section 5.3, the modeling uncertainties includ-
ed in our inversion method can be interpreted equivalently
as an additive correction to the standard deviations of the
data. The main difference is that the parameter associated
with the modeling uncertainty is estimated jointly with the
geophysical parameters.

3. Time Domain Nutation Model

[45] In order to estimate the geophysical parameters from
the time domain data, we express the nutation model as a
function of time rather than of frequency as presented in
equation (14). This conversion can be achieved quite simply
by noting that, to a very good degree of approximation, the
gravitational torque can be written as:

N 3026 B )
o) =Y lor)e ™, (18)
=1

where 3026 is the number of terms in the RDAN97 rigid
nutation series and arg(c;, f) = 23:01 Nio)) F{t). The
{Fi)}=1.. .10 are the fundamental arguments of nutation
(namely the five Delaunay variables and the mean longitude
of Venus, Mars, Jupiter, Saturn and Mercury) whose
numerical expressions are given by Simon et al. [1994].
Each term of the torque, or equivalently, each term of the
rigid Earth nutation is identified by its value of the
multipliers of the fundamental arguments {N{o)}-1.. 10.
The fundamental arguments are polynomial of the fourth
order in time but the coefficients of terms larger than one are
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so small that, for every practical purposes, they can
be approximated by the first order polynomial in time:
arg(a,, l) >~ O'IQ()I + o

[46] Because the dynamical differential equations are
linear, the nutation can be computed with equation (14)
for each periodic term of the gravitational forcing of
frequency o. The total nutational motion in the time domain
is thus obtained by summing all the contributions from each
periodic term:

3026
Z ﬁ(g, o,l)eiarg(m‘t)
=1

(19)

[47] In addition to the periodic nutation, the observations
contain linear trends that are interpreted in terms of a secular
drift in the precession and obliquity rates:

3026
Z]: < g, 0))e oarelon, t)) + (P(g) sin(eo) + ldTAtE)
(t —ty) + ¢y sineg) + ice. (20)

[48] In this equation, dAe/dt is the obliquity rate and c,,
c. are constant offsets. Those three parameters will be
estimated from the observations together with the geophy-
sical parameters g and are listed in Table 1. The vector 6 in
equation (20) represents all the parameters of the nutation
model that will be adjusted to the observations except
the last parameter of Table 1 which will be introduced in
section 5.3.

[49] The correction to the precession rate, P, can be
expressed in terms of the geophysical parameters and in
particular in terms of the dynamical ellipticity e. Following
MHB, we expand the precession rate by assuming that the
precession rate for the nonrigid Earth is close to that of the
rigid one:

dP
Pr(Hg) +7R(H Hg) + Pg;

P(g) = P(H) = i

(1)

where Py, is the precession rate of the rigid Earth, H, Hy are
the precession constants of the nonrigid and rigid Earth
respectively (the precession constant H is related to e by
H =e/(1 + e)) and Pyp represents the nonrigid contributions.

[s0] The numerical values for some parameters in
equation (21) are given in MHB: Pyz = —0.2015 mas a !
and dPp/dHr = 15397060 mas a ' but the authors do
not precise which rigid Earth model they use for Hp and
Pr(Hp). In order to be consistent with the value of dPr/dHp,
computed by Bretagnon, we used Hp and Pr(Hy) from the
rigid Earth model of Bretagnon et al. [1998]: Hr =
0.0032737668 and Pr(Hy) = 50384.566 mas a™ .

[51] The numerical value of 7, has been chosen such that
the correlation between the slopes (P and dAe/dt) and the
intercepts (¢, and c,) of the linear trend be minimal. For the
simple case of fitting a straight line on data, it has been
shown [e.g., Gregory, 2005] that the correlation between the
slope and intercept is zero if the origin time is the weighted
average of the time indices of the data: to = >, w;t/> ", w;,
where w;, = 072, the inverse of the squared standard
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deviations on the data. Using the standard deviations on
A, or equivalently on Ae, we get: t, = 2000.64 year.

4. Nutation Data

[52] The nutation data used in this paper are obtained
from the very long baseline interferometry (VLBI) tech-
nique and are provided by the international VLBI service
(IVS). We use the data series “gsf2007b.eops’ which is the
most recent analysis of the Goddard Space Flight Center
(GSFC). Those data range over the time period from
1982.7 to the middle of 2007. They are available at http://
ivsce.gsfc.nasa.gov/products-data/products.html.

5. Bayesian Inversion Method

[53] In this paper, we use Bayesian inversion in order to
get an estimation of the Earth interior parameters from the
nutation observations. In the nutation model, the Earth
interior parameters enter in the model in a highly nonlinear
way. Because the Bayesian method does not make any
linearization of the model with respect to its parameters, this
method is particularly well suited to deal with that model.
We present here the main features of the method.

5.1. Bayesian Approach

[s4] Because random errors are always associated with
measurements, data are only one particular realization of a
random variable. The probability that, given a particular
value of the parameters 8 = {6, .. ., 8,,}, the data vector d is
measured is expressed by the likelihood function L(d|6).
Physical modeling determines the so-called forward prob-
lem, d = M(0), relating the parameters to the error-free data
by a physical model M. Knowledge of the statistical
properties of the measurement noise allows then to get the
likelihood function, also called the forward probability
density function (pdf). Rather than this forward probability,
we are interested in knowing the probability p(6|d) that the
parameters have the value 6, given that the observations d
have been obtained. This pdf is called the posterior pdf.

[55] The method relies on Bayes’ theorem which allows
to infer the posterior pdf from the knowledge of the forward
pdf. It can be expressed as:

p(6d) = c L(d|0) . =(6).

(22)
In this equation, the pdf 7(8), called the prior pdf, represents
the knowledge of the parameters independent of the
observations. The constant of proportionality ¢ is obtained
by normalization of the posterior pdf and is equal to:

cl= / L(d|0)7(6)d6,
all models

where “all models”
parameters 6.

[s6] The output of the Bayesian inversion is the posterior
pdf. From the posterior pdf, marginals can be computed for
each parameter 6, i =1, ..., n:

(23)

stands for all the values of the
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If estimated values and associated error are needed, they can
be obtained from the marginals by estimating the mean and
variance:

5 — / p(6:14)0,d0; (25)

7 = / (01d) (6, — 0,0, (26)

Also the value of the parameter which maximizes the
marginal pdf (maximum a posteriori, MAP, solution) can be
used.

[57] With the assumption that the noise of the nutation
observations is independent from one measurement to the
other and is normally distributed, the posterior pdf for the
parameters of the nutation model can be written:

p(@‘{Aw’tf, Ae;{}) x

V=AY
X exp i (Aﬁ(igif)fet)
B 1

‘ —1
<a; o}’ sin 6()) ()

—-

Il
o

I

(a0(60.0) - avt)’

2 (O'gy) ’

(27)

where Awﬁf and Aef are the nutation data, in longitude and
obliquity, in time series, at the epochs ¢; = {f, ..., ty} and
o; and o/ are the corresponding standard deviations. We
note that, as mentioned in the Introduction, it is indeed the
standard deviations in the time domain which are directly
used for the estimation. This allows to take their time
variations into account when estimating the geophysical
parameters. In equation (27), A0, t;) and Ae(8, t;) are the
theoretical longitude and obliquity corresponding to the real
(divided by sin ¢) and imaginary part of the complex
nutation computed with equation (20), while w(6) =
[T,7(6,) is the prior pdf for the parameters which will
be discussed in section 5.4.

5.2. Stochastic Sampling

[58] In most cases, the posterior pdf and the estimates
given by equations (25)—(26) cannot be computed neither
analytically nor even numerically so that the posterior is
sampled with a stochastic method. In this paper, we use the
Metropolis-Hasting algorithm [Metropolis et al., 1953;
Hastings, 1970] which generates a Markov chain whose
equilibrium distribution is the posterior pdf. This algorithm
allows to obtain an empirical pdf which approximates the
posterior pdf. From this empirical pdf, the mean and
variance of the marginals defined by equations (25)—(26)
can be approximated by replacing the integrals by finite
sums.

5.3. Inclusion of Modeling Uncertainties

[59] In writing the posterior pdf in equation (27), we
implicitly make the assumption that the theoretical model of
nutation is “perfect” in the sense that it explains all the
physical signal in the data. This assumption is always
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implicitly made in the classical inversion methods like least
squares fit and, in particular, in the estimation of MHB.

[60] However, this assumption of perfect model is quite
unrealistic and, in this paper, we propose to take into
account the possibility of having modeling uncertainties.
This is motivated by several reasons: the Earth interior
model is quite simple, the ocean tides contributions are
computed from ocean models which assimilate some data
(with unknown uncertainties), the atmospheric contributions
to nutation are poorly known, etc.

[61] Because the modeling uncertainties cannot be quan-
tified, we make the assumption that they follow a Gaussian
distribution with an unknown standard deviation. We con-
sider that the standard deviation of the Gaussian modeling
uncertainty is constant with time and we denote it o,,.

[62] It has been shown [e.g., Gregory, 2005, chapter 4;
Tarantola, 2005, chapter 1] that, in the case of Gaussian
modeling uncertainties, the posterior probability on the
parameters can be written as:

e }) o 7(o4)(8)
X H{( ) +UM}_1/2{<ajjsineo>2+aﬁ4}
g [i (a0 o)

~1/2

=ap (a) +o3,

<A1/) (6,4) Az/;l)z (sin eo

X exp

+2

(28)
<0’t‘1/ sin 60) +0M

where we have made the hypotheses that the uncertainties
are independent and normally distributed for the modeling
uncertainties as well as the observations. Note that we
assume that the modeling uncertainties for the longitude and
obliquity components of the nutation motion have the same
standard deviation.

[63] As the standard deviation of the Gaussian modeling
uncertainty is unknown (e.g., the ocean tide contributions
are given without any estimation of their error), we estimate
this parameter from the data together with the other
parameters of the model. In equation (28), m(c,,) represents
the prior probability for this parameter.

[64] Besides the fact that the nutation model is not
perfect, there is another argument in favor of the inclusion
of modeling uncertainties. In equation (28), the parameter
oy, introduced as the error coming from the imperfect
modeling, is indistinguishable from an additive Gaussian
error in the observations. This implies that the inversion
with modeling uncertainties also takes into account the
possibility of having too small standard deviations on the
data and estimates an additive correction together with
the other parameters. This is adequate for VLBI nutation
data because their standard deviation are suspected to be
underestimated. This is for the same reason that Herring et
al. [2002], as mentioned before, compute, before the fit of
the parameters, corrections to the standard deviations of the
nutation data. Our correction of the standard deviations is
more consistent because it is contained in the parameter o,
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Table 2. Bounds on the Prior pdf’s for the Parameters to be
Estimated From the Data

Parameter Lower Bound Upper Bound
e 32 %1073 33 x 1073
& + Re(KMP) 2x107° 3x107°?
Re(K) 5x 107 5% 1073
Im(K) —107? 1073
Re(v) 15x107° 25 %1072
Im(y) -1073 1073
Im(K“5) —1072 —1077
Re(K'“B) 1077 1072
Im(K“?) —1072 —1077
Re(,,) —1 1
Im(a,,)’ —1 1
dAe/dt? -1 1
c,® —~100 100
c. —100 100
o 1077 10

aUnits: mas a_ .

®Units: mas.

which is estimated simultaneously with the geophysical
parameters.

5.4. Choice of the Prior Distributions

[65] The prior distributions for the parameters e, e/ +
Re(KMP), Re(r), Im(x), Re(7), Im(7), Re(ayq), Im(ap,),
dAeldt, ¢y, and c. are chosen to be uniform between
reasonable bounds. The bounds for each parameter are listed
in Table 2. The reasonable range of values for the dynamical
ellipticities and the compliances are known from the
computation of these quantities with different Earth models
[e.g., Mathews et al., 1991b]. The values of Re(a,,) and
Im(a,,) have been computed by Bizouard et al. [1998] and
that of dAe/dt has been estimated from different data
analysis what allows to put lower and upper bounds on
those parameter.

[66] The parameter o), which represents a standard devi-
ation must be positive to make sense so that its prior
distribution is chosen to be a Jeffrey’s distribution [e.g.,
Gregory, 2005] defined in general, for x # 0, by:

k.
— i Xpin < X < Xpax

px)=4"* (29)
0

elsewhere

with 1/k = Log(Xmax/Xmin)- In order to impose the
positiveness of the parameter o,, we choose positive
bounds X;in, Xmax With X, close to zero.

[67] The sign of the coupling constants have been com-
puted by Buffett et al. [2002] and must be such that
Re(KMB) > 0, Re(K/“B) > 0, Im(K %) < 0 and Im(K’“?)
< 0. We use Jeffrey’s prior for those parameters too, with
positive or negative bounds listed in Table 2.

6. Inversion of the Time Domain Data
6.1. Simulations

[68] In order to test whether the nutation model and the
Bayesian inversion described previously allow to estimate
reliably the geophysical parameters, we made some simu-
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lations. We created synthetic data from the time domain
nutation model of equation (20), with the parameters fixed
to some reasonable numerical values, to which we add
Gaussian observational errors and a Gaussian modeling
error. The observational errors are simulated using the time
dependent standard deviations from the GSFC VLBI data
while the constant standard deviation of the modeling error
is equal to that we obtained by inverting the true data.

[9] We performed the Bayesian inversion of those syn-
thetic data and compare the estimates obtained for each
parameter with their true value. The result is that, for each
parameter, the true value lies in the 20 domain of the
estimated value.

6.2. Estimation of the Amplitude of the FCN Mode

[70] In order to estimate the time-dependent amplitude of
the free FCN mode, we perform a first inversion of the
VLBI data with the method described above and with the
nutation model without any modeling of the free mode. This
inversion provides a joint posterior probability for the
parameters, conditioned on the data, from which the residuals
of the model can be computed with the following estimator:

r= [(@-m@)pielas (30)

where d is the data vector, p(0|d) is the joint posterior on
the parameters @, and M is the physical model. By using the
empirical joint posterior, the integral of equation (30) is
replaced by a finite sum.

[71] We estimate the time-dependent amplitude a,(f) of
the free mode by fitting to those residuals the following
expression:

iy (1) = —iay (1)t 31
where Fy is the frequency of the FCN mode which is
determined from the estimated geophysical parameters
using the first relation of equation (33). In equation (31),
tooo is the time on 1 January 2000 which is taken as
reference for the phase. This fit is performed with a
weighted least squares method, as equation (31) is linear in
the parameter a,to be estimated. The amplitude is estimated
once per year from a four years-interval centered on that
time. The real and imaginary part of a, obtained by this
procedure are presented on the Figure 1.

[72] Figure 1 supports the well-known fact [e.g., Herring
et al., 2002] that the amplitude of the free FCN mode
changes significantly during the period where nutation data
are available. On the interval from 1984 to 2000, our results
are similar to that obtained by Herring et al. [2002]. The
additional time span from 2000 to 2005 reveals that the free
oscillation, which was nearly vanishing around the year
2000, is again increasing in amplitude. We compared
our results to that of the IERS Conventions (updates
to Chapter 5, 2007), available at ftp://tai.bipm.org/iers/
convupdt/chapter5/icc5.pdf. We showed that our results
are a bit different for the period from 1984 to 1989 but
are very similar for the period after 1989.

[73] From this estimated time-dependent amplitude, the
oscillation of the free mode is reconstructed and removed
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Amplitude of the free FCN mode: Real part (mas)
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Figure 1. Time-dependent amplitude of the free FCN mode. Error bars correspond to three standard
deviations.

from the data before the final inversion presented in the
section 6.3. The parameters estimated from the final inver-
sion are compatible with those of the first estimation
(performed without any modeling of the free mode), in
the sense that, for each parameter, the estimates of the
second inversion are within the one-sigma interval around
the estimates of the first inversion. Only the estimate of the
parameter o,,, characterizing the modeling error, is smaller
in the second estimation what makes sense because, in the
second inversion, the FCN free mode has been taken into
account. Finally, the estimated errors on the parameters
(computed from the standard deviations of the
corresponding marginals) are reduced in the second inver-
sion by a factor between 5 and 20%.

6.3. Results From the Inversion of the VLBI Data

[74] We present now the results of the inversion of the
VLBI nutation data from the GSFC, performed with
the nutation model and the Bayesian inversion method
described in the previous sections.

[75] The stochastic sampling of equation (28) provides an
empirical posterior probability, from which we can get the
marginal probabilities for each parameter. The marginal
probabilities are represented by the histograms in the
Figures 2 and 3.

[76] From the posterior density we estimate for each
parameter the mean, the standard deviation, and the
99.7% confidence interval. As the confidence intervals are
almost symmetric about the estimated mean, and the indi-
vidual half widths of the intervals virtually 3 sigma’s wide,
we only report the mean and the 3 sigma wide uncertainty
range in Table 3.

[77] The third column of Table 3 gives the numerical
values from MHB. Because there are some differences
between the parameters chosen to be adjusted in MHB
and in this paper, some of their numerical results are
adapted in order to be comparable. In particular, we add
the numerical values of the Ax™* and Ay** (anelasticity
contribution to the compliances) introduced by MHB to
their values of the elastic compliances in order to get the
complete complex « and -y, used in this paper. The value of
AKAE is given in Appendix D of MHB: Ax?F = (1.258 +
0.529/) 10>, without indication on the error, whereas their
value of Av*# is not given. Moreover, because the param-
eter ¢/ cannot be separated from Re(Kcyz), we add the
value Re(Kcy) = 0.5 (1.95 + 2.54) 10> = 2.245 107>,
assumed in MHB (section 4.1), to their value of the
estimated parameter e”.

[78] In order to compare our numerical results with those
obtained by MHB, the dashed vertical lines on Figures 2
and 3 represents the 3o0-range of values obtained by MHB.

[79] The additional parameter, introduced in section 5.3,
has been estimated to be oy, 0.219 + 0.008 mas
(corresponding to the mean and 3 standard deviations of
the empirical marginal probability). In order to get an idea
of the relative magnitude of the modeling and the observa-
tional uncertainties, note that the mean value of the standard
deviation of the data, on the total period from 1982.7 to
2007.5, is of about 0.21 mas. The modeling uncertainty is
thus of the same order of magnitude as the observational
uncertainties. Note that the parameter o), does not only
contain the modeling uncertainties but also a constant
correction to the error on the data.

[so] Finally, we compute the residuals of the model, with
the estimator given in equation (30). The magnitude of the
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Figure 2. Empirical marginal posterior distributions for the geophysical parameters, obtained from the
Bayesian inversion of the nutation data. For the parameters for which those values are available, the
dashed vertical lines represent the 3o-range of values obtained by Mathews et al. [2002]. For
the parameter Im(x) the standard deviation of the estimation made by MHB is not known so that the
dashed line represents their estimated value and there is no range of values.

residuals can be estimated by computing their weighted root
mean squares (WRMS) defined by:

1/0?
WRMS(r, o) = | E wird, with w; = <——,
i Zj I/Uj

where r = {r;}— . _yaretheresidualsand o= {o;}; - 1.
are the corresponding standard deviations. We get 0.257 mas
and 0.153 mas for the A sin(ey) and Ae components
respectively. Note that we also computed residuals as the
difference between the data and the model with the value of

(32)

the parameters given in Table 3, and it gives the same
WRMS. Using MHB nutation model with their estimation
of the geophysical parameters, Herring et al. [2002]
obtained the following WRMS of the residuals: 0.188 mas
and 0.194 mas for the Ay sin(ey) and Ae components
respectively.

7. Discussion of the Results

[81] In the previous section, a new estimation for the
geophysical parameters is presented. In this section, we
compare our results to those obtained by MHB.
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Figure 3. Empirical marginal posterior distributions for the correction to the amplitude of the prograde
annual term, for the obliquity rate and for the standard deviation of the Gaussian modeling uncertainty,
obtained from the Bayesian inversion of the nutation data.
7.1. Estimated Errors by Herring et al. [2002] are frequency domain data and thus

[s2] We begin the discussion by a comparison between
the estimated errors in this paper and in MHB. For most
parameters, our estimated errors are smaller by a factor from
1.7 to 3.7. This is due to three main reasons: (1) the different
inversion strategy, (2) the different a priori standard error on
the data: the standard error on the data used by MHB were
increased [Herring et al., 2002] prior to the estimation of
the geophysical parameters, and (3) the additional 7 years of
data.

[83] In order to estimate the influence of the additional
data on the estimated errors on the parameters, we per-
formed the same inversion with the data truncated in
November 1999 as it was the case at the time MHB was
published. The result is that the estimated errors on the
parameters are larger than those obtained from our inversion
with all the data, but still smaller than those of MHB, except
for the real and imaginary part of K’“® for which our
estimation on the truncated data set gives very larger errors
than MHB. Note however that the truncated data set used
here is not the same as that used by MHB because the data
sets have been entirely reprocessed since that time.

[s4] The effect of the increased standard deviation of the
data on the parameters error is more difficult to estimate
because the data whose standard deviation were increased

we cannot perform exactly the same modification of the

Table 3. Numerical Values of the Earth Interior Parameters and
Comparison With the Values of Mathews et al. [2002]*

Parameter This Paper MHB

e 0.0032845473 + 4 0.0032845479 + 13
& + Re(KME) 0.0026704 + 6 0.0026680 + 21
Re(k) 0.0010533 + 55 0.0010466 = 99
Im(x) —0.0000103 + 54 0.00000529
Re(7) 0.00198555 + 78
Im(~) 0.00000917 + 81
Im(K“M5) —0.0000204 + 6 —0.0000185 =+ 15
Re(K'“B) 0.00100 + 16 0.00111 + 11
Im(K'“®) —0.00184 + 15 —0.00078 + 14
Re(d,,) 0.028 + 13 —0.010
Im(@,)° 0.100 + 13 0.108
dAe/dt —0.2472+ 23
¢t —7.087 £ 15

¢’ —41.593 + 38

o 0.2187 + 82

“The second column gives the values for the inversion performed in this
paper. The errors are on the last written digits and correspond to 3o.
Numerical values obtained by Mathews et al. [2002] are listed in column three.

®Units: mas a~'.

“Units: mas.
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standard deviation in order to quantify the effect on the
parameters error. However, we made the test of arbitrarily
increasing the a priori standard deviation on the time
domain data and we verify that it indeed increases the
estimated error on the parameters.

[85] Whereas most of the parameters have smaller
estimated error in this computation than in MHB, the
parameters related to the coupling at the ICB, Re(K'“?)
and Im(K’“?), have similar or even larger estimated errors
than theirs. This seems reasonable because those parameters
are the lesser constrained by the nutation observations so
that larger errors on these parameters could be more
realistic.

7.2. Dynamical Ellipticities

[s6] The estimation of the dynamical ellipticity e is in
complete agreement with that of MHB. The estimated error
on the parameter is 3 times smaller in this paper than in their
one. However, because this parameter is mainly determined
by the precession rate rather than by nutation, its numerical
value is strongly dependent on the value used for the
constants Hp and Pg(Hpy) introduced in equation (21). Note
that the numerical values used by MHB are not given in
their paper. In order to free ourselves from the numerical
values of those constants, we compare directly the preces-
sion rate induced by the estimated dynamical ellipticity.
From our value of e, using equation (21), the precession rate
(from which we subtract the IAU value: P, = 50387.784
mas a~ ') is equal to P(e) — Py = —2.994 + 0.006 mas a~'
(30 error) while MHB obtained P(e) — Py = —2.997 +
0.020 mas a~ ' (30 error). Our result for the correction to the
precession rate induced by the dynamical ellipticity is thus
also in agreement with MHB.

[s7] However, we think that the agreement of our esti-
mation of the dynamical ellipticity and precession rate with
that of MHB is quite fortuitous because, depending on the
length of the data time series, the estimated value is
different. To illustrate this fact, we have estimated the
dynamical ellipticity on data between 1979 and 2006, with
the data set “gsf2005a.cops”, and we get the result: e =
0.0032845450 + 5 which is not in agreement with MHB any
more. This instability of the parameter e is due to the fact
that the linear rate of the data (which gives the precession
rate and thus constrains the dynamical ellipticity) is highly
correlated to the main nutation term of frequency 18.6 year
which is badly determined from the data because only
28 years of data are available, the first years of which being
of low quality.

[s8] Our estimation of the dynamical ellipticity of the
fluid core e/ + Re(K“M?) is close to the upper limit of the 3¢
range of values determined by MHB, with an error 3.5 times
smaller.

7.3. Compliances

[s9] The compliances x and -y are estimated in a different
way in this paper than in MHB. As explained before, in
MHB, the compliances are computed, independently of the
nutation model, from a model of the anelasticity, while in
this paper they are estimated from the data.

[90] Our estimation for the real part of x is compatible
with that of MHB with a slightly smaller error. Our
estimation of Im(x) is completely different from that of
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MHB: our value is negative while MHB find a positive
value (without indication of the error). This difference can
be explained by the fact that, the value of MHB, because it
has been computed theoretically from anelasticity models,
represents purely the imaginary part of the compliance due
to anelasticity. On the other hand, our value being estimated
from the nutation data, it is contaminated by the mismodel-
ing of the ocean tides effects, which give also rise to
imaginary contributions to the compliances. The fact that
our estimated value is negative (which is not physically
meaningful, as the deformational response of the Earth must
lag behind the forcing, see MHB Appendix C) reflects the
imperfection in the ocean tides modeling. MHB also
deduced from their computations that the ocean tide con-
tributions must be somewhat erroneous and decided to scale
the current oceanic term by a 0.7 factor. We have performed
the test of doing the same inversion with this 0.7 factor
applied to the ocean tide current contribution and the result
is that all the parameters remains unchanged except two of
them whose values become: Re(x) = 0.0010415 + 66 and
Im(x) = 0.0000093 + 62 (where the errors are 30 and refer
to the two last digits). This estimation for Im(x) is in
agreement with that of MHB.

[01] Note that we cannot interpret our result for Im(x) in
terms of the quality factor of the Chandler wobble because
the imaginary part of the compliances, arising from the
anelasticity contribution, is frequency dependent and
the Chandler wobble is not in the frequency band of the
nutation.

7.4. Coupling Constants

[92] Concerning the complex coupling constants at the
CMB and ICB, the imaginary part of K““’% is estimated
slightly larger (in absolute value) in this paper than in MHB
with a 2.5 times smaller error. The parameter Re(K’“?) is in
agreement with MHB and our estimation of the error is
larger than their one. The imaginary part of K’ is the
parameter which is the most different between the two
estimations: our estimation is more than two times larger
(in absolute value) than MHB. The consequences of the new
estimations for the coupling constants on the frequencies
and quality factors of the RFCN and PFCN free modes are
presented in section 7.7.

7.5. Correction to the Prograde Annual Term

[93] Our estimation of the corrective term on the prograde
annual term is of the same order of magnitude as that of
MHB. The imaginary part is compatible, as MHB value lies
in the 3¢ interval of our estimation. The value computed by
Bizouard et al. [1998] from the atmospheric angular
momentum time series of the NCEP/NCAR reanalysis
project is 9.3 + i76.0 pas. Yseboodt et al. [2002] have
shown that, depending on the atmospheric data set used, the
value of the real part can go from —65.7 pas to 8.4 pas and
that for the imaginary part from 9.9 pas to 86.7 pas. Our
estimation is larger in absolute value than these values, what
suggests, as mentioned before, that other effects than the
atmosphere contribute to the prograde annual term.

7.6. Additional Parameters

[94] Finally, four additional parameters are adjusted in
this paper simultaneously with the geophysical parameters:
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the obliquity rate dAe/dt, the constant offsets ¢,, and ¢, and
the parameter o,, introduced in section 5.3. However, we
must note that, while their existence is not mentioned in
MHB, those parameters (or parameters having a similar
role) have been estimated by Herring et al. [2002], before
the final fit of the geophysical parameters performed in
MHB. In our paper, all the parameters included in the
modeling are estimated altogether.

[os] The obliquity rate dAe/dt and the constant offsets
have been estimated by Herring et al. [2002] together with
their estimation of the amplitudes of the 21 nutation
frequencies. Their numerical result for the for the obliquity
rate is dAe/dt = —0.237 mas a_l, with standard deviation of
0.012 mas a~', while their estimated offsets are not given.
Note that, for the obliquity rate, they multiplied their
original value of the standard deviation, which was equal
to 0.003 mas a ', by a factor of 4.The value estimated in
this paper for the obliquity rate lies in the 1o range of the
estimation by Herring et al. [2002]. However, our standard
deviation is about three times smaller than their original
one. Note that the numerical value obtained from theoretical
computations by Williams [1994] is dAe/dt = —0.244 mas
a~', which is quite close to our estimation.

[96] The parameter o,, introduced in this paper incorpo-
rates both the modeling uncertainties and a constant correc-
tion to the standard deviation of the data. This parameter has
thus partially the same goal as the parameters introduced by
Herring et al. [2002] in order to correct the data errors.
However, our parameter o,, is introduced here in the
theoretical frame of the Bayesian inversion for a probabi-
listic model, which is more consistent and allows an
estimation of this parameter simultancously with the geo-
physical ones.

7.7. Periods and Quality Factors of the Free Modes

[97] We end this section by describing the impact of this
new parameter estimation on the periods and quality factors
of the RFCN and PFCN resonances. The complex frequen-
cies (in cycles per sideral days) in the terrestrial frame are
linked to the geophysical parameters by the approximated
relations:

A A
O_RFCNzil77<efiﬂ+KCMB+7SK[CB)
A Ay

m

(33)

OpFCN =~ —1 + ey + Z/*K[CB

where A4, A4,,, Ar and A, are the moment of inertia in the
equatorial plane of the whole Earth, mantle, fluid core and
solid inner core, respectively, e, is the dynamical ellipticity
of the inner core, § and v are the compliances defined by
equation (2), and «, is an Earth parameter defined in
Mathews et al. [1991a]. The numerical values of the Earth
parameters that have not been estimated here are taken from
Mathews et al. [1991b]. From those frequencies, the periods
T and quality factors O can be obtained by the relation: o =
T'(1 — i/(2Q)). Because our estimation of e/ + Re(K“*)
and Re(K’“) are in agreement with that of MHB, the
frequencies of the RFCN and PFCN are also in agreement.
However, Im(K“*?) and Im(K’“®) are different from MHB
and gives rise to quality factors Qppcy = 13750 = 514 and
Oprcy = 271 £ 22. The values of the quality factors
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obtained by MHB from their values of the geophysical
parameters and equation (33) are 18874 + 1395 for the
quality factor of the RFCN and 643 + 117 for PFCN. Our
quality factors are significantly smaller than their ones.

8. Conclusion

[98] One important feature of the IAU2000 nutation
model is that it is a semianalytical model, in which some
Earth interior parameters are adjusted to the nutation obser-
vations. This paper presents a new method to inverse the
nutation observations in order to estimate these Earth
parameters. The two main aspects of this inversion are that,
first, the VLBI nutation data are used directly in the time
domain, avoiding the loss of information which occurs
when only the first main terms in frequency are used,
and, second, the Bayesian inversion method avoids linear-
ization of the highly nonlinear nutation model. Moreover,
because of several imperfections in the nutation model, we
consider this model as probabilistic rather than deterministic
and assume that the uncertainty on the model is Gaussian
with a constant variance in time. This unknown variance is
estimated from the observations jointly with the geophysical
parameters.

[99] The main result is that the geophysical parameters
can actually be estimated directly from the VLBI nutation
time series: the intermediary step performed in MHB which
consists in estimating the amplitudes of the main nutation
terms in frequency can be avoided. In most cases, our
estimation of the parameters have smaller standard devia-
tions than MHB except for the parameters related to the ICB
what seems to be reasonable.

[100] Some estimated parameters value are in agreement
with MHB while others are not. The most different para-
meter is the imaginary part of the coupling constant at the
ICB, Im(K™?), which is more than two times larger (in
absolute value) in this paper. The differences between our
estimation and that of MHB are due to the different
inversion strategy, to the additional seven years of data
(MHB used data until November 1999) and to empirical
parameters introduced in MHB (e.g., the 0.7 factor in the
ocean tide currents contribution) which are not physically
justified so that we did not include them in our computation.

[101] The geophysical parameters estimated by MHB and,
in particular, the core-mantle and fluid core-inner core
coupling constants, have been used to infer properties of
the deep interior of the Earth [Buffett et al., 2002; Mathews
and Guo, 2005; Deleplace and Cardin, 2006]. This paper
gives a new estimation of these parameters from more
recent data. The parameters which are in agreement with
MHB can probably be considered as reliable but the others,
in particular Im(K’®), should be used with some care when
inferring physical properties of the Earth interior.
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