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[1] Surface waves control the peak of the seismic records
at regional and teleseismic distances. In complex structures,
such as basins, their amplitude is produced by the
interference between the topography and the wedges of
the model. Therefore, they represent a challenging target for
numerical simulations. When modelling low frequencies in
thin media, such as basins and waveguides, some
instabilities arise from the interaction between propagating
evanescent waves and the artificial layer, required to avoid
spurious reflection to be sent back into the elastic volume.
Here we propose to generalize the absorbing boundary
conditions, by adding a cut-off frequency and an
overdamping. The efficiency is demonstrated through a
comparison with analytical solutions. Finally an analysis is
performed by adopting a complex basin geometry, where
we show that the pollution of classical absorbing conditions
becomes significant near the edges of the model.
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1. Introduction

[2] Numerical methods are widely used for the simula-
tion of wave propagation at local and regional scales. At this
level the physical medium is unbounded while numerical
methods are limited to a finite computational domain.
Absorption on the outskirts of the model is required to
mimic the unboundedness and should account for the
outgoing energy to be not reflected back into the lattice.
Their performance is measured through a suitable compro-
mise between the size of the numerical mesh and the
amount of spurious reflections. Exact absorbing boundary
conditions force the energy to leave the lattice, but they turn
out to be a non local operator in time and space on the
boundary of the computational domain [e.g., Givoli, 1991].
It can be localized by a first-order expansion (paraxial
conditions of Clayton and Engquist [1977]) with an effi-
ciency at almost normal incidence. Extension to surface
waves as well as to higher orders [Higdon, 1991] requires
additional complexity. More recently, the development of
Perfectly Matched Layers (PMLs) has provided an efficient
absorbing condition [Bérenger, 1994; Collino and Tsogka,
2001]. PMLs have been designed to have no impedance
contrast at the interface with the elastic volume and to
provide an exponential decay of any propagating wave
entering the layer. PMLs map the infinite space in a finite

region with the rheological characteristics of anisotropic
dissipative media. They are effective for both body and
surface waves but their efficiency degradates at grazing
incidences, although the amplitude of the reflections
remains at a reasonable low level for the most of applica-
tions. PMLs have been developed for numerical techniques,
such as finite differences [Collino and Tsogka, 2001] and
spectral elements [Komatitsch and Tromp, 2003; Festa and
Vilotte, 2005].
[3] However, the bottom of the numerical grid needs to

be located far from the upper edge, which is generally a free
surface, to avoid that the low-frequency Rayleigh waves
interfere with the absorbing layer. For such a wave, in fact,
the propagation direction is parallel and not perpendicular to
the edge of the PML at the bottom of the grid. In the
following, we analyze the behavior of a classical PML when
a surface wave penetrates into it, and we propose a
generalization of the absorbing condition to avoid some
instabilities. This problem is of crucial importance for the
simulation of wave propagation in basins and in wave-
guides, where the computational volume is more stretched
in the horizontal dimension than in the vertical one. The
analysis is limited to 2D media, but generalization to 3D
is straightforward.

2. Standard PML

[4] Consider a 2D medium, with a PML surrounding the
elastic volume everywhere apart from the free surface
(Figure 1). In this model, we begin by analyzing the
behavior of a lateral PML, located at 0 < x < d. In the
frequency domain, a PML condition is obtained through a
coordinate stretching in the complex plane [Teixeira and
Chew, 1999]

~x ¼ xþ S xð Þ
iw

ð1Þ

Here w is the frequency and S is an arbitrary function of x,
smoothly growing from the interface to the outer boundary
of the layer because of the discretization. A plane body
wave

% x; z; tð Þ ¼ Aei wt�kxx�kzzð Þ ð2Þ

is transformed in the PML region as

~% x; z; tð Þ ¼ % x; z; tð Þe�
kx
wS ð3Þ

with an exponential decay independent of the frequency,
because of the ratio kx/w. The same behavior applies in
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the z direction. Now consider the decomposition in plane
waves of a Rayleigh wave moving along the free surface
z = 0,

8 x; z; tð Þ ¼ ei wt�kxxð Þ cae
�w~haz þ cbe

�w~hbz
� �

ð4Þ

Here ~hc =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=c2r � 1=c2

p
; a, b and cr are the P, S and

Rayleigh wave speeds respectively and ca and cb are
constants (for analytical expressions see, e.g., Aki and
Richards [1980]). Since the x dependence of this wave
has the same features as the body waves, it is expected to
obey the same decay law (3), when entering the PML
along the x direction. In addition the wave preserves the
signature of a surface wave.
[5] The evanescent wave can also interact with the

bottom of the model, when the vertical dimension is
comparable with the largest wavelength propagated in the
elastic medium. In this case, applying the transformation (1)
for the z coordinate we have

~8 x; z; tð Þ ¼ ei wt�kxxð Þ cae
�w~hazei~haS þ cbe

�w~hbzei~hbS
� �

ð5Þ

The classical decay component is enriched by a sinusoidal
term ei~hcS, which is independent of the frequency. For w !
0, the decay term goes to zero and the Rayleigh wave is
transformed into a body wave, always moving at Rayleigh
wave speed. In this case, the vertical wavenumber is
completely controlled by S, which is an increasing function
of the depth [e.g., Festa and Nielsen, 2003]. The PML
behavior for both body and surface waves is synthesized in
Figure 1.
[6] For very long simulations, the instability generated in

the PMLs pollutes the signal everywhere in the elastic
volume. In a homogeneous medium, the coefficients ca
and cb of equation (4) depend only on the wave speeds;
therefore the skin-depth of the propagating wave can be
estimated for any wavelength l. At z = l

2
the amplitude is

reduced to the 35% of the value at the surface and at z = l it
is at about 10%. If L is the largest wavelength propagated
by the numerical grid, the bottom of the model should be at
least located at 2–3 L, to avoid any interference with the
propagating surface wave.

3. Generalized Filtering PML (GFPML)

[7] In the frequency domain, the PML transformation (1)
has a pole at w = 0. We can move it onto the imaginary axis,
by changing the transformation to

~x ¼ B xð Þ þ S xð Þ
iwþ wc

ð6Þ

where B(x) is a function of x, and wc is a constant. Festa and
Vilotte [2005] have shown that, when B(x) = x, wc acts as a
cut-off frequency, with an efficient absorption for w > wc.
On the other hand, Kuzuoglu and Mittra [1996] proved in
electromagnetics that causality is preserved when dB

dx
> 1, for

any positive wc and dS
dx
. This result can be extended to

elastodynamics, almost as far as the near-field P-S coupling
can be neglected. In this case, both phenomena satisfy the
same wave equation.

[8] Adopting the transformation (6) instead of (1), the
body wave decays in the PMLs as

~% x; z; tð Þ ¼ % x; z; tð Þ e
ikx B�xð Þ�S wc

w2þw2c

h i
�kxS w

w2�w2c ð7Þ

It is worth to note here that (6) is a causal Butterworth-filter
transfer function, with a phase shift, that allows to preserve
the causality. The exponential decay now becomes
frequency dependent and it tends to classical PML as w !
1. The term B(x)� x is a frequency-independent phase shift
and it is expected to be a small contribution, growing from 0 at
the PML-volume interface to somemaximum value at the end
of the PMLs. This layer, indeed, has almost the same behavior
as the classical PML for body waves. Now we want to focus
the attention on the surface waves. Again, the same
transformation occurs when a surface wave enters horizon-
tally the PML. In the case of a vertical penetration, instead,
the exponentially decaying contribution e�whz in (4) is
transformed to

e
�whB zð Þ�S zð Þ wwc

w2þw2c
hþiS zð Þ w2

w2þw2c
h

ð8Þ

The first contribution preserves the exponential decay of a
surface wave, because B(z) � z. The second one is still an
exponential decay term, which goes down to zero with the
order w/wc. Finally the third term is a phase shift
approaching zero as w2/wc

2, steeper than the other
contributions. This transformation preserves the features
of a surface wave for low frequencies, without producing
any artifact inside the absorbing GFPML. Before dis-
cretization, a dispersion error is produced inside the layer
and it depends on the frequency. It can be evaluated and
reduced, using high-order Butterworth transformations.

4. Numerical Tests

4.1. Analytical Comparison

[9] GFPML regularizes PML at the continuous level.
Now we numerically test the efficiency of both methods,
by comparing them to the analytical solution. We propagate
a wave generated by an isotropic point source using a
spectral element technique [e.g., Festa and Vilotte, 2005].
The model is a 2D thin homogeneous elastic medium, the

Figure 1. A simple scheme of a numerical grid for the
propagation of elastic waves in the presence of a free
surface and absorbing layers. A body wave is always
attenuated when entering the PML. Surface waves decay
exponentially when they enter the lateral PMLs, but the
attenuation disappears, when they penetrate the bottom
layer. Here, the evanescent waves turn into body waves and
generate numerical instabilities.
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dimensions of which are 15 km 	 1 km. The elastic
properties of the volume are r = 2.7 g/cm3, cp = 3.2 km/s
and cs = 1.87 km/s. The source is a Ricker function, with a
central frequency of 2.5 Hz and a delay of 0.1 s. It is located
close to the left boundary of the model, at 0.15 km from the
free-surface. The medium is discretized by square elements,
of size H = 0.1 km, with 9 Gauss-Lobatto-Legendre
collocation points and about 20 points per minimum wave-
length. Finally, the time step is 4 10�4 s.
[10] We perform two numerical experiments, in the first

one the medium is surrounded by PMLs, with a S function
growing as a quadratic power. In the second one, PMLs are
replaced by GFPMLs, with the same parameters and B(x) �
x following a cubic law. The cut-off frequency is fc = 1.59 Hz,
leading to a wc = 10 rad/s. In Figure 2 the snapshots of the
propagation are shown at two times. The picture on the top
corresponds to the time t = 2 s, where the surface waves are
separating from the body waves. Both methods give the same
result. The other two snapshots sketch the velocity field at the
time t = 6 s. For a GFPML simulation, the surface waves are
well reproduced and preserve the same features of the above
snapshot (in a 2D homogeneous elastic medium surface
waves do not attenuate with the distance). In the case of
PMLs, the signal is generally amplified due to spurious
reflections coming from the bottom. A quantitative analysis
can be done by comparing the results to the analytical
solution. We choose two vertical lines of receivers, located
at a distance from the source of dx1 = 9 km and dx2 = 11 km.
For each line, we plot x and z components of the records for
two receivers (Figure 3), one located at the surface (0.05 km
beneath it) and one at 0.65 km of depth, close to the bottom of
the numerical model. We can observe that for the surface
records, the numerical solution provided by GFPML
(dotted line) fits well the analytic curve, with an error
comparable to the dispersion. The PML solution shows
instead a smooth slope at the end of the signal, with an
error 2 to 3 times larger than the one produced by
GFPML. For the receivers located in the middle the fit
is generally degraded. For GFPML, the error is at 1% for
location 1 and at 4–5% for location 2. For classical
PML, the amplitudes change significantly, with an error
of 10% for location 1 and 18–20% for location 2, and a

low-frequency ringing at the end of the signal. When
letting the simulation evolve, the instability propagates
away from PML and pollutes the signal everywhere in
the medium.

4.2. A 2D Geological Basin Geometry

[11] Basins have a complex structure in which amplifi-
cations are generally due to the interference between the
geometrical shape (topography and wedges) and the surface
waves. Here we analyze the wave propagation in a simpli-
fied model of the Caracas basin, as described by Duval et al.
[2001]. Although we retain only the separation between
sediments and bedrock, the shape preserves the geometrical
complexities of basins. The rheological properties and the
basin structure are shown in Figure 4a. The dimensions of
the basin are about 3.0 km 	 0.4 km. Waves are generated
by an isotropic source, the location of which is northward,
in the stiffer layer. Finally, a series of receivers has been
placed on the surface. At each station, the influence of the
basin has been estimated through the spectral ratio between
the signal recorded with the basin and the signal obtained by

Figure 2. Snapshots of the kinetic energy at two times.
The one on the top corresponds to the time t = 2 s, where the
surface waves are separating from the body waves. Both
methods give the same picture. The other two pictures are
snapshots at t = 6 s. With GFPML, surface waves are well
reproduced. When using PML, an instability is generated in
the bottom layer and propagates upward.

Figure 3. Horizontal and vertical component of velocity
records for 4 receivers, located at (9,0.05), (9,0.65),
(11,0.05), (11,0.65), all values being in km. In the pictures,
the analytical solution (solid line) is compared with GFPML
(dashed line) and PML (dotted line). The surface receivers
measure a numerical signal consistent with the analytic one,
with an error 2 to 3 times larger for PML. The error on the
stations at the middle of the model is generally larger. PML
attains an error of 10% and 18–20% for the second and the
forth receivers respectively against 1% to 4% for GFPML.
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replacing the sediments with the bedrock. To account for both
body and surface waves, the quadratic average of the single
component spectral ratios has been plotted. In Figure 4b the
solution with GFPMLs is shown. The largest amplification is
at about 0.75 kmwith harmonics at 1.5 Hz and 3.5–4.0Hz. In
the central part of the basin the peak of amplification is around
2 Hz. In Figure 4c the logarithm of the ratio between GFPML
and PML is plotted. We can see that on the left part of the
basin, where surface waves are developed and interfere
significantly near the wedge, the difference is almost one
order ofmagnitude. The effect on the lower frequencies is also
visible in the middle of the basin. It is necessary to double the
vertical dimension to allow classical methods to superimpose
to GFPML solutions.

5. Conclusions

[12] Numerical methods are widely used for the simula-
tion of the wave propagation inside basins to model the
interactions between surface waves and the topography of
the sediments. We show that particular attention should be
paid to the numerical mesh, which is more lengthened in
horizontal direction than in the vertical one. In fact, low-
frequency surface-wave trains may interact with the bottom

PML. In this case no more decay is provided inside the
layer, and the surface wave looses its characteristic expo-
nential feature. In very long simulations, this effect gener-
ates an instability, which is clearly visible everywhere in the
elastic volume. When the length is about 10 times larger
than the width, that is the case of several real models, the
instability has no time to develop, but the effect of the
absorbing boundary still pollutes the amplitude records,
sometimes reaching a difference of one order of magnitude.
To make the effect negligible, the bottom of the grid should
be put at a double distance from the surface, significantly
increasing the computation.
[13] Here we provided an analysis of this problem which

identified the origin of such instabilities. When we modify
PML by adding a cut-off and an overdamping (GFPML),
we show that the evanescent wave features are preserved in
the absorbing layer. Although a dispersion error is intro-
duced, it goes to zero steeper than the decay term. Decay
and dispersion are controlled by the filter and they can be
optimized by sharpening the filter function. GFPML also
provides stability in the numerical scheme, avoiding an
increase of the size of the model and of the computation.
Numerical tests have assessed the potential of the GFPML
regularization, but a complete numerical stability analysis
still remains to be done.
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Figure 4. In the top (a), the geometrical shape of the basin
with the location of the source is sketched. In the middle
(b), the spectral ratio of velocity records is evaluated by
using GFPML. It compares in the frequency domain, for
any receiver located on the surface, the records with the basin
to the records where the basin is replaced by the bedrock.
The final picture (c) shows the logarithm of the ratio
between the solutions with GFPML and PML, with
significant differences (almost one order of magnitude)
near the left wedge.
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